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Abstract 
 
In this paper, we extend the generalized likelihood ratio test to the varying-coefficient models with censored 
data. We investigate the asymptotic behavior of the proposed test and demonstrate that its limiting null 
distribution follows a 2  distribution, with the scale constant and the number of degree of freedom being 
independent of nuisance parameters or functions, which is called the wilks phenomenon. Both simulated and 
real data examples are given to illustrate the performance of the testing approach. 
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1. Introduction 
 
Nonparametric regression model has become one of the 
main approaches in modern statistics due to its 
robustness and wide applications. In particular, it can be 
well estimated when the covariate is one dimension. 
However, as the dimension of the covariates, we face the 
phenomenon called "the curse of dimensionality". The 
varying coefficient model, which is the function 
approximation method for high dimension, is prosed (see 
Hastie and Tibshirani, 1993). Recently many statisticians 
(see Fan and Zhang 1999, 2000; Cai, 2007; Zhou and 
Ling, 2009; Wang and Xia, 2009; Chen and Tong, 2010) 
have investigated the varying coefficient model due to its 
simplifying structure, meaningful interpretation and wide 
application.  

The varying-coefficient model has the following form:  

   T

=1

= =
p

i i
i

Y U X U   X       (1.1) 

where ,        T

1= , , p         1 , , pu u   is  

unspecified smoothing function that needs to estimate, 
 is random vector, U  is random 

variable, and its density function is 
 T

1= , , pX X  X 
 f u ,   is 

random error, and ,   | , = 0E U X  , XVar |U =
 2 ,U X .  

However, in the real problems, for example, in the 
fields of reliable lifespan experiment, medicine track, 

survival analysis and so on, Y  can not be observed 
because it is censored. Let C  denotes the censoring 
random variable, Y  and  are independent random 
variable under the condition that  and 

C
U X  are given. 

 = min ,T Y C c,  ,   ,= mT ini i iy  =i i iI y c  
 = 1,2, ,i n   , where  I   denotes the sign function of 
a event, if  is not censored, then Y = 1 , if Y  is 
censored ,  then  = 0 .  We can  on ly  observe  

  , , , ; = 1, ,i i i iU X T i n   . Because responding variable  

is censored, we can not use the methods directly which 
we use on full data. So we should transform the data in 
an unbiased way to account for the censoring. An 
example of this kind is given in Buckley and James 
(1979). However, their transformation involves the 
unknow regression function leading to an iterative 
scheme. Motivated by the Buckley-James transformation, 
Koul, Susarla and Van Ryzin (1981) consider a 
transformation which only depends on the censoring 
distribution, but not on the regression function. Zheng 
(1987) proposed a class of transformations of this type. 
Once such a transformation is carried through, once can 
apply a variety of statistical techniques to analyze the 
transformed data as if they were uncensored. However, 
since such a transformation does not involve the 
distribution of the response variable, it increases the 
variability. Hence, some smoothing technique is 
necessary for modeling the transformed data. Some 
nonparametric regression techniques were applied in 
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Dabrowska (1987) and Zheng (1988). In this paper, 
Class-K method is used to transform data.  

 In an effort to derive a generally applicable testing 
approach, Fan et al (2001) proposed the generalized 
likelihood ratio (GLR) statistic for nonparametric models. 
Their motivation was as follows. The maximum 
likelihood ratio test statistic in general may not exist in 
nonparametric and semiparametric settings. Even if it 
does, it is hard to find and may not be optimal in the 
simplest nonparametric regression setting. These 
drawbacks can be avoided when the maximum likelihood 
estimator is replaced by other reasonable nonparametric 
estimators, resulting in a class of statistics called the 
GLR statistic. The GLR test is intuitively appealing. Fan 
et al (2001) showed that for a variety of models and a 
number of nonparametric versus nonparametric and 
parametric versus nonparametric testing problems, the 
null distribution of the GLR test statistic follows an 
asymptotically 2 distribution, independent of nuisance 
parameters. This property is called the Wilks phenome- 
non and facilitates the application of the GLR statistic. 
The critical value can be determined either by asymptotic 
distributions or by simulations. In this paper, we extend 
the generalized likelihood ratio test to the varying- 
coefficient models with censored data.  

 The paper is organized as follows. Generalized 
likelihood ratio test is presented in section 2. In section 3, 
we provide two numerical results. Technical proofs are 
relegated to the Appendix. 
 
2. Generalized Likelihood Ratio Tests 
 
First, we replace the data point  , , ,U T X


 with the 

transformed data point  according to   *, ,U YX

     *
1 2= , , 1 , ,Y U T U   X X T    (2.1) 

where  1 , ,     and  are the transformation 
functions. In the sequel of this paper we will refer to this 
transformation as the "ideal transformation", since it 
assumes that the transformation function 

2 , ,   

1 , ,     and 

2  are known. In practical situations however, 
those transformation functions typically have to be 
estimated. The estimations of  and 

 , ,   

1 , ,     , ,2     
can be expressed as (Fan and Gijbels, 1994)  
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(2.2) 
where  | ,G u x   are respectively the conditional 
survival function of the random variable C  given 

 and =U u =X x . Remark that the Koul, Susarla and 
Van Ryzin (1981) transformation corresponds to = 1a   

and Leurgans (1987) transformation relates to . 
The tuning parameter  in this New Class of 
transformations (2.2) creates the opportunity to 
improvement.  

= 0a
a

Starting from the transformed data  

  *, , : = 1, ,i i iU X Y i n   , we now estimate the true  

regression functions   , = 1, ,i i p    . Fix a point ,  u

approximate the unknown function:  

     i  i i i iz u u z u a b z       .u  

This leads to the following weighted local 
least-squares problem: find   , , = 1, ,i ia b i p    so as 
to minimize  

  kU *
ˆ ( )

=1 =1

pn

k i i ki kh ukk i

Y a b u X K U
  u    
 

    (2.3) 

where    ˆ ( )
ˆ= / kh uk

K K h u   with K being a symme- 

tric probability density function and we use the adaptive 

var iab le  bandwid th  o f  o rder  k ,  and   ˆ =kh u  

  2l k l kU U  , here  is the index of the design point 

 closest to u , the smoothing parameter  can be 

obtained by cross-validation.  

l

lU k

Let us work with the matrix notation. Denote 

, , , 

 denotes an 

 T

1= , , nY Y  Y

Z

 T

1= , , nX X X

2n p

    T
, ipX1= ,i iX   X

  matrix with ,i iU u  T T
iX X   

as its th row, and  i

    = diag , ,h h n1K U u

T T
p

K U u   W  

The solution to the problem (2.3) is given by  

    1 T
,2ˆ = ,j ju


a e Z WZ Z WY *  

where ,2j p  is the e 2 p 1  unit vector with 1 at the 
 1j  th position.  

Consider the varying-coefficient model defined in 
(1.1). A nature question arises in practice is if these 
coefficient functions are really varying. This amounts to 
testing the following problem:  

   0 1: = , , =p pH U U ,1     

where 1, , p   are unknown parameters. Following 
the same derivations as in Fan et al (2001), generalized 
likelihood ratio tests based on local linear fits are given 
by  

0 0

1 1

= log ,
2 2n

RSS RSS RSSn n

RSS RSS


 1  

where   2T*
1 =1

=
n

k kk
RSS Y U X ̂ k  and  0 =RSS

 2
* T

=1
ˆn

k kk
Y X  with ̂  is the least-square estimate 
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under the null hypothesis.  
We now describe our generalized Wilks type of 

theorem as follows:  
Theorem 1  Suppose that conditions (C1)-(C5) given 

in the Appendix hold. Then, under 0H , as , 
,  

0h 
3/2nh 

2 .L
K n an

r      

where L  stands for convergence in distribution, 
and  

      
    

1*2 *

121*

= ,
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where ,    *2 *, = | = , =u x var Y U u X x

     = | =Tu E U u f uXX , 

     * T *2= , | =u E U U u f uXX X , 
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with *K K  denote the convolution of K. 
 

3. Numerical Studies  
 
In this section, we first use Monte Carlo simulation 
studies to assess the finite sample performance of the test 
procedure proposed and then demonstrate the application 
of the method proposed by using a real data example. 
The programs are written in Matlab and are available 
upon request from the authors.  
 
3.1. Simulation Example  
 
Simulation data are generated from the varying- 
coefficient partially linear model with censored data:  

   1 2 1= sin 6 sin 2Y U X U X Z1        (3.1) 

where the covariate U  is uniformly distributed on 
 0,1 , the covariates 1 2 1, ,X X Z  are normally distribut- 
ed with mean 0 and variance 1 and the distribution 
function of   is F , where  = 0,1F N  or  0,1U . 

1 2 1  and , , ,U X X Z   are simulated independently. The 
censoring variable C U . We vary  to 
produce difference censoring rates(CR). Here 20% and 

40% censoring are considered. The true parameter for 

1

 0,v v

  is always fixed at 1 = 2 , and we take  
for smooth parameter.  

1/5=h n

 For this example, we draw 1000 random samples of 
size 100 from the model (3.1) and take 1  as  3 U  . 
We consider three null hypothesis  

     3
3 3=1 2

0 1 1 2 0: = ; = ; :0 2: .H U b H b HU  U b  

Table 1 and Table 2 show that  and  1 U  2 U  
are nonparametric,  U3  is certain parametric under 
two different error distributions and censoring rates. The 
results show that the GLR test performs well.  



 
3.2. A real Data Example  
 
We now illustrate the proposed method by an application 
to the chronic granulotomous disease (CGD) data set. 
The CGD study in a report by the International CGD 
Cooperative Study Group (1991), was designed to have a 
single interim analysis when the follow-up data as of 
July 15, 1989 were complete. The monitoring committee 
for the trial terminated the trial at a meeting on 
September 22,1989. The treatment given each patient 
wan unblinded at the first scheduled visit for the patient 
following the decision of the monitoring committee.  

 The variables contained here are: 1Z : Treatment 
Code, 1 = rIFN, 2 = placebo; 2Z : Pattern of inheritance, 
1 = X-linked, 2 = autosomal recessive; 3Z : Age, in 
years; 4Z : Height, in cm; 5Z : Weight, in kg; 6Z : 
Using corticosteroids at time of study entry, 1 = yes, 
2=no; 7Z : Using prophylactic antibiotics at time of 
study entry, 1 = yes, 2 = no; 8Z : 1 = male, 2 = female; 

9Z : Hospital category, 1 = US-NIH, 2=US-other, 3 = 
Europe-Amsterdam, 4 = Europe-other; 1 : Elapsed time 
(in days) from randomization to diagnosis of a serious 
infection, or if a censored observation, elapsed time from 
randomization to censoring date; 

T

 : Censoring 
indicator, 1 = Non-censored observation, 2 = censored 
observation; : Sequence number. For each patient, the 
infection records are in sequence number order.  

S

We take 0  as the intercept term and , 
and employ the varying-coefficient model with censored 
data,  

= 1Z = / 20U S

 
9

=1i

 0= .i iY U U Z  

0 i ib Z

 

to fit the given data. A natural question is whether the 
coefficients functions are constant. To answer this 
question, the proposed GLR test is employed. The 
p-values for the test is summarized in Table 3. It can be 
seen from Table 3 that we should use following model to 
fit the given data.  

 
9

1
=2

=
i

Y b U Z1           (3.2) 
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Table 1. Power of the GLR test for     under different error distributions (DEDs) for the CR = 20%. 

  DEDs  0  1  2  

0.10 N(0,1) 0.542 0.996 0.000 
 U(0,1) 0.646 0.999 0.000 

0.05 N(0,1) 0.444 0.992 0.000 
 U(0,1) 0.530 0.999 0.000 

0.01 N(0,1) 0.233 0.957 0.000 
 U(0,1) 0.313 0.987 0.000 

 
Table 2. Power of the GLR test for     under different error distributions (DEDs) for the CR = 40%. 

  DEDs  0  1  2  

0.10 N(0,1) 0.509 0.970 0.000 
 U(0,1) 0.534 0.991 0.000 

0.05 N(0,1) 0.375 0.958 0.000 
 U(0,1) 0.413 0.982 0.000 

0.01 N(0,1) 0.186 0.888 0.000 
 U(0,1) 0.232 0.936 0.000 

 
Table 3. p-values for testing whether a coefficient functions is constant. 

  0 U   1 U   2 U   3 U   4 U   5 U   6 U   7 U   8 U   9 U  

GLR 0.0059 4.2791 0.0590 0.1363 0.2994 0.0242 0.3334 0.1503 0.3106 0.3600 
p-values 0.9320 0.0365 0.7954 0.6975 0.5692 0.8661 0.5486 0.6836 0.5622 0.5335 

 
And by the method of Fan and Huang (2005), we can 

estimate the parameters in the model (3.2). 
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Appendix  
 
To derive the asymptotic distribution of n  under , 
we need the following conditions.  

0H

C1. The marginal density  f u  of U  is Lipschitz 
continuous and bounded away from 0. U  has a 
bounded support .  

C2.  has the continuous second derivative.   u
C3. The function  K t

3t K t

*4 X

 is symmetric and bounded. 
Further, the function  and  are bounded 
and .  



E U

 3t K t

 = <U 
 4 <t K t dt 

T TXX XXC4. .   , | u

C5. X is bounded and the p p  matrix 

 is invertible for each u | =TE UXX u 

, | =U

. 

 and  

are both Lipschitz continuous.  

 1 | =TE U XX u u  *2E XT UXX

Remark  Conditions (C1)-(C5) are standard condi- 
tions, which are commonly used in varying- 
coefficient regression model (see Fan, J. and Huang T, 
2005 and Luo et al 2006).  

Lemma 1. Suppose that  is positive and 

continuous on a compact interval 
 Uf 

,a b , and  

such that 

nk 

0nk n  . Then, 
    ˆ = 1n

k pn
U

k
h o

nf u
 1  

uniformly in  ,u a b

ˆ

.  

Proof. This can be shown by the proof of Theorem 5.1. 
in Fan and Gijbels (1994).  

Lemma 2. Let   be the local linear estimator 
defined in section 2. Then, under condition (C1)-(C5), 
uniformly for 0u  ,  

           0 1 0 0
ˆ ˆˆ , , = 1 1 ,n n pe u R u o    2 0u u 
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   0 0= 1/nR u 2
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RSS
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2

 with .   2 2
2 =v u K u d

Proof. This follows immediately from the result 
obtained by Luo et al (2006).  

Proof of Theorem 1. Let c  denote a generic 
constant. Then, under ,  0H

RSS0 1 1= ,D D    

where 1
* *T

X D
P=D   , DX  is the design matrix with 

the  th row i T
iX   , ,= 1i n  and X D

P  is the 
projection matrix of DX  and  
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The proof will be completed by showing the following  four step.  
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It follows from Lemma 7.1 in Fan et al(2001) that 

           
22

* * 2
1 1| , , , , = 1T

X n n X XD D
E P X U X U ctr P c tr P p p c          


D

 

 
which implies (1). The proofs of (2) and (3) are the 

same as the proof of Theorem 5 in Fan et al (2001). The  
details are omitted. The last step follows from 

. *2
1 2=1

= .
n

ii
RSS D 
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