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ABSTRACT 

Transferability of five nuclear microsatellite markers 
(Jc-16, Jc-31, Jc-32, Jc-35 and Jc-37) that were origi- 
nally developed for J. communis was tested to J. pro- 
cera. Jc-31 & Jc-37 showed successful amplifications 
and polymorphism in J. procera. Jc-35 which had 
been reported as polymorphic in J. communis was 
monomorphic in J. procera while the primer pair for 
Jc-32 failed to record any amplification. The remain- 
ing one primer pair (Jc-16) showed double loci ampli- 
fication in both J. procera and the control J. commu- 
nis suggesting further examination of the primer pair 
and its binding sites. Genetic variation of six Ethio- 
pian J. procera populations: Chilimo, Goba, Mena- 
gesha-Suba, Wef-Washa, Yabelo and Ziquala was as- 
sessed based on the two polymorphic loci (Jc-31 & 
Jc-37) in 20 - 24 individuals of each population. From 
these two loci, a total of 41 alleles could be retrieved. 
Two populations that are located south east of the 
Great Rift Valley together harboured 75% of private 
alleles signifying their deviant geo-ecological zones 
and suggesting special consideration for conservation. 
Chilimo, which is at the western margin of Juniper 
habitat in Ethiopian central highlands scored the 
highest fixation (FIS = 0.584) entailing lower immi- 
grant genes and hence higher inbreeding. The 
AMOVA revealed that 97% of the variation resided 
within the populations while still among population 
variation was significant (p < 0.05). 
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1. INTRODUCTION 

Due to their high polymorphism and co-dominant mode 
of inheritance, microsatellite (SSR) markers provide high 
resolution and precise information in genetic analysis 
such as gene flow, mating system and paternity [1,2]. 
Hence, they have become one of the important genetic 
markers that are being widely used for genetic studies of 
many important plants and animals. However, microsa- 
tellites developed for a species usually are transferable to 
only closely related other species [3]. As a result, a spe- 
cific species may require development of specific mi- 
crosatellite markers. A number of microsatellites have 
been developed and employed in genetic studies of tree 
species [4-8].  

Juniperus procera is one of the biggest trees in its ge- 
nus reaching to a height of over 40 m and a diameter of 
above 3 m [9,10]. The tree naturally grows between the 
Arabian Peninsula in Asia to Zimbabwe in Africa [11]. It 
is believed to have been evolved from J. excelsa [12] or 
a pre-existing common ancestral species for both J. ex- 
celsa and J. procera [13]. J. procera is the only species 
that succeeded south of equator in the genus Juniperus 
which comprises 67 taxa [11]. The separate success of J. 
procera to the south may entail its divergent evolution to 
its unique geographic regions which has likely led it 
having deviant genomic structure. The possible distinct 
pattern of variation with different genome structure 
adapted and specialized to the unique geographical re- 
gion may limit the transferability rate of microsatellite 
markers that have been developed for other species in the 
genus. However, some microsatellites primer developed 
for species in other genus: Chamaecyparis; Chamaecy- 
paris nootkatensis [14] and Chamaecyparis obtusa [15] 
were reported to score strong amplification in J. procera *Corresponding author. 
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[16]. This on the other hand, may suggest a more suc- 
cessful transferability of microsatellites within the genus.  

Recently, microsatellite markers were developed for 
three species in the genus Juniperus, namely, J. commu- 
nis [17], J. przewalskii [18] and J. tibetica [19]. This has 
promised detail genetic studies of species in the genus 
for high resolution data generation which will have sig- 
nificant role in setting up of their conservation strategies. 
J. procera is a high use value tree chosen for a variety of 
constructions, furniture and outdoor uses [10,20]. Con- 
sequently, the species has been subjected to extensive 
logging which has led its current status to be threatened 
in many of its habitats [21-23]. This justifies the need for 
a systematic study of the genetic structure of the popula- 
tions of J. procera in order to design appropriate conser- 
vation strategies. The objectives of the present study 
were therefore, to assess the transferability rate of mi- 
crosatellites developed for J. communis to J. procera and 
to use transferable markers in genetic variation analysis 
of J. procera populations in Ethiopia and accordingly, to 
recommend possible conservation measures. 

2. MATERIALS AND METHODS 

2.1. Sampling Technique 

Leaves (needles) of 20 - 24 trees from each six represent- 
tative J. procera populations: Chilimo, Goba, Menage- 
sha-Suba, Wef-Washa, Yabelo and Ziquala (Figure 1) in 
Ethiopian highlands were collected in separate plastic 
bags containing silica gel. In order to avoid the collection 
of relatives, a minimum 50-meter distance between any 
sampled trees in a population was maintained using GPS. 
Further leaves of J. communis from Forestry Botanical 
Garden of the Georg-August University of Goettingen 
were collected as experimental control. 

2.2. DNA Extraction 

Total genomic DNA was extracted from silica gel dried 
leaf samples of both J. procera and J. communis using 
DNeasy 96 plant kit (Qiagen, Hilden, Germany). In order 
to check the quality and quantity of the DNA, 5 μl from 
each probe mixed with 2 μl of 6× orange loading dye 
solution (Fermentas) was electrophoresized for 25 minute 

 

 

Figure 1. Map of the populations studied. 
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on 1% (w/v) agarose, in 1× Tris-Acetate-Ethylenedia- 
minetetraacetic acid (TAE) buffer and about 0.003% (v/v) 
ethidium bromide as dye. After confirming the quality 
and quantity, the remaining DNA was stored at 20˚C for 
further investigation. 

2.3. Primer Testing 

Five primer pairs (Jc-16, Jc-31, Jc-32, Jc-35 and Jc-37) 
that were designed for microsatellite loci in Juniperus 
communis [17] were tested for amplification in a sample 
from each J. procera population and J. communis as 
positive control. PCR was performed in a final volume 
15 μl containing 2 μl (10 ng) genomic DNA template, 1.5 
μl 10× buffer (promega), 0.07 mM of each dNTP, 2 μl 
each primer (5 piko mol/μl), 2.5 mM MgCl2 for two 
primer pairs (Jc-16 and Jc-31) and 1.5 mM MgCl2 for 
the rest three primer pairs and 1 U Hot star Taq poly- 
merase (Qiagen). PCR was performed following the pro- 
file reported in [17] using a Peltier Thermal Gradient 
Cycler (PTC-200 version 4.0, MJ Research). 

In order to observe amplifications in the expected re- 
gions of the respective primer pairs, PCR products were 
subjected to gel electrophoresis. Fragments of PRC 
products that showed amplification in the expected size 
ranges were separated on ABI Genetic analyzer 3100 
with internal size standard fluorescent dye ROX (Gene 
Scan 500 ROX) from Applied Biosystems. The above 
PCR and fragment separation procedures were per- 
formed for all samples for the primer pairs that showed 
clear amplification and polymorphism thereby variation 
analysis of the J. procera populations. The allele sizes of 
the polymorphic loci were scored using Gene scan 3.7® 

and Genotyper 3.7® software (Applied Biosystems) and 
the scores were appended to excel for further analysis. 

2.4. Data Analysis for Polymorphic Loci 

Population variation analysis was made based on poly- 
morphic microsatellite loci. Genetic variation parameters 
such as, allele frequencies, private alleles, fixation indi- 
ces (FIS) and genetic differentiation based on FST via 
AMOVA were computed using GenAlEx version 6.4. In 
order to compute population pair wise Nei’s unbiased 
genetic distance [24], the program POPGEN version 1.32 
[25] was applied. Un- weighted pair group method using 
arithmetic averages (UPGMA) dendrogram was gener- 
ated following the method of SAHN clustering [26] us- 
ing NTSYSpc 2.0 program based on the unbiased genetic 
distance. 

3. RESULTS 

3.1. Test of Primer Pairs 

Two microsatellites (Jc-31, Jc-37) produced clear and 

polymorphic amplifications in J. procera. Another loci, 
Jc-35, which was polymorphic in J. communis [17] ap- 
peared to be monomorphic in J. procera (Figure 2). 
Jc-16 primer pair amplified double loci in both J. pro- 
cera and the control J. communis which the additional 
amplification was stronger than the amplification in the 
expected size ranges (Figure 3). On the other hand, the 
rest prime pair, Jc-32 did not record any amplification in 
J. procera. 

3.2. Allelic Frequencies 

A total of 41 alleles were revealed from the two poly- 
morphic loci Jc-31 and Jc-37 (See Appendix). Jc-37 was 
found to be a highly variable locus with a total of 35 al- 
leles revealed within the expected size range of 164 to 
232 bps. The population, Menagesha-Suba, with its ori- 
gin from the central part of Ethiopia, stood the first in 
terms of the total number of alleles revealed, which was 
24 in this case (Table 1). The other locus, Jc-31, which 
was found to be less polymorphic in this study, contrib- 
uted six alleles in a confined sizes ranged between 155 to 
161 bps. At microsatellite locus Jc-37, allele sizes 188, 
196 and 200 bps were observed in all the populations, 
with the most frequent observation of alleles being at the 
size of 196 bps. Two alleles with sizes of 155 and 156 
bps accounted over 90% of at locus Jc-31 (see Appen- 
dix). 

3.3. Private Alleles 

A total of 12 private alleles were revealed for the over-
all six populations at the two loci. All private alleles 
were observed at locus Jc-37 except one at locus 
Jc-31 in Ya- belo, a population which is from the ex-
treme southern block of Ethiopia (Table 2). A private 
allele with a size of 164 bps at Jc-37 contributed for 
more than 10% of allelic frequency in this same 
population (Table 2). Two populations which are south 
east of The Great Rift valley, namely Goba and Yabelo, 
har bored about 75% of the private alleles observed in 
this study. 

3.4. Heterozygosity and Fixation Index 

Among the populations tested in this study, Ziquala  
 
Table 1. Number of alleles in each population. 

Number of alleles per population 
Locus

Chilimo Goba M.Suba W.Washa Yabelo Ziquala

Jc-31 3 4 4 3 5 5 

Jc-37 17 17 20 17 16 16 

Total 20 21 24 20 21 21 
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Figure 2. Monomorphic and homozygous locus Jc-35. 
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Figure 3. Loci amplified by single primer pair Jc-16. 
 
scored the highest heterozygosity (Ho = 0.604) followed 
by Goba (Ho = 0.595) and congruently, these two popu- 
lations showed lowest inbreeding, i.e. FIS = 0.283 & 
0.296 in that order. The lowest heterozygosity (Ho = 
0.354) and hence the highest fixation index (FIS = 0.584) 
was computed for Chilimo population (Table 3). 

3.5. Among Populations Variation 

3.5.1. AMOVA 

AMOVA based on the two polymorphic loci combine 
puts 97% of the variation within the populations (Table 

). Nevertheless, the result indicated that there is highly  4 
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Table 2. Private alleles and their respective genotypes. 

Population Private allele Genotypes with private allele at both loci Locus with Private Alleles 

  Jc-31 Jc-37  

Chilimo 210 155 155 178 210 Jc-37 

Chilimo 208 157 157 208 211 Jc-37 

Goba 204 155 155 188 204 Jc-37 

Goba 204 155 155 202 204 Jc-37 

Goba 204 0 0 196 204 Jc-37 

Goba 204 156 158 202 204 Jc-37 

Goba 204 156 158 182 204 Jc-37 

Goba 204 155 157 188 204 Jc-37 

Goba 218 158 158 186 218 Jc-37 

Goba 223 156 158 188 223 Jc-37 

Goba 225 155 155 166 225 Jc-37 

Goba 232 155 155 170 232 Jc-37 

M.Suba 191 157 155 184 191 Jc-37 

Yabelo 161 155 161 184 190 Jc-31 

Yabelo 164 156 156 164 190 Jc-37 

Yabelo 164 155 155 164 194 Jc-37 

Yabelo 164 155 155 164 194 Jc-37 

Yabelo 164 0 0 164 198 Jc-37 

Yabelo 164 156 156 164 192 Jc-37 

Yabelo 168 156 156 168 190 Jc-37 

 
Table 3. Within population genetic variation based on the two microsatellite loci. 

Populations 
Locus Parameters 

Chilimo Goba M.Suba W.Washa Yabelo Ziquala 
Mean Total 

n 24 23 24 24 24 24 23.833 143 

A 17 17 20 17 16 16 17.167 35 

AE 11.636 10.907 11.294 9.931 11.294 9.846 10.82 - 

Ho 0.625 0.826 0.833 0.75 0.875 0.958 0.81 - 

He 0.914 0.908 0.911 0.899 0.911 0.898 0.91 - 

Jc-37 

FIS 0.316 0.091 0.086 0.166 0.04 -0.067 0.105 - 

n 24 22 24 23 22 20 22.5 135 

A 3 4 4 3 5 5 4 6 

AE 0.907 1.344 1.076 0.972 0.988 1.307 1.1 - 

Ho 0.083 0.364 0.250 0.174 0.091 0.250 0.202  

He 0.559 0.729 0.598 0.0.590 0.546 0.679 0.622  

Jc-31 

FIS 0.851 0.501 0.582 0.705 0.834 0.632 0.684  

n 24 22.5 24 23.5 23 22 23.167 139 

A 10 10.5 12 10 10.5 10.5 10.583 41 

AE 6.952 7.301 6.891 6.184 6.750 6.479 6.760 - 

Ho 0.354 0.595 0.542 0.462 0.483 0.604 0.507 - 

He 0.737 0.819 0.755 0.745 0.729 0.789 0.762 - M
ea

n 
V

al
ue

s 

FIS 0.584 0.296 0.334 0.436 0.437 0.283 0.395 - 

n: No. of samples; A: Observed Alleles; AE: Effective Alleles; Ho: Observed Heterozygosity; He: Expected Heterozygosity; F: Fixation Index. 
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Table 4. AMOVA results at microsatellite loci. 

Locus Source of variation df SS MS Est. Var. % FST Value Prob. 

Among Pops 5 5.05 1.01 0.01 2 0.024 0.000 

Within Pops 282 130.65 0.46 0.46 98   Jc-37 

Total 287 135.70 1.47 0.48    

Among Pops 5 4.526 0.91 0.01 4 0.037 0.002 

Within Pops 282 88.98 0.32 0.32 96   Jc-31 

Total 287 93.50 1.22 0.33    

Among Population 5 9.58 1.92 0.02 3 0.030 0.000 

Within Population 282 219.63 0.78 0.78 97   Combined (Jc-37 + Jc-31) 

Total 287 229.21 2.69 0.80    

 
significant (P < 0.01) variation among the populations. 

3.5.2. Pair Wise Analysis 
The pairwise FST analysis based on the polymorphic loci 
showed significant (P < 0.05) differentiations between all 
pairs except Chilimo with Yabelo, Goba with Ziquala 
and Menagesha-Suba with Wef-Washa (Table 5). Me- 
nagesha-Suba and Wef-Washa were the least differenti- 
ated (FST = 0.005). 

3.5.3. Population Clustering 
The populations from the different eco-geographical 
sources were grouped into two distinct clusters based on 
Nei’s unbiased genetic distance UPGMA (Figure 4). 
Two of the populations from the central part of Ethiopia, 
namely Menagesha-Suba and Wef-Washa, were grouped 
into one cluster, whereas the remaining four populations, 
i.e., Chilimo, Goba, Yabelo and Ziquala, were grouped 
into the second cluster. 

4. DISCUSSION 

4.1. Transferability of Microsatellites from  
J. communis to J. procera 

The low transferability of the microsatellite markers  
from J. communis to J. procera may indicate the devi- 
ance in the genomic structure of the two species, which 
enabled the species to have success in their current re- 
spective eco-geographic zones. The success of J. procera 
in the south unlike the rest of the species in the genus 
[11,27] was already postulated to be due to evolutionary 
changes in the species to adapt to its unique ecogeo- 
graphical region [11-13]. The polymorphism in J. com- 
munis [17] and the complete monomerphism in J. pro- 
cera at locus Jc-35 may also indicate the degree of ge- 
netic divergence exist between the two species, justifying 
the taxonomic classification of the two species into dif- 
ferent groups [11]. Reference [18] who checked poly- 

Table 5. Pairwise population differentiation (FST) based on the 
two microsatellite loci. 

population Chilimo Goba M.Suba W.Washa Yabelo Ziquala

Chilimo  ** ** * Ns 
(P = 0.156)

* 

Goba 0.036  ** ** ** Ns 
(P = 0.061)

M.Suba 0.038 0.032  
Ns 

(P = 0.22) 
** ** 

W.Washa 0.029 0.040 0.005  ** ** 

Yabelo 0.008 0.039 0.038 0.041  * 

Ziquala 0.018 0.013 0.047 0.032 0.024  

*P < 0.05; **P < 0.01; Ns: P > 0.05. 

 

 

Figure 4. UPGMA dendrogram based on pair wise Nei’s unbi- 
ased genetic distances. 
 
morphism of the five microsatellite loci [17] in J. 
przewalskii reported polymorphism for locus Jc-32 
which failed to show amplification in J. procera. Con- 
versely, [18] failed to observe amplification record in J. 
przewalskii at locus Jc-37 which was found highly po- 
lymorphic in J. procera and they got monomorphism in J. 
przewalskii at locus Jc-31 which was polymorphic in J. 
procera. This might be an indication that J. procera is 
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genetically divergent not only from J. communis but also 
from other species within the genus Juniperus. Reference 
[18] also failed to produce any successful amplification 
with J. przewalskii at the locus Jc-16. 

The double loci amplification by primer pair Jc-16 in 
both J. procera and J. communis (control) is in accor- 
dance with the report of [28] who observed multiple 
binding sites of the primer in her further investigation 
though [17] reported it as successful microsatellite pri- 
mer. The frequency of microsatellite regions in the ge- 
nome increases with the genome size of an organism 
[29-31]. Hence, primer sets designed for a single target 
microsatellite region may encounter more than one re- 
gion in large genomes, thereby possibility of amplifying 
additional non target regions [31]. Conifers in general are 
reported to have large genome with a highly repetitive 
DNA that has made difficulty for recovery of microsatel- 
lite markers from their genome [14,32-34]. Accordingly, 
the experiences of single primer pair amplifying multiple 
loci in conifer genomes have also been commonplace 
[14,31,35]. 

4.2. Population Genetic Variation 

J. procera is diocious and hence it is obligatorily out- 
crossing wind pollinated species [10,11,27]. The high 
within population variation in this study is likely attrib- 
utable to these mating features of the species which was 
also reported for many species having similar reproduc- 
tive biology [5,36-40). In addition, the strong gene mi- 
gration of the species via seed which is mediated by long 
traveling birds [11,13] likely pronounced the within po- 
pulation genetic variation by narrowing down the varia- 
tion among populations [39,41]. 

The lowest pairwise genetic distance which was real- 
ized between Menagesha-Suba and Wef-Washa may con- 
firm the historical record that claims Menagesha-Suba as 
plantation of wildlings from Wef-Washa back in 15th 
century [42,43]. These two populations were also the 
only undifferentiated pairs in AFLP analysis of the six 
populations [44]. The low differentiation between Chi- 
limo and Yabelo, however; is contrary to the one reported 
by [44] between which the authors computed the highest 
differentiation. The result in this study is likely due to the 
allele size 155 bps at Jc-31 which was shared between 
the two populations at higher frequency. The allele sizes 
155 and 156bps at Jc-31 seem to have been evolved 
through insertion and deletions process that has gone in 
the flanking region of the locus [45]. Therefore, by 
chance, the two populations (Chilimo and Yabelo) prob- 
ably have made relatively same rate of evolution in favor 
of the allele size 155 bps which can be considered as 
Homoplasy [46,47].  

4.3. Heterozygosity and Fixations 

The relatively and consistently higher heterozygosity at 
both of the loci for the Goba population might indicate 
the strong reproductive contact of this population with 
other populations. The Goba population is a sub popula- 
tion of an extensive mega Juniper population over the 
Bale Mountains [48,49]. Nevertheless, this population 
was found with inferior gene diversity of all the popula- 
tions investigated through AFLP analysis, which was 
assumed to suffer from bottleneck associated with sever 
disturbance [44]. Bottlenecks have little effect on het- 
erozygosity [50-52]. This likely has enabled the Goba 
population in maintaining its superiority in heterozygos-
ity in this study while the population was reported with 
lower gene diversity at AFLPs [44].  

On the other hand, the higher fixation (FIS = 0.584) 
computed for Chilimo might be an indication of the 
higher inbreeding [53,54] in this population which might 
be resulted from limited geneflow [55-57]. Chilimo was 
also reported with lower gene diversity among the cen- 
tral highland populations based on AFLP analysis [44]. 
Chilimo is located in the western margin of Juniper 
habitats in Ethiopia [58].  

4.4. Geographic Isolations and Private 
(Endemic) Allele Concentrations 

The reason for higher concentration of endemic alleles in 
the south eastern populations (Goba and Yabelo) may 
somehow be related to the exclusive isolation of these 
populations from the rest by the Great Rift Valley as a 
physical barrier to gene flow. Reference [44] also re- 
ported that these two populations were genetically di- 
vergent from the other populations. Yet, the two south 
easterners exist at substantially long geographic distance 
apart each other which likely enabled them to harbor 
large number of endemic alleles independently. The Bale 
Mountains, where the Goba population belongs are 
known to have high concentration of endemic faunas and 
floras resulting from its unique ecology [49,59] experi- 
encing temperature extremes between −15˚C to +26˚C 
[60]. The unique ecological features of the area may also 
contribute for change of certain genetic factors in the 
non-endemic organisms as well which perhaps have re- 
sulted in high level of private allele in Goba population. 
The Yabelo population harbored a total of three endemic 
alleles of which two were at locus Jc-37 and the other at 
Jc-31. The high allelic frequency (>10%) of the endemic 
allele with the size of 164 bps (locus Jc-37) in Yabelo 
may indicate the uniqueness of this population. Yabelo is  
recognized as lowland Juniper population in Ethiopia and 
it was reported for having unique seed morphology with 
a higher germination rate [61,62]. The two endemic al- 
leles observed in Chilimo population may also be attrib- 
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uted to the geographic position of the population, which 
is at the western margin of the ecological zones for the 
Juniper forests in Ethiopia [58]. 

4.5. Conservation Implication of the Genetic 
Structure 

Although most of the variations resided within the popu- 
lations, due mainly to the mating system and gene flow 
mechanism of the species, the significant differentiation 
among the populations entails the level of variation of 
genetic information harbored in each population. Fur- 
thermore, the high private allele concentration for the 
geographically isolated populations clearly suggested 
that these populations deserve a special attention for ge- 
netic conservation. Earlier [61,62] reported the Juniper at 
Yabelo having unique morphological and physiological 
traits signifying the need of special conservation atten- 
tion of this population. Contrary to [44] who reported 
low diversity in Goba population, the present study 
scored both the highest heterozigocity and private alleles 
in this population. This, as stated above, may emanate 
from bottleneck problems that have little effect on het- 
erozygosity but likely be associated with the excessive 
disturbances of the population. Therefore, appropriate 
steps must be taken to put in place a proper genetic re- 
sources conservation strategy before such populations, 
particularly those with high concentration of private al- 
leles are genetically eroded as their private alleles might 
not be regained from anywhere else once they are lost. 
The higher fixation score in Chilimo population seem to 
be due to selective logging of the elite genotypes with 
higher diameter [63,64] and due to its geographic isola- 
tion with the other populations [58]. In order to avoid 
genetic erosion and inbreeding depression, this popula- 
tion may require further genetic enrichment involving the 
introgression of new genetic backgrounds into the exist- 
ing population by inter-planting of seedlings from other 
populations. 

5. CONCLUSION 

The less transferability of the microsatellites in J. com- 
munis to J. procera elucidates the genome structure dif- 
ferences of the two species. It is likely that the genome 
structure of J. procera has evolved in response to its 
current unique habitats, which may make it divergence 
not only from J. communis but also from other species of 
the genus. Though only two polymorphic loci were in- 
volved in this study for the assessment of J. procera 
populations in Ethiopia, results were able to generate 
precisely valid information relevant for conservation 
strategy set up and history reconstruction. However, we 
suggest more microsatellite markers either specifically 
developed for the species or those that could be trans-
ferred from related taxa to be involved for detail investi-

gation and generate reliable data in further studies. 
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APPENDIX 
Allelic frequencies at microsatellite loci Jc-31 and Jc-37. 

 Allele frequencies in each population 

Locus 
No. Allele size (bps) 

Chilimo Goba M.Suba W.Washa Yabelo Ziquala 

1 155 0.542 0.341 0.313 0.348 0.591 0.475 

2 156 0.375 0.295 0.542 0.522 0.318 0.250 

3 157 0.083 0.159 0.083 0.000 0.045 0.100 

4 158 0.000 0.205 0.063 0.130 0.000 0.150 

5 159 0.000 0.000 0.000 0.000 0.023 0.025 

Jc-31 

6 161 0.000 0.000 0.000 0.000 0.023 0.000 

1 164 0.000 0.000 0.000 0.000 0.104 0.000 

2 166 0.000 0.022 0.000 0.000 0.000 0.000 

3 168 0.000 0.000 0.000 0.000 0.021 0.000 

4 170 0.000 0.022 0.042 0.000 0.000 0.000 

5 172 0.000 0.000 0.063 0.021 0.000 0.000 

6 176 0.000 0.000 0.021 0.021 0.000 0.021 

7 178 0.063 0.043 0.021 0.000 0.000 0.000 

8 180 0.083 0.000 0.021 0.000 0.042 0.021 

9 182 0.042 0.109 0.125 0.021 0.125 0.000 

10 184 0.000 0.065 0.188 0.063 0.146 0.021 

11 186 0.000 0.087 0.063 0.000 0.021 0.083 

12 188 0.167 0.174 0.021 0.042 0.083 0.104 

13 190 0.063 0.000 0.021 0.125 0.125 0.063 

14 191 0.000 0.000 0.021 0.000 0.000 0.000 

15 192 0.083 0.000 0.063 0.042 0.021 0.104 

16 194 0.125 0.000 0.083 0.125 0.063 0.000 

17 196 0.083 0.043 0.104 0.208 0.042 0.146 

18 198 0.000 0.043 0.042 0.063 0.042 0.000 

19 200 0.021 0.065 0.021 0.042 0.042 0.188 

20 202 0.000 0.087 0.021 0.083 0.063 0.063 

21 203 0.021 0.000 0.000 0.021 0.000 0.000 

22 204 0.000 0.130 0.000 0.000 0.000 0.000 

23 205 0.042 0.022 0.000 0.021 0.000 0.000 

24 207 0.000 0.000 0.021 0.000 0.000 0.021 

25 208 0.021 0.000 0.000 0.000 0.000 0.000 

26 209 0.021 0.000 0.021 0.021 0.000 0.021 

27 210 0.021 0.000 0.000 0.000 0.000 0.000 

Jc-37 

28 211 0.063 0.000 0.000 0.042 0.021 0.021 
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29 213 0.000 0.000 0.021 0.042 0.000 0.042 

30 215 0.063 0.000 0.000 0.000 0.042 0.063 

31 217 0.021 0.000 0.000 0.000 0.000 0.000 

32 218 0.000 0.022 0.000 0.000 0.000 0.021 

33 223 0.000 0.022 0.000 0.000 0.000 0.000 

34 225 0.000 0.022 0.000 0.000 0.000 0.000 

 

35 232 0.000 0.022 0.000 0.000 0.000 0.000 
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