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ABSTRACT 

Analytical solution is obtained to predict the con-
taminant concentration with presence and ab-
sence of pollution source in finite aquifer subject 
to constant point source concentration. A longi-
tudinal dispersion along unsteady groundwater 
flow in homogeneous and finite aquifer is con-
sidered which is initially solute free that is, aq-
uifer is supposed to be clean. The constant 
source concentration in intermediate portion of 
the aquifer system is considered with pulse type 
boundary condition and at the other end of the 
aquifer, concentration gradient is supposed to 
be zero. The Laplace Transformation Technique 
(LTT) is used to obtain the analytical solution of 
the formulated solute transport model with 
suitable initial and boundary conditions. The 
time varying velocities are considered. Analyti-
cal solutions are perhaps most useful for 
benchmarking the numerical codes and models. 
It may be used as the preliminary predictive 
tools for groundwater management. 

Keywords: Aquifer; Unsteady Groundwater Flow; 
Longitudinal Dispersion; Uniform Source  
Concentration; Pulse Type Boundary Condition 

1. INTRODUCTION 

A large part of the drinking water in India comes from 
groundwater. The contamination of groundwater systems 
is still a major issue in the assessment of hazards and 
risks to public health. The underground systems are very 
attractive as waste repositories because of the possibility 
of degradation by biochemical processes. But in some 

cases, it can lead to contamination of regional ground-
water systems. The contaminant releases to groundwater 
can occur by design, by accident or by negligence. Most 
of the groundwater contamination incidents involve sub-
stances released at or only slightly below the land surface. 
The transport of contaminants in groundwater is described 
by solute transport equations in the form of partial dif-
ferential equations. These equations are known as solute 
transport models. These models simulate movement and 
concentration of various contaminants in groundwater 
system and can be classified into three categories such as 
advection models, advection-dispersion models, and ad-
vection-dispersion-chemical biological reaction models. 
Advection models define the movement of contaminant 
as a result of groundwater flow only. Advection disper-
sion models takes into consideration molecular diffusion, 
and microscopic/macro dispersion. Advection-dispersion- 
chemical biological reacion models include the effect of 
chemical or biological reactions which change the con-
centration of transported contaminants [1-7]. 

The effects of initial and boundary conditions on the 
distribution of the tracer in time and distance for several 
one-dimensional systems (infinite, semi-infinite, and 
finite) were determined [8]. The effects of hydrodynamic 
dispersion, diffusion, radioactive decay, and simple 
chemical interactions of the tracer were included. An 
analytical method by which the effects of flow non uni-
formity and variable dispersion coefficients were evalu-
ated for the problem involving longitudinal dispersion in 
porous media was proposed [9]. A boundary layer ap-
proximation was used to develop general solutions of the 
one-dimensional convective-dispersion equation for 
steady flow. Analytical solutions for two problems of 
longitudinal dispersion within semi-infinite, nonadsorb-
ing, homogeneous, isotropic media in unidirectional 
flow fields were developed [10]. Dispersive sources in 
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uniform groundwater flow were presented [11]. An ana-
lytical solution for the movement of a chemical in a po-
rous medium as influenced by linear equilibrium adsorp-
tion, zero order production, and first order decay was 
presented [12]. An analytical solution for dispersion (in a 
finite non-adsorbing and adsorbing porous media) was 
developed [13,14] and it was controlled by flow (with 
unsteady unidirectional velocity distribution) of low con-
centration fluids towards a region of higher concentration. 
An analytical solution of the general one-dimensional 
solute transport model for confined aquifers was ob-
tained [15]. An analytical solution for describing the 
transport of dissolved substances in heterogeneous po-
rous media with a distance-dependent dispersion rela-
tionship was developed [16]. An analytical solution for 
the advection-dispersion equations with rate-limited de-
sorption and first-order decay, using an Eigen function, 
integral equations method was derived [17]. Analytical 
solutions to two mathematical models for virus transport 
in one-dimensional homogeneous, saturated porous me-
dia for constant flux as well as constant concentration 
boundary conditions were presented [18]. The stochastic 
model for one-dimensional virus transport in homoge-
neous, saturated, semi-infinite porous media was devel-
oped [19]. The water table variation in response to time 
varying recharge was explored [20]. Analytical solutions 
to the transient, unsaturated transport of water and con-
taminants through horizontal porous media was pre-
sented [21]. Analytical solutions for sequentially coupled 
one-dimensional reactive transport problems were dis-
cussed [22]. Longitudinal dispersion with time depend-
ent source concentration along unsteady groundwater 
flow in semi-infinite aquifer was presented [23]. Re-
cently, one and two dimensional analytical solutions 
were also explored using Laplace and Hankel Transform 
Techniques respectively with suitable initial and bound-
ary conditions [24,25].  

In context of solute dispersion problem along un-
steady groundwater flow, the objective of this study is to 
solve analytically convective-dispersive equation with 
an appropriate initial and boundary conditions. In the 
present work uniform source concentration in intermedi-
ate portion of the aquifer system is considered in split-
ting time domain i.e. the pulse type boundary condition 
which is not taken earlier [24]. The time dependent 
forms of velocities expressions are considered for nu-
merical examples and discussion. 

2. ANALYTICAL SOLUTION FOR  
HOMOGENEOUS FINITE AQUIFER 
WITH PULSE TYPE BOUNDARY  
CONDITION 

Let  ,c x t  [ML-3] be the solute concentration at po-

sition x [L] at time t [T] in homogeneous finite aquifer of 
length L. Let D [L2T-1] be the solute dispersion and 
u[LT-1] be the velocity of the medium transporting the 
solute particles. Initially, aquifer is considered solute 
free i.e. aquifer is clean so the initial contaminant con-
centration is supposed to be zero at time t = 0. Let c0 

[ML-3] be the input contaminant concentration in inter-
mediate portion of the aquifer system i.e. at 0x x  till 

0t t  and beyond that it becomes zero. The contami-
nant concentration gradient at the other end of the aqui-
fer i.e. at x L  is supposed to be zero. The mathe-
matical model for the contaminant concentration in 
space and time with pulse type boundary conditions can 
be written as follows: 

2 2D c x u c x c t                   (1) 

   0u t u V t                 (2) 

  0, 0; , 0c x t x x t              (3) 

  0 0 0

0 0

; 0 ,
,

0; ,

c t t x x
c x t

t t x x

  
   

         (4a) 

0; 0,c x t x L                (4b) 

Here 0u  [LT-1] is the initial groundwater velocity at 
each x and  V t  is the time dependent expressions 
such as sinusoidally form i.e. 1 sin mt  and exponen-
tially decreasing form i.e.  exp , 1mt mt   where m 
[T-1] is the flow resistance coefficients. The dispersion 
coefficient, vary approximately directly to seepage ve-
locity for various types of porous media [26]. Also it was 
found that such relationship established for steady flow 
was also valid for unsteady flow with sinusoidal varying 
seepage velocity [27]. Let D au  where a [L] is the 
dispersivity that can depend upon the pore size and ge-
ometry of porous medium. The physical system of the 
problem is represented by the Figure 1. 
 

 

Figure 1. Physical system of the problem. 
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Now using Eq.2, we get  0D D V t . Here 

0 0D au  is an initial dispersion coefficient.  
Put 0X x x   and then Eqs.1-4 can now be written 

as 

  2 2
0 0 1D c x u c x V t c t             (5) 

 , 0; 0, 0c X t X t              (6) 

  0 0

0

; 0 , 0
,

0, , 0

c t t X
c X t

t t X

  
   

         (7) 

00; 0,c X T X L x               (8) 

A new time variable T  , is introduced by the trans-
formation [28] 

 
0

d
t

T V t t                 (9) 

and Eq.5 becomes  
2 2

0 0D c X u c X c T               (10) 

Now the set of non-dimensional variables are intro-  

duced as follows: 
2

0 0 0 0, , ,Y X L C c c T D T L U u L D     (11) 

The partial differential Eq.10 and corresponding ini-
tial and boundary conditions in non-dimensional form 
can be written as follows: 

2 2c Y U C Y C T                (12) 

 , 0; 0, 0C Y T Y T            (13) 

  0

0

1; 0 , 0
,

0; , 0

T T Y
C Y T

T T Y

  
   

       (14) 

 00; 0,C Y T Y L x L           (15) 

Using the transformation 

     2, , exp 2 4C Y T K Y T UY U T     (16) 

in Eqs.12-15 and applying Laplace transformation, we 
can get the solution of obtained boundary value problem 
as follows: 

      
         

    

2 2
0

2

, 1 4 1 exp 4

exp 1 2 exp exp

1 2 exp 2

K Y p p U p U T

Y p U p U a Y p a Y p

U p U a Y p

          

              

      

      (17) 

       1 2 3, , , ,K Y p K Y p K Y p K Y p                               (18) 

where 

        2 2
1 0, 1 4 1 exp 4 expK Y p p U p U T Y p             

               2 2
2 0, 1 4 1 exp 4 1 2 exp expK Y p p U p U T U p U a Y p a Y p                          

            2
2 2

3 0, 1 4 1 exp 4 1 2 exp 2K Y p p U p U T U p U a Y p                       

Taking the inverse Laplace transform on (18), we get 

       1 2 3, , , ,K Y T K Y T K Y T K Y T                               (19) 

where 

 
 
   

0

1

0 0

, ; 0
,

, , ;

F Y T T T
K Y T

F Y T F Y T T T T

  
  

                           (20) 

 
       
       

       

0

2 0 0

0 0 0

, , , , ; 0

, , , , ,

, , , , ;

F a Y T F a Y T UG a Y T UG a Y T T T

K Y T F a Y T F a Y T T F a Y T F a Y T T

U G a Y T G a Y T T U G a Y T G a Y T T T T

                          


                 

    (21) 

 
     
       

   

2
0

3 0 0

2
0 0

2 , 2 , , ; 0

, 2 , 2 , 2 2 , 2 ,

2 , 2 , ;

F a Y T UG a Y T U H a Y T T T

K Y T F a Y T F a Y T T U G a Y T G a Y T T

U H a Y T H a Y T T T T

                       


        

         (22) 
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Finally,  ,K Y T  can be written as follows: 

 

       
       

       
       
       

2
0

0 0

0 0

0 0

, , , 2 ,

, , 2 2 , 2 , ; 0

, , , , ,

, , 2 , 2 ,

, , , ,

F Y T F a Y T F a Y T F a Y T

UG a Y T UG a Y T UG a Y T U H a Y T T T

K Y T F Y T F Y T T F a Y T F a Y T T

F a Y T F a Y T T F a Y T F a Y T T

U G a Y T G a Y T T U G a Y T G a Y T T

     

         

             
               
               

        2
0 0 02 2 , 2 , 2 , 2 , ;U G a Y T G a Y T T U H a Y T H a Y T T T T














                

   (23) 

where 

             2 2, 1 2 exp 4 2 erfc 2 2 1 2 exp 4 2 erfc 2 2F Y T U T UY Y T U T U T UY Y T U T       (24) 

           
      

2 2

2 2

, exp 4 + 1 2 exp 4 2 erfc 2 2

1 2 1 exp 4 2 erfc 2 2

G Y T T Y T U U T UY Y T U T

U UY U T U T UY Y T U T

   

    
            (25) 

       
         
     

2 2

22 2 2 2

2 2

, 1 1 2 2 exp 4

+ 1 2 1 2 2 exp 4 2 erfc 2 2

1 2 exp 4 2 erfc 2 2

G Y T U T UY U T Y T

U UY U T U T Y UT U T UY Y T U T

U U T UY Y T U T

    

      

  

    (26) 

By substituting the values of  ,K Y T  in Eq.16 we may obtain the desired solution as 

   

       
       

       
       
   

2
0

2
0 0

0 0

0

2

, , , 2 ,

, , 2 2 , 2 , ; 0

, exp 2 4 , , , ,

, , , ,

2 2 , 2 ,

2 ,

F Y T F a Y T F a Y T F a Y T

UG a Y T UG a Y T UG a Y T U H a Y T T T

C Y T UY U T F Y T F Y T T F a Y T F a Y T T

U G a Y T G a Y T T U G a Y T G a Y T T

U G a Y T G a Y T T

U H a Y

     

         

              
               
      

    0 02 , ;T H a Y T T T T














      

  (27) 

where  ,F Y T ,  ,G Y T  and  ,H Y T  are given in 
Equations (24)-(26). 

3. NUMERICAL EXAMPLE AND  
DISCUSSION 

Let us consider the sinusoidal and exponential forms 
of expressions are as follows: 

  1 sinV t mt              (28a) 

   exp , 1V t mt mt            (28b) 

where m(/d) is flow resistance coefficient. The exponen-
tial form of velocity expression was also considered to 
discuss dispersion in unsteady porous media flow [29]. 
For both the expressions, the non-dimensional time 

variable T may be written as  

   2
0 1 cosT D mL mt mt            (29a) 

   2
0 1 expT D mL mt             (29b) 

where 3 2mt k  , where k is the whole number. Here 
for m = 0.0165 (/d), (28a) yields, t (d) = 182k + 121 ap-
proximately. For these values of mt, the velocity u, is 
alternatively minimum and maximum. Hence it repre-
sents the groundwater level and velocity minimum dur-
ing the month of June and maximum during December 
just after six months in one year. The next data of t 
represents minimum and maximum records during June 
and December respectively in the subsequent years. 
These representations have been made in the Figure 2.  
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Figure 2. Time dependent sinusoidal form of velocity represen-
tations. 
 
Analytical solutions (27) is solved for the values 0 1.0c  , 

0 0.001u   km/d, 0 1.0D   km2/d, and L = 100 km. 
The concentration values in the presence of source pol-
lution till 0t t  (1500 d) are depicted graphically in the 
presence of constant source of contaminants at 

3 2mt k  , where 2 7k   which represents mini-
mum and maximum records of groundwater level and 
velocity during June and December in 2nd, 3rd and 4th 
years at the respective time values t (d). When the source 
is eliminated the solution is solved at 3 2mt k  , 
where 8 13k   which represent the duration of June 
and December alternatively in the 5th, 6th and 7th years 
respectively. The contaminants concentration distribu-
tion behaviour along unsteady flow of sinusoidal form of 
velocity given in (28a) depicted in the Figure 3(a) when 

0T T  and Figure 3(b) when 0T T . It is observed 
that the contaminant concentration decreases with time 
and distance traveled in presence of source contaminants. 
While in the absence of source contaminants, it increases 
and goes on increasing which attains towards maximum 
and then starts decreases and goes on decreasing which 
attains towards minimum or harmless concentration. 
This decreasing tendency of contaminant concentration 
with time and distance traveled may help to rehabilitate 
the contaminated aquifer. For the same set of inputs ex-
cept m = 0.0002 (/d) as 1mt  , Eq.27 is also computed 
for exponentially decreasing form of velocity given in 
(28b). It is observed that the contaminant concentration 
follows almost the same trend in presence and absence 
of source contaminants respectively. This decreasing 
tendency of contaminant concentration with time and 
distance traveled is depicted graphically in Figure 4(a) 
when 0T T  and Figure 4(b) if 0T T  for exponen-
tially decreasing form of velocity. 

 
(a) 

 

 
(b) 

Figure 3. Contaminants concentration along unsteady ground- 
water flow of sinusoidal form of velocity in homogeneous 
finite aquifer when (a) T ≤ T0 and (b) T > T0. 

4. CONCLUSIONS 

A solute transport model is solved analytically with 
constant source of input concentration in homogeneous 
finite aquifer. The pulse type boundary conditions are 
considered in intermediate portion of the aquifer system. 
The time varying velocities are taken in to consideration 
in which one such form i.e. sinusoidal form represents 
the seasonal variation in a year in tropical regions. The 
Laplace Transform Technique is used to get an analytical 
solution which is perhaps most useful for benchmarking 
the numerical codes and models. The result of the prob-
lem may be used as the preliminary predictive tools for 
groundwater management. The solution is obtained and  
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(a) 

 

 
(b) 

Figure 4. Contaminants concentration along unsteady ground- 
water flow of exponential form of velocity in homogeneous 
finite aquifer when (a) T ≤ T0 and (b) T > T0. 
 
graphical representations are made under the assumption 

0x x  which is the limitation of the solution of the 
problem. The solution in the domain 0x x  is not con-
sidered in the present work only because the solute con-
centration will not remain in this domain for the longer 
period. After very short duration of time it will move on 
in the domain 0x x  [14]. 
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