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ABSTRACT 

The (seldomly quoted) generalised-Heisenberg uncertainty relations are an effect of the quantum correlation coefficient 
inequalities. The quantum correlation coefficient determines how much a state can be compacted and on what basis. It 
is shown that how this can be used to best compress a signal (such as a radio wave, or a 2D laser complex field at a fo-
cal plane) while at the same time encrypting the signal. 
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1. Introduction 

The concept of correlation coefficient originates in statis-
tics where one quantity, say k, is approximately corre-
lated to another, say x, plus some random noise. 

The degree of correlation [1-4] (or noise absence) is 
expressed by the quantity  in the interval  1, 1   de-
fined as: 

def k x

x k

 
 

 
 

where: 
def 22 2x x x


    

def 22 2k k k


    

In quantum mechanics the above definition is retained, 
the averages being replaced with averages over the state 
in causa. The number in this case is complex, with both 
real and imaginary parts in the interval  1, 1  , and the 
norm less than unity. 

The real-part of the quantum correlation coefficient is: 

 def ,

2R

k x

x k

 
  

 
 

Since x and k are self-adjoint, it is evident that 
 ,x k 


 will be self-adjoint, hence have real valued 

averages. 
The imaginary-part of the quantum correlation coeffi- 

cient is: 

 def ,

2I

k x

x k

 
  

 
 

Again, since x and k are self-adjoint operators, it is 
evident that  , 


x k will be anti-adjoint. This implies 

that its average  , 


 x k  will have imaginary 
values. 

For canonically conjugate observables  , i 

x k

 
, 

I depends only on the inverse of the state’s spread in x 
and k space. 

A mixed x-k operator can be defined as: 
def x k

q
x k

  
 

 

The operator is not necessarily self-adjoint, however it 
is evident that: 

† 2 0q q q       

This can be further written as: 

 

2

2 2

2 2
2 cos

q





   

      

   

     

 

where        is the phase difference between  
and  and  the phase of . 

From 
2

0

q  it follows now that: 
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2 2

e ex k k x x k  
   

 





  

 
  

which is valid for any phase combination , therefore, 

2 2

2
 x k x

 
 

  
  k  

in turn valid for all  and , hence, 

x k x k 


    

which is to say, 1  , in good analogy to its statistical 
counterpart. 

2. Generalized Heisenberg Relations 

However, in the quantum case, there is more than just 
one inequality, due to: 

   2 ,k x k x k x   
 

  ,  

for self-adjoint operators the second term being anti- 
adjoint, while the first self-adjoint: 

 , 2 Δ ΔRk x x k  

  

For canonically-conjugate variables the second term is 
(up to a sign convention): 

 , Ik x x k i  

     

hence I i x k    . 
Using: 0   the above two can be used to express 
x k  : 

2

1

2 1 R

x k


  


 

which is the generalized Heisenberg inequality [5-10]. 
This relation shows that, for states with a high real-part 
correlation coefficient, the product of the two uncertain-
ties can actually be very large, and the minimum value of 
1 2  is quite remote. 

3. Signal Compression 

Such a situation is ideal for signal compression since any 
wave (RF signal in 1D, or laser field at a focal plane, in 
2D) can be viewed as a state. 

Consider again the q-operator: 

def x k
q

x k
 


 

  
 

 

The idea is that, for instance, a spike in real space is 
very concentrated, while in Fourier space it extends to 
infinity uniformly. Conversely, a wave is very concen- 
trated in Fourier space, but extended to infinity in real- 
space (the Heisenberg uncertainty relations above). 

Does there exist an “intermediate”, rotated-space be- 
tween the real- and Fourier-spaces, in which an arbitrary 
signal is best compressed [11]? 

It would be of interest, in this respect, that 
2

min q , or 

 

2

2 2

2 2
2 cos

q





   

      

   

     

 

† min.   q q : minimum for π     .
From here further, the minimum is achieved by refer- 

ence to some volumic (or scaling) condition, symmetrical 
in 

. 

  and  : 
2 2

2 2

2
min

2c

    

   

 


 
 

where: 
1) 0c   would be an ad-hoc canonical norm; 
2) Rc   would be a comparison to classical (statis- 

tical) compression, etc. The above condition reaches ex-
tremae for: 

1) c   the fraction would just be constant; 
2)    would be again a constant fraction; 
3)    with minimum for the two equal. 
Solution (3) is independent of the choice for c, yield- 

ing the best operator to use: 

x k
q

kx




 


 

in its eigen-value spanned space, the signal occupying 
minimum volume: 

 2
2 1q    

An example of perfectly quantum-correlated, 1  , 
quantities are the spin operator components x and y in 
a z state-depending on the  case, the q operator 
being in this case . 

4. q-Eigen Vectors and Values 

Firstly note that q†  q implies complex eigen-values. From 
the eigen-value equation ,q   

 
the eigen-vectors 

are: 
2

i
2 4

0 e d
x k x x k

x k x x
 


  

   
        

where 0  is such that the state norms to unity. For such 

(Gaussian) states   
  x x . It follows directly 

that k


   . Since † k k , its average is  k
real and therefore the complex part of λ is proportional to 
its real part: R Ra  . 
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