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ABSTRACT 

The extraction of a desired speech signal from a noisy environment has become a challenging issue. In the recent years, 
the scientific community has particularly focused on multichannel techniques which are dealt with in this review. In fact, 
this study tries to classify these multichannel techniques into three main ones: Beamforming, Independent Component 
Analysis (ICA) and Time Frequency (T-F) masking. This paper also highlights their advantages and drawbacks. How- 
ever these previously mentioned techniques could not afford satisfactory results. This fact leads to the idea that a com- 
bination of those techniques, which is depicted along this study, may probably provide more efficient results. Indeed, 
giving the fact that those approaches are still be considered as being not totally efficient, has led us to review these 
mentioned above in the hope that further researches will provide this domain with suitable innovations. 
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1. Introduction 

Most audio signals result from the mixing of several sound 
sources. In many applications, there is a need to separate 
the multiple sources or extract a source of interest while 
reducing undesired interfering signals and noise. The es- 
timated signals may then be either directly listened to or 
further processed, giving rise to a wide range of applica- 
tions such as hearing aids, human computer interaction, 
surveillance, and hands-free telephony [1].  

The extraction of a desired speech signal from a mix- 
ture of multiple signals is classically referred to as the 
“cocktail party problem” [2,3], where different conversa- 
tions occur simultaneously and independently of each 
other.  

The human auditory system shows a remarkable abil- 
ity to segregate only one conversation in a highly noisy 
environment, such as in a cocktail party environment. 
However, it remains extremely challenging for machines 
to replicate even part of such functionalities. Despite 
being studied for decades, the cocktail party problem 
remains a scientific challenge that demands further re- 
search efforts [4]. 

As highlighted in some recent works [5], using a sin- 
gle channel is not possible to improve both intelligibility 
and quality of the recovered signal at the same time. 
Quality can be improved at the expense of sacrificing in- 
telligibility. A way to overcome this limitation is to add 
some spatial information to the time/frequency informa- 

tion available in the single channel case. Actually, this 
additional information could be obtained by using two or 
more channel of noisy speech named multichannel. 

Three techniques of Multi Channel Speech Signal Se- 
paration and Extraction (MCSSE) can be defined. The 
first two techniques are designed to determined and over- 
determined mixtures (when the number of sources is 
smaller than or equal to the number of mixtures) and the 
third is designed to underdetermined mixtures (when the 
number of sources is larger than the number of mixtures). 
The former is based on two famous approaches, the Blind 
Source Separation (BSS) techniques [5-7] and the Beam- 
forming techniques [8-10]. 

BSS aims at separating all the involved sources, by 
exploiting their independent statistical properties, regard- 
less their attribution to the desired or interfering sources.  

On the other hand, the Beamforming techniques, con- 
centrate on enhancing the sum of the desired sources while 
treating all other signals as interfering sources. While the 
latter uses the knowledge of speech signal properties for 
separation.  

One popular approach to sparsity based separation is 
T-F masking [11-13]. This approach is a special case of 
non-linear time-varying filtering that estimates the de- 
sired source from a mixture signal by applying a T-F 
mask that attenuates T-F points associated with interfer- 
ing signals while preserving T-F points where the signal 
of interest is dominant. 
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In the last years, the researches in this area based their 
approaches on combination techniques as ICA and binary 
T-F masking [14], Beamforming and a time frequency 
binary mask [15]. 

This paper is concerned with a survey of the main 
ideas in the area of speech separation and extraction from 
a multiple microphones.  

The following sections of this paper are organized as 
follows: in Section 2, the problem of speech separation 
and extraction is formulated. In Section 3, we describe 
some of the most techniques which have been used in 
MCSSE systems, such as Beamforming, ICA and T-F 
masking techniques. Section 4 brings to the surface the 
most recent methods for MCSSE systems, where com- 
bined techniques, seen previously, are used. In Section 5, 
the presented methods will be discussed by giving some 
of their advantages and limits. Finally, Section 6 gives a 
synopsis of the whole paper and conveys some futures 
works. 

2. Problem Formulation 

There are many scenarios where audio mixtures can be 
obtained. This results in different characteristics of the 
sources and the mixing process that can be exploited by 
the separation methods. The observed spatial properties 
of audio signals depend on the spatial distribution of a 
sound source, the sound scene acoustics, the distance be- 
tween the source and the microphones, and the directivity 
of the microphones. 

In general, the problem of MCSSE is stated to be the 
process of estimating the signals from N unobserved 
sources, given from M microphones, which arises when 
the signals from the N unobserved sources are linearly 
mixed together as presented in Figure 1. 

The signal recorded at the jth microphone can be mo- 
deled as:  
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where i  and S jx  are the source and mixture signals 
respectively, hji is a P-point Room Impulse Response 
(RIR) from source i to microphone j, P is the number of 
paths between each source-microphone pair and   is the 
delay of the pth path from source j to microphone i [9-14]. 
This model is the most natural mixing model, encoun- 
tered in live recordings called echoic mixtures. 

In free-reverberation environments (p = 1), the sam- 
ples of each source signal can arrive at the microphones 
only from the line of sight path, and the attenuation and 
delay of source i would be determined by the physical 
position of the source relative to the microphones. This 
model, called anechoic mixing, is described by the fol- 
lowing equation obtained from the previous equation: 

 

Figure 1. Multichannel problem formulation. 
 

   
1

1
N

j ji i ji
i

x n h S n j


    M

)

    (2) 

The instantaneous mixing model is a specific case of 
the anechoic mixing model where the samples of each 
source arrive at the microphones at the same time 
( 0ji   with differing attenuations, each element of the 
mixing matrix ji  is a scalar that represents the ampli- 
tude scaling between source i and microphone j. From 
the Equation (2), instantaneous mixing model can be 
expressed as: 
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3. MCSSE Techniques 

3.1. Beamforming Technique 

Beamforming is a class of algorithms for multichannel 
signal processing. The term Beamforming refers to the 
design of a spatio-temporal filter which operates on the 
outputs of the microphone array [8]. This spatial filter 
can be expressed in terms of dependence upon angle and 
frequency. Beamforming is accomplished by filtering the 
microphone signals and combining the outputs to extract 
(by constructive combining) the desired signal and reject 
(by destructive combining) interfering signals according 
to their spatial location [9].  

Beamforming for broadband signals like speech can, 
in general, be performed in the time domain or frequency 
domain. In time domain Beamforming, a Finite Impulse 
Response (FIR) filter is applied to each microphone sig- 
nal, and the filter outputs combined to form the Beam- 
former output. Beamforming can be performed by com- 
puting multichannel filters whose output is ˆ( )s t  an es- 
timate of the desired source signal as shown in Figure 2. 

The output can be expressed as: 


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where P – 1 is the number of delays in each of the N fil- 
ters. 
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Figure 2. MCSSE with Beamforming technique. 
 

In frequency domain Beamforming, the microphone 
signal is separated into narrowband frequency bins using 
a Short-Time Fourier Transform (STFT), and the data in 
each frequency bin is processed separately. 

Beamforming techniques can be broadly classified as 
being either data-independent or data-dependent. Data 
independent or deterministic Beamformers are so named 
because their filters do not depend on the microphone 
signals and are chosen to approximate a desired response. 
Conversely, data-dependent or statistically optimum Beam- 
forming techniques are been so called because their fil- 
ters are based on the statistics of the arriving data to op- 
timize some function that makes the Beamformer opti- 
mum in some sense. 

3.1.1. Deterministic Beamformer 
The filters in a deterministic Beamformer do not depend 
on the microphone signals and are chosen to approximate 
a desired response. For example, we may wish to receive 
any signal arriving from a certain direction, in which 
case the desired response is unity over at that direction. 
As another example, we may know that there is interfer- 
ence operating at a certain frequency and arriving from a 
certain direction, in which case the desired response at 
that frequency and direction is zero. The simplest deter- 
ministic Beamforming technique is delay-and-sum Beam- 
forming, where the signals at the microphones are de- 
layed and then summed in order to combine the signal 
arriving from the direction of the desired source coher- 
ently, expecting that the interference components arriv- 
ing from off the desired direction cancel to a certain ex- 
tent by destructive combining. The delay-and-sum Beam- 
former as shown in Figure 3 is simple in its implementa- 
tion and provides easy steering of the beam towards the 
desired source. Assuming that the broadband signal can 
be decomposed into narrowband frequency bins, the de- 
lays can be approximated by phase shifts in each fre- 
quency band. 

The performance of the delay-and-sum Beamformer in 
reverberant environments is often insufficient. A more 
general processing model is the filter-and-sum Beam- 
former as shown in Figure 4 where, before summation, 
each microphone signal is filtered with FIR filters of order 
M. This structure, designed for multipath environments 
namely reverberant enclosures, replaces the simpler delay 
compensator with a matched filter. It is one of the simplest 
Beamforming techniquesbut still gives a very good per- 
formance. 

 

Figure 3. Delay-and-sum Beamforming. 
 

 

Figure 4. Filter and sum Beamforming. 
 

As it has been shown that the deterministic Beamfor- 
mer is far from being fully manipulated independently 
from the microphone signals, the statistically optimal 
Beamformer is tightly linked and tied to the statistical 
properties of the received signals. 

3.1.2. Statistically Optimum Beamformer 
Statistically optimal Beamformers are designed basing 
on the statistical properties of the desired and interfer- 
ence signals. In this category, the filters designs are 
based on the statistics of the arriving data to optimize 
some function that makes the Beamformer optimum in 
some sense. Several criteria can be applied in the design 
of the Beamformer, e.g., maximum signal-to-noise ratio 
(MSNR), minimum mean-squared error (MMSE), mini- 
mum variance distortionless response (MVDR) and lin- 
ear constraint minimum variance (LCMV). A summary 
of several design criteria can be found in [10]. In general, 
they aim at enhancing the desired signals, while rejecting 
the interfering signals. 

Figure 5 depicts the block diagram of Frost Beam- 
former or an adaptive filter-and-sum Beamformer as 
proposed in [16], where the filter coefficients are adapted 
using a constrained version of the Least Mean-Square 
(LMS) algorithm. The LMS is used to minimize the 
noise power at the output while maintaining a constraint  
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Figure 5. Frost Beamformer. 
 
on the filter response in look direction. Frost’s algorithm 
belongs to a class of LCMV Beamformers. 

In an MVDR Beamformer [17], the power of the out- 
put signal is minimized under the constraint that signals 
arriving from the assumed direction of the desired speech 
source are processed without distortion.  

An improved solution to the constrained adaptive Beam- 
forming problem decomposes the adaptive filter-and-sum 
Beamformer into a fixed Beamformer and an adaptive 
multi-channel noise canceller. The resulting system is 
termed the Generalized Side-lobe Canceller (GSC) [18], a 
block diagram of which is shown in Figure 6. Here, the 
constraint of a non distorted response in look direction is 
established by the fixed Beamformer while the noise can- 
celler can then be adapted without a constraint. 

The fixed Beamformer can be implemented via one of 
the previously discussed methods, for example, as a delay- 
and-sum Beamformer. To avoid distortions of the desired 
signal, the input to the Adaptive Noise Canceller (ANC) 
must not contain the desired signal. Therefore, a Blocking 
Matrix (BM) is employed such that the noise signals are 
free of the desired signal. The ANC then estimates the 
noise components at the output of the fixed Beamformer 
and subtracts the estimate. Since both the fixed Beam- 
former and the multi-channel noise canceller might delay 
their respective input signals, a delay in the signal path is 
required. In practice, the GSC can cause a degree of dis- 
tortion to the desired signal, due to a phenomenon known 
as signal leakage. Signal leakage occurs when the BM 
fails to remove the entire desired signal from the lower 
noise cancelling path. This can be particularly problematic 
for broad-band signals, such as speech, as it is difficult to 
ensure perfect signal cancellation across a broad fre- 
quency range. In reverberant environments, it is in general 
difficult to prevent the desired speech signal from leaking 
into the noise cancellation branch. 

In practice, the basic filter-sum Beamformer seldom 
exhibits the level of improvement that the theory promises  

 

Figure 6. GSC Beamformer. 
 
and further enhancement is desirable. One method of im- 
proving the system performance is to add a post-filter to 
the output of the Beamformer. In [19], a multichannel 
Wiener filter (MWF) technique, which is depicted in Fig- 
ure 7, was proposed. The MWF produces an MMSE 
estimate of the desired speech component in one of the 
microphone signals, hence simultaneously performing 
noise reduction and limiting speech distortion. In addition, 
the MWF is able to take speech distortion into account in 
its optimization criterion, resulting in the speech distortion 
weighted multichannel Wiener filter (SDW-MWF) [20]. 

Several researchers have proposed modifications to the 
MVDR for dealing with multiple linear constraints, de- 
noted LCMV. Their works were motivated by the desire 
to apply further control to the array Beamformer beam- 
pattern, beyond that of a steer-direction gain constraint. 
Hence, the LCMV can be applied to construct a beam- 
pattern satisfying certain constraints for a set of direc- 
tions, while minimizing the array response in all other 
directions. 

In [8], Shmulik Markovich presented a method for 
source extraction based on the LCMV Beamformer. This 
Beamformer has the same structure of GSC but there is 
sharp difference between both of them. While the purpose 
of the ANC in the GSC structure is to eliminate the sta- 
tionary noise passing through the BM, in the proposed 
structure the Residual Noise Canceller (RNC) is only 
responsible for the residual noise reduction as all signals, 
including the stationary directional noise signal, are treated 
by the LCMV Beamformer. It is worthy to note that the 
role of the RNC block is to enhance the robustness of the 
algorithm. 

However the LCMV Beamformerwas designed to sat- 
isfy two sets of linear constraints. One set is dedicated to 
maintain the desired signals, while the other set is chosen 
to mitigate both the stationary and non-stationary inter- 
ferences. A block diagram of this Beamformer is depicted 
in Figure 8. The LCMV Beamformer comprises three 
blocks: the fixed Beamformer responsible for the align- 
ment of the desired source and the BM blocks the direc- 
tional signals. The output of the BM is then processed by  
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Figure 7. Filter and sum Beamformer with post-filter. 
 

 

Figure 8. LCMV Beamformer and RNC. 
 
the RNC filters for further reduction of the residual in- 
terference signals at the output. For more details con- 
cerning each block of this Beamformer and for the various 
definitions of the constraints see [8]. 

3.2. Independent Component Analysis  
Technique 

Another approach to source separation and extraction is to 
exploit statistical properties of source signals. One popu- 
lar assumption is that the different sources are statistically 
independent, and is termed ICA [21]. In ICA, separation is 
performed on the assumption that the source signals are 
statistically independent, and does not require information 
on microphone array configuration or the direction of 
arrival (DOA) of the source signals to be available. The 
procedure of ICA technique is shown in Figure 9. 

In the instantaneous and determined mixtures case, the 
source separation problem can be performed by estimat- 
ing the mixing matrix A, and this allows one to compute a 
separating matrix  whose output: 1W A

   1ˆ( )  s t x t x t A W         (5) 

ˆ( )s t  is an estimate of the source signals. The mixing 
matrix A or the separating matrix W is determined so that 
the estimated source signals are as independent as possi- 
ble. The separating matrix functions as a linear spatial 
filter or Beamformer that attenuates the interfering sig- 
nals. 

ICA  

Algorithm xM

x2

x1 S1 

S2

Sk 
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Figure 9. MCSSE with ICA technique. 
 

ICA can then be applied to separate the convolutive 
mixtures either in the time domain [6-22], in the transform 
domain [6,7,23], or their hybrid [12,13]. 

The time-domain approaches attempt to extend instan- 
taneous ICA methods for the convolutive case. Upon con- 
vergence, these algorithms can achieve good separation 
performance due to the accurate measurement of statisti- 
cal independence between the segregated signals. How- 
ever, the computational cost associated with the estima- 
tion of the filter coefficients for the convolution operation 
can be very demanding, especially when dealing with re- 
verberant (or convolutive) mixtures using filters with long 
time delays. 

To reduce computational complexity, the frequency 
domain approaches [7] transform the time-domain con- 
volutive model into a number of complex-valued insta- 
neous ICA problems, using the Short-Time Fourier Trans- 
form (STFT). Many well-established instantaneous ICA 
algorithms can then be applied at each frequency bin. 
Nevertheless, an important issue associated with this ap- 
proach is the so-called permutation problem, i.e. the 
permutation of the source components at each frequency 
bin may not be consistent with each other. As a result, 
the estimated source signals in the time domain (using an 
inverse STFT) may still contain the interferences from 
the other sources due to the inconsistent permutations 
across the frequency bands. Different methods have been 
developed to solve the permutation problem [24]. Most 
methods for resolving frequency-dependent permutation 
fall into one of three categories: those that exploit spe- 
cific signal properties of the Discrete Fourier Transform 
(DFT), those that exploit specific properties of speech 
[25] and those that exploit specific geometric properties 
of the sensor array, such as directions of arrival [26]. All 
three classes of methods require additional information 
about the measurement setup or the signals being sepa- 
rated. 

Hybridtime-frequency methods tend to exploit the ad- 
vantages of both time and frequency domain approaches, 
and considers the combination of the two types of meth- 
ods. In particular, the coefficients of the FIR filter are 
typically updated in the frequency domain and the non- 
linear functions are adopted in the time domain for eva- 
luating the degree of independence between the source 
signals. In this case, no permutation problem exists any 
more, as the independence of the source signals is evalu- 
ated in the time domain. 

Nevertheless, a limitation with the hybrid approaches is 
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the increased computational load induced by the back and 
forth movement between the two domains at each itera- 
tion using the DFT and inverse DFT. 

3.3. T-F Masking Technique 

When the number of sources is greater than the number of 
microphones, linear source separation using the inverse of 
the mixing matrix is not possible. Hence, ICA cannot be 
used for this case. Here the sparseness of speech sources is 
very useful and time-frequency diversity plays a key role 
[27]. However, under certain assumptions, it is possible to 
extract a larger number of sources. Sparseness of a signal 
means that only a small number of the source components 
differ significantly from zero. 

One popular approach to sparsity-based separation is 
T-F masking [13]. This approach is a special case of non- 
linear time-varying filtering that estimates the desired 
source from a mixture signal by applying a T-F mask. It 
attenuates T-F points associated with interfering signals 
while preserving T-F points where the signal of interest is 
dominant.  

With the binary mask approach, we assume that signals 
are sufficiently sparse, and therefore, assumptions could 
be built that at most one source is dominant at each time- 
frequency point. If the sparseness assumption holds, and if 
an anechoic situation can be possibly assumed then the 
geometrical information about the dominant source at 
each time-frequency point can be estimated. The geome- 
trical information is estimated by using the level and 
phase differences between observations. Taking into con- 
sideration this information for all time-frequency points, 
the points can be grouped into N clusters. Giving the fact 
that an individual cluster corresponds to an individual 
source, therefore a separation of each signal is obtained by 
selecting the observation signal at time-frequency points 
in each cluster with a binary mask. The bestknown ap- 
proach may be the Degenerate Unmixing Estimation Tech- 
nique (DUET) [28], which can separate any number of 
sources using only two mixtures. The method is valid 
when sources are W-disjoint orthogonal [29], that is, 
when the supports of the windowed Fourier transform of 
the signals in the mixture are disjoint. For anechoic mix- 
tures of attenuated and delayed sources, the method al- 
lows its users to estimate the mixing parameters by clus- 
tering relative attenuation-delay pairs extracted from the 
ratios of the T-F representations of the mixtures. The 
estimates of the mixing parameters are then used to parti- 
tion the T-F representation of one mixture to recover the 
original sources. 

Figure 10 shows the flow of the binary mask approach, 
where the separation procedure [30] is formulated by the 
next five steps: 

STEP 1: T-F domain transformation: the binary mask 
approach often uses a T-F domain representation. First,  

 

Figure 10. Blok diagram of MCSSE with T-F masking. 
 
time-domain signals  ix t  sampled at frequency fs are 
transformed into frequency domain time series signals 

 ,iX f t  with a T-point STFT: 
STEP 2: Feature extraction: the separation can be 

achieved by gathering the T-F points where just one sig- 
nal is estimated to be dominant only if the sources are 
sufficiently sparse. To estimate such T-F points, some 
features ( , )f t  are calculated by using the frequency 
domain observation signals ( , )X f t . Most existing me- 
thods use the level ratio and/or phase difference between 
two observations as their features ( , )f t . 

STEP 3: Clustering: this step is concerned with the 
clustering of the features ( , )f t  where each cluster 
corresponds to an individual source. With an appropriate 
clustering algorithm, the features ( , )f t  are grouped 
into N clusters C1CN, where N is the number of possi- 
ble sources. To name one of the many existing clustering 
algorithms: the k-means clustering algorithm [31]. 

STEP 4: Separation: based on the clustering result, the 
separated signals ˆ ( , )ks f t  are estimated. Here a T-F do- 
main binary mask which extracts the T-F points of each 
cluster has to be designed as: 

   1 ,
,

0 otherwise
k

k

f t C
M f t

 
 


         (6) 

The separated signals can be expressed as: 

    ˆ , ,k k j ,s f t M f t X f t       (7) 

where j is a selected sensor index. 
STEP 5: The reconstruction of separated signal: an 

inverse STFT (ISTFT) and the overlap-and-add method 
are finally used to obtain the outputs ˆ ( )ks t . 

4. Combination Techniques 

Some proposed methods have efficient separation results 
in a real cocktail party environment. In the recent years, 
researchers resorted to methods based on the combination 
techniques as viewed previously. Two MCSSE systems of 
combination techniques are presented in this section. The 
first is based on the combination of ICA and T-F masking 
[14-32]. The second is based on Beamforming and T-F 
masking [15]. 

4.1. ICA and Binary T-F Masking 

In [32], ICA is applied to separate two signals by using 
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two microphones. Based on the ICA outputs, T-F masks 
are estimated and a mask is applied to each of the ICA 
outputs in order to improve the Signal to Noise Ratio 
(SNR). This method is applicable to both instantaneous 
and convolutive mixtures. The performance of this method 
is compared to the DUET algorithm [28]. The result of 
this comparison proposes that the method in [32] produces 
better results for instantaneous mixtures and comparable 
results for convolutive mixtures. 

In the same way, the paper [14] suggested two-micro- 
phone approach to separate convolutive speech mixtures. 
This approach is based on the combination of ICA and 
ideal binary mask (IBM), together with a post-filtering 
process in the cepstral domain. The convolutive mixtures 
are first separated using a constrained convolutive ICA 
algorithm. The separated sources are then used to estimate 
the IBM, which are further applied to the T-F representa- 
tion of original mixtures. IBM is a recent technique, 
originated from computational auditory scene analysis 
(CASA) [33]. It has shown promising properties in sup- 
pressing interference and improving quality of target 
speech. IBM is usually obtained by comparing the T-F 
representations of target speech and background inter- 
ference, with 1 assigned to a T-F unit where the target 
energy is stronger than the interference energy and 0 
otherwise. In order to reduce the musical noise induced by 
T-F masking, cepstral smoothing is applied to the esti- 
mated IBM. The segregated speech signals are observed 
to have considerably improved quality and limited musi- 
cal noise. The performance of this method is compared 
with the algorithm in [32]. The results of this comparison 
show that this method is faster than the proposed in [32]. 
Although the results for SNR are comparable, this method 
outperforms significantly the method in [34] in terms of 
computational efficiency. Although the mentioned meth- 
ods [14-32] which combine both the ICA and T-F masking 
techniques have contributed to the advancement of this 
area of research, they still have some deficiencies. Indeed, 
the limitations appear in two different conditions. The first 
can be detected when those proposed algorithms are ap- 
plied to the underdetermined cases. The second is when 
those approaches are put into action in highly reverberant 
speech mixtures.  

4.2. Beamforming and T-F Masking  

In [15], J. Cemark et al. proposed a MCSSE system from 
convolutive mixtures in three stages employing T-F bi- 
nary masking (TFBM), Beamforming and a non-linear 
post processing technique. TFBM was exploited as a pre- 
separation process and the final separation was accom- 
plished by multiple Beamformers. His method removes 
the musical noise and suppresses the interference in all 
T-F slots. A block diagram of his proposed three-stage 
system is shown in Figure 11 [15]. 

 

Figure 11. System block diagram. 
 

After STFT, a TFBM is used to estimate the mixing 
vector  ˆ

k fh  and T-F mask  ,kM f   so that the pre- 
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 ,kM f   extracts the T-F slots of cluster k  whose 
members are estimated to belong to the source signal 

C

 ,ks f  . 

   1 ,
,

0 otherwise
k

k

X f C
M f





 


       (10) 

The cluster  can be estimated by using for example 
DUET [28].  

kC

The Beamforming Array (BA) is depicted as using D 
Beamformers to estimate the kth target signal  ,ky f  . 
The ultimate objective of the BA is to compose D dif- 
ferent mixtures from the pre-separated signals provided 
by TFBM, which are later filtered by D Beamformers. All 
these Beamformers are designed to enhance the desired 
signal. Each input mixture includes the pre-separated tar- 
get signal and different pre-separated jammers. The major 
issue is that all the jammers must be used at least once. As 
a result of Beamforming, the enhanced target signal D 
times is gotten. By the end of the process, all the outputs 
of the Beamformers are gathered together.  

The third stage is devoted to the enhancement (ENH). 
The enhancement improves the interference suppression 
in the T-F slots of the desired signal ˆ ,ky f   where 

 , 0kM f   . 
Finally, the vector of the separated target signals  
     1, , , , ,

T

Ny f y f y f      is transformed back 
into the time domain by ISTFT. 

This system provides high separation performance. It 
had shown that a BA eliminates the musical noise caused 
by conventional TFBM. Furthermore, the interference in 
the extracted T-F slots of the desired signal is minimized. 
The third stage of this system permits to control the level 
of musical noise and interference in the output signal.  

In [9], Dmour et al. proposed an MCSSE algorithm 
combines T-F masking techniques and mixture of Beam- 
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formers. This system is composed of two major stages. In 
the first stage, the mixture T-F points are partitioned into a 
sufficient number of clusters using one of the T-F masking 
techniques. In the second stage, they use the clusters 
which are dealt with in the first stage to calculate covari- 
ance matrices. These covariance matrices and the T-F 
masks are then used in the mixture of MPDR Beam- 
formers. The resulting non-linear Beamformer has low 
computational complexity and eliminates the musical 
noise results from T-F masked outputs at the expense of 
lower interference attenuation. The mixture of MPDR 
Beamformers can be viewed as a post-processing step for 
sources separated by T-F masking. The contribution of 
those methods [15-19] is beyond any doubt, but they still 
have some areas of weaknesses. Those shortcomings are 
obvious at the level of these approaches applications. Ac- 
tually, the methods have to adopt two main stages which 
render the whole process more complex in its implemen- 
tation. They are also limited once applied in a highly re- 
verberant environment. 

5. Discussion 

The difficulty of source separation and extraction depends 
on the number of sources, the number of microphones and 
their arrangements, the noise level, the way the source 
signals are mixed within the environment, and on the prior 
information about the sources, microphones, and mixing 
parameters. A vast number of methods have been found in 
order to come out with practical solutions to the problem 
of MCSSE. Those methods can be categorized, in this 
paper, into three main techniques named: Beamforming, 
ICA and T-F masking. 

Beamforming techniques are applied to microphone 
arrays with the aim of separating or extracting sources and 
improving intelligibility by means of spatial filtering. De- 
spite the fact that they have many additions to this field of 
research they still have some limitations to name but a few: 
the non-stationarity of speech signals, the multipath pro- 
pagation in real environments and the underdetermined 
cases (when the sources outnumbered the microphones). 
Given those shortcomings which go against a better ful- 
fillment of these techniques, it is clear that using the 
Beamforming approach only is obviously insufficient and 
does not convey flawless results in specific circumstances. 

ICA technique is performed on the assumption that the 
source signals are statistically independent, and does not 
require information on microphone array configuration or 
the DOA of the source signals to be available. It has been 
studied extensively, the separation performance of de- 
veloped algorithms is still limited, and leaves much room 
for further improvement. This is especially true when 
dealing with reverberant and noisy mixtures. For example, 
in the frequency-domain approaches, if the frame length 
for computing the STFT is long and the number of sam- 

ples within each window is small, the independence as- 
sumption may not hold any more. On the other hand, a 
short size of the STFT frame may not be adequate to cover 
the room reverberation, especially for mixtures with long 
reverberations for which a long frame size is usually re- 
quired for keeping the permutations consistent across the 
frequency bands. Taking into consideration these flaws 
which handicap a better fulfillment of this technique, it is 
safe to argue that using the ICA approach only is clearly 
insufficient and coveys restricted results. 

When the number of sources surpasses the number of 
microphones, linear source separation using the inverse of 
the mixing matrix is not possible. As a result, ICA cannot 
be used for this case. Here the sparseness of speech sources 
is very practical and T-F diversity plays a crucial role. 
However, under certain suppositions, it is possible to 
extract a larger number of sources. The assumption that 
the sources have a sparse representation under an adequate 
transform is a very popular assumption. The T-F mask 
techniques seem versatile; however, separated signals 
with a T-F mask usually contain a non-linear distortion 
that is called the musical noise. 

Few methods used aforementioned techniques, pro- 
posed in the literature, have satisfactory separation results 
in a real cocktail party environment. Based on the pros and 
cons of the multichannel techniques, researchers resort to 
methods relying on the combination techniques [28,35, 
36]. 

6. Conclusion 

Separating desired speaker signals from their mixture is 
one of the most challenging research topics in speech 
signal processing. Indeed, it is very crucial to be able to 
separate or extract a desired speech signal from noisy 
observations. Actually, researchers who tended to use the 
single channel method found it—to a certain extent-lim- 
ited and unable to offer more efficiency. This explains the 
recent inclination towards the use of the multichannel 
method which gives more flexibility and tangible results. 
Three basic techniques of multichannel algorithms are 
presented in this paper: Beamforming, ICA and T-F mask- 
ing. However, despite of the existence of the vast number 
of applied algorithms using those three fundamental 
techniques mentioned previously, no reliable results have 
been achieved. This shortcoming leads automatically to 
the thought that a probable combination may offer better 
ends. What is worth mentioning is that a human has a 
remarkable ability to focus on a specific speaker in that 
case. This selective listening capability is partially attri- 
buted to binaural hearing. Two ears work as a Beam- 
former which enables directive listening, then the brain 
analyzes the received signals to extract sources of interest 
from the background, just as blind source separation does. 
Based on this principle, we hope to separate or extract the 
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desired speech by combining Beamforming and blind source 
separation. 
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