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ABSTRACT 

This paper proposes an inner product Laplacian embedding algorithm based on semi-definite programming, named as 
IPLE algorithm. The new algorithm learns a geodesic distance-based kernel matrix by using semi-definite program-
ming under the constraints of local contraction. The criterion function is to make the neighborhood points on manifold 
as close as possible while the geodesic distances between those distant points are preserved. The IPLE algorithm suffi-
ciently integrates the advantages of LE, ISOMAP and MVU algorithms. The comparison experiments on two image 
datasets from COIL-20 images and USPS handwritten digit images are performed by applying LE, ISOMAP, MVU and 
the proposed IPLE. Experimental results show that the intrinsic low-dimensional coordinates obtained by our algorithm 
preserve more information according to the fraction of the dominant eigenvalues and can obtain the better comprehen-
sive performance in clustering and manifold structure. 
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1. Introduction 

In the current information age, a large quantity of data 
can be obtained easily. The valuable information is sub-
merged into large scale datasets. It is urgently necessary 
to find the intrinsic laws of the data sets and predict the 
future development trend. One of the central problems in 
machine learning, computer vision and pattern recogni-
tion, is to develop appropriate representations for com-
plex data. Manifold learning assumes that these observed 
data lie on or close to intrinsic low-dimensional mani-
folds embedded in the high-dimensional Euclidean space. 
The main goal of manifold learning is to find intrinsic 
low-dimensional manifold structures of high-dimensional 
observed dataset. Several known manifold learning algo-
rithms have been proposed, such as ISOmetric feature 
MAPping (ISOMAP) [1], Laplacian Eigenmaps (LE) [2], 
and Maximum Variance Unfolding (MVU) [3], etc. 

ISOMAP isometrically preserves the geodesic dis-
tances between any two points, but the centered geodesic 
distance matrix constructed by ISOMAP from finite data 
may have negative eigenvalues that are simply neglected 
[4], and it does not consider for clustering requirement in 
intrinsic low-dimensional space. LE makes neighborhood 
points in Euclidean space stay as close as possible, so a 

natural clustering can emerge in low-dimensional space 
[5]. But, on one hand, LE can’t guarantee that distant 
points in high-dimensional Euclidean space still stay dis-
tant in intrinsic low-dimensional space; on the other hand, 
the distances among the smallest d eigenvalues which are 
obtained by the spectral decomposition step of LE algo-
rithm are so small and close, that the obtained intrinsic 
space is ill-posed and instable. MVU finds a low dimen-
sional embedding of the observed data that preserves 
local Euclidean distances while maximizing the global 
variance [6], but a natural clustering is not considered. 
We propose a new manifold learning algorithm which is 
named as Inner Production Laplacian Embedding (IPLE) 
based on the following four considerations: 1) the geo-
desic distances along the curve are more meaningful than 
Euclidean distances, 2) the geodesic distance-based ker-
nel matrix should be guaranteed to be positive semi- de-
finite, 3) the requirement of natural clustering is con-
strained in the intrinsic low-dimensional space, 4) the 
solving scheme of the semi-definite programming is ap-
plied to optimizing the objection function with positive 
semi-definite constraint condition. 

The rest of this paper is organized as follows: Section 
2 introduces three classical manifold learning algorithms: 
MVU, ISOMAP and LLE. In Section 3, we analyze the 
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

principle of our IPLE algorithm and describe the detailed 
procedures of IPLE. Some experimental results on 
COIL-20 image library and USPS handwritten digits 
dataset are shown in Section 4. Finally, we give some 
concluding remarks and future works in Section 5. 

2. Related Works 

2.1. Maximum Variance Unfolding (MVU) 

Maximum variance unfolding (MVU) is a recently pro-
posed promising manifold learning algorithm by K.Q. 
Weinberger and L. K. Saul, that was referred to as semi- 
definite embedding in related earlier papers [7-10]. MVU 
is also classified as the nonlinear dimensionality reduc-
tion algorithm based on extending the principles of two 
linear methods (PCA and MDS) [6]. The principle of 
MVU: the goal is to find a low dimensional embedding 
of the observed data that preserves local Euclidean dis-
tances while maximizing the global variance. The objec-
tive function and the constraints are reformulated into a 
semi-definite programming problem. Then, a gram inner 
product matrix K is solved by semi-definite programming 
tool. Finally, the low dimensional embedding is obtained 
by decomposing the inner product matrix K. Similar to 
PCA method, a large gap between the d-th and (d+1)th 
eigenvalues of the matrix K may be used to estimate the 
intrinsic dimensionality d. The d-dimensional coordi-
nates always consist of the product which the d largest 
eigenvectors are respectively multiplied by the square 
roots of the corresponding d eigenvalues of the inner 
product matrix K. The detailed procedures of MVU are 
described as follows: 

MVU Algorithm: 
Input:  1, 2, ,D

ix R i n   , observed data k, the 
number of nearest neighbors based on Euclidean distance. 

Output: , intrinsic d-dimen- 
sional coordinates 

 1, 2, ,d
iy R i n   

Step 1. Select k nearest neighbors for each point and 
construct the Euclidean neighborhood graph G that con-
nects each point to its k nearest neighbors. 

Step 2. Compute the inner product matrix K that is 
centered on the origin and preserves the Euclidean dis-

tances of all neighborhood edges in graph G. Further-
more, the inner product matrix K is obtained by solving 
the following semi-definite programming problem (SDP). 

Step 3. Compute a low dimensional embedding from 
the top eigenvectors and eigenvalues of the inner product 
matrix K. 

2.2. ISOmetric Feature MAPping (ISOMAP) 

ISOMAP is a known manifold learning method proposed 
by J. B. Tenenbaum, V. de Silva and J. C. Langford [1]. 
Intuitively, geodesic distance between a pair of points on 
a manifold is the distance measured along the manifold 
in ISOMAP algorithm. Owing to geodesic distance re-
flects the underlying geometry of data, data embedding 
using geodesic distance is expected to unfold the twisted 
data manifolds [11]. So these geodesic distances are 
more meaningful than traditional Euclidean distances. 
The main idea of ISOMAP algorithm is: firstly, deter-
mining which points are neighbors in the input space X 
and the usual trick is to connect each point to all points 
of its k-nearest neighbors for constructing the Euclidean 
neighborhood graph; Secondly, estimating the geodesic 
distances between all pairs of points on the manifold M 
by computing their shortest path distances on the connec-
tive Euclidean neighborhood graph; Finally, applying the 
classical MDS algorithm to the matrix of geodesic dis-
tances, for computing an embedding of the observed data 
in a lower-dimensional space that best preserves the ma-
nifold’s estimated intrinsic geometry under the way of 
geodesic distance. The key steps of ISOMAP are shown 
as follows: 

ISOMAP Algorithm: 
Input:  1,2, ,D

ix R i n   , observed data k, the 
number of nearest neighbors based on Euclidean distance. 

Output:  1, 2, ,d
iy R i n   , intrinsic d-dimen- 

sional coordinates 
Step 1. Construct the Euclidean neighborhood graph G 

that connects each point to its k nearest neighbors and 
uses Euclidean distances  as the corresponding 
edge weights. 

 ,xd i j

Step 2. Compute the geodesic distance matrix 
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  ,G GD d i j 



 by using Dijkstra’s or Floyd’s algo-
rithm on neighborhood graph G. 

Step 3. Compute low dimensional embedding by ap-
plying MDS algorithm on geodesic distance matrix .  GD

2.3. Laplacian Eigenmaps (LE) 

Laplacian Eigenmaps algorithm (LE) is a classical mani-
fold learning algorithm with the most theoretical founda-
tion, that proposed by Belkin and Niyogi in literature 
[2,12]. Its intuitive idea is to make neighborhood points 
in Euclidean space stay as close as possible in low-di- 
mensional space. So, one of LE’s main advantages is that 
a natural clustering can emerge in low-dimensional space. 
In LE algorithm, it include building the neighborhood 
graph, choosing the weights for edges in the neighbor-
hood graph, eigen-decomposition of the graph Laplacian 
and forming the low-dimensional embedding. The key 
steps are described as follows: 

LE Algorithm: 
Input:  1, 2, ,D

ix R i n   , observed data k, the 
number of nearest neighbors based on Euclidean distance 

Output: , intrinsic d-dimensional 
coordinates 

 1, 2, ,d
iy R i n   

Step 1. Construct the neighborhood graph G by finding 
k nearest neighbors of each data point xi  X and con-
necting these edges. 

Step 2. Compute the neighborhood similarities  
by choosing Heat kernel or simple mode.  

ijW

Heat kernel: if xi, xj are connected on the graph G,  

 2 2exp 2ij i jW x x   t , where  is Heat kernel pa- t

rameter; otherwise  = 0.  ij

Simple-minded: if xi, xj are connected,  = 1; oth-
erwise  = 0. 

W

ijW

ij

Step 3. Compute low dimensional embedding by opti-
mizing the following objection function: 

W

   
 

2

,

1
min min

2
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subject to :

i j ii jY Y

T

Y

T

L Y y y W

tr YLY

YY I

  

 

 

 j



       (2) 

where Laplacian matrix L = D – W, and .  ii ij
j

D W
 

3. Inner Product Laplacian Embedding  

3.1. IPLE Algorithm Analysis 

Given the observed high-dimensional data  
 1, 2, ,D

ix R i n  

 1, 2, ,d
iy R i n  

, the goal of manifold learning is to 
gain the intrinsic low-dimensional coordinates 

. Like other manifold learning al-
gorithms, the proposed algorithm in this paper is based 

on a simple geometric intuition. Preserving the geodesic 
distances between far points on data manifold, low di-
mensional coordinates of neighborhood data points are 
contracted as near as possible on the intrinsic low-dimen- 
sional manifold. In fact, our goal is to compute a geo-
desic distance-based kernel matrix under the requirement 
of natural clustering, which the advantages of LE, 
ISOMAP and MVU algorithms are sufficiently applied. 

Let NG be the indicator matrix of k1-nearest-neighbor 
graph based on geodesic distance, and let FG be the in-
dicator matrix of k2-farthest-point graph based on geo-
desic distance. The parameters k1 and k2 respectively 
play the local measure role and the global measure role 
on manifold. The two indicator matrixes are defined as 
follows: 

if  and  are among each other's

1 1-nearest neighbors based on    

 geodesic distance 

0,   elsewise

i j

ij

x x

k
G



 



，
  (3) 

1,   if  is among  2 farthest points

of  based on geodesic distance 

0,   elsewise

j

ij i

x k

FG x




 



   (4) 

Let W be neighborhood similarity matrix, and its ele-
ments are defined as follows: 

2

2
exp( ),   if =1 

2
0,                    elsewise

ij
ij

ij

GD
NG

W t


  



       (5) 

where GD denotes geodesic distance matrix and t is Heat 
Kernel parameter. 

Neighborhood points are contracted as near as possible 
in the intrinsic low-dimensional space, while the geo-
desic distances of those farther points on manifold are 
preserved. According to the intuitional description, the 
corresponding objection function is described as follows: 

2

,

2

1
Min

2

S.t.: , 1

n

ij i j
i j

i j ij

W y y

y y GD

 


   



if ijFG

    (6) 

where GD denotes geodesic distance matrix. 
Theorem 1. Let low dimensional coordinates  

 1, 2, ,d
iy R i n   be aligned into the matrix  
 1 2 nY y y y  . If all elements of inner product 

matrix K in low-dimensional space .ij i jK y y , Lapla-
cian matrix L = D – W, and Diagonal matrix  

ii ij
j

D W , Then 
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,
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End proof.  
In theorem 1, the weighted distances between neigh-

borhood points are converted into the trace of the product 
of Laplacian matrix and inner product matrix. 

For preserving a translation invariance, low dimen-
sional coordinates are constrained to be centered on the 
origin. That is: 

, 1

0
n

ij
i j

K


                 (8) 

The inner product matrix K is a gram matrix, so K 
must be constrained to be positive semi-definite matrix 
(that is, ).  0K 

Collecting the objection function and constraints of the 
above optimization in terms of the inner product matrix 
K, a new semi-definite programming problem is de-
scribed as follows: 

,

( )

(1) 2 ,

S.t. (2) 0

(3) 0

ii jj ij ij ij

i j

Min tr LK

K K K GD FG

K




    
  


 


if =1

ijK
  (9) 

where ij  denotes the geodesic distance between the 
observed points i

GD
x  and jx , L denotes Laplacian matrix, 

and FG is the indicator matrix of k2-farthest-point graph 
based on geodesic distance. 

From the inner product matrix K learned by semi-de- 
finite programming（SDP）, K represents the covariance 
matrix of low dimensional coordinates. The output 

 can be recovered by matrix di-
agonalization of K. Let 1 2 d

 1, 2, ,d
iy R i n   

      be the sorted 
eigenvalues of K. Let iv  denote the i-th eigenvector 
with the corresponding eigenvalue i . In these eigen-
value spectrums, a large gap between the d-th and (d + 
1)-th eigenvalue can estimate that the outputs may lie in 

or near a low dimensional intrinsic manifold with dimen-
sion d (that is, the intrinsic dimension of the obtained 
manifold is considered as d). The d-dimension embed-  
ding  1 2 nY y y y   is formulated as  

TY V  , where diagonal matrix  1, , ddiag      
and  1, , dV v v  . 

According to the above analysis, we obtained the fol-
lowing theorem: 

Theorem 2. If the learned matrix K represents the in-
ner product matrix of low dimensional coordinates by 
minimizing or maximizing the cost function in semi- 
definite programming problem, then a low dimensional 
embedding coordinates Y can be recovered from the top 
eigenvectors of the inner product matrix K, that is 

TY V  . 

3.2. The Basic Procedures of IPLE 

In this paper, the new manifold learning algorithm finds 
the inner product matrix of low dimensional coordinates 
by semi-definite programming, and the coefficient matrix 
in the objective function is Laplacian matrix. So we refer 
the new algorithm to as Inner Production Laplacian Em-
bedding (IPLE).The basic procedures of IPLE are sum-
marized as follows: 

IPLE Algorithm: 
Input:  1, 2, ,D

ix R i n    Observed dataset 
k The number of nearest neighbors based on Euclidean 

distance. 
k1 The number of nearest neighbors based on geodesic 

distance. 
k2 The number of farthest points based on geodesic 

distance. 
Output:  1, 2, ,d

iy R i n    
Low dimensional coordinates 
Step 1. Construct k-nearest-neighbor graph G based on 

Euclidean distance. 
Construct the graph G that connects each input to its k 

nearest neighbors, and the distances between pairs of 
adjacency points are Euclidean distance. 

Step 2. Compute geodesic distance matrix GD.  
Compute the shortest path on the adjacency graph G to 
approximate the geodesic distance by applying Dijkstra’s 
algorithm [13]. 

Step 3. Construct k1-nearest-neighbor graph NG and 
k2-farthest-point graph FG based on geodesic distance 
GD, as shown in Equations (3) and (4). 

Step 4. Compute the similarity matrix W on k1-nearest- 
neighbor graph NG. 

2

2
exp ,   if =1 

2

0,                    elsewise

ij
ij

ij

GD
NG

W t

  
      




, 
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where GD is geodesic distance matrix. 
Step 5. Compute the inner product matrix K by solving 

the following semi-definite programming problem as 
shown in Equation (9): 

Min ( )

(1) 2 ,

S.t. : (2) 0

(3) 0

K

ii jj ij ij ij

ij
i, j

tr LK

K K K GD FG

K

K



       


 


if =1

 

Step 6. Compute a low dimensional embedding from 
the top eigenvectors of the inner product matrix K. That is: 

The d-dimensional embedding  1 2 nY y y y   
is formulated as TY V  , where both diagonal matrix 

 1, , ddiag      and  1, , dvV v  are respec-
tively computed by the d largest eigenvalues and the 
corresponding eigenvectors of the matrix K. 

Note that: NG is the indicator matrix of k1-nearest- 
neighbor graph based on geodesic distances, and FG is 
the indicator matrix of k2-farthest-point graph based on 
geodesic distances. Laplacian matrix L = D – W, where 
W is the similarity matrix on the graph NG and diagonal 
matrix . ii ijD W

j

4. Experiments 

For evaluating our IPLE algorithm, several comparison 
experiments on two datasets are performed by applying 
LE, ISOMAP, MVU and IPLE. The first dataset is from 
the USPS handwritten digits dataset [14], and the second 
one is from the Columbia Object Image Library (COIL- 
20) [15]. Experimental results about 2-dimension visu-
alization, the eigen-spectrums with corresponding to the 
intrinsic low-dimensional coordinates and the clustering 
property are compared. 

As for the information capacity included in low-di- 
mensional coordinates, the ratio of the corresponding 
eigenvalue vs. the trace is used. Specially, if the metric 
matrix is non-positive semi-definite, then the trace is 
substituted by the sum of the absolute value of eigenval-
ues. 

For comparing the low-dimensional clustering per-
formance, the following experiments use the ratio of be-
tween-class scatter distance ( b ) versus within-class 
scatter distance. In general, if the ratio is more large, then 
the quality of the clustering is considered to be more high. 
The ratio θ is defined to quantify the quality of the clus-
tering performance, as follows: 

S

 

 

2

2

j j
j

b w

ij j
j i

n y y

S S
y y




 





         (10) 

where y  is the mean of all low coordinate points, jy  
is the centroid of the j-th class, jn  denotes the number 
of the j-th class samples, ij denotes the i-th low-di- 
mensional coordinate points of the j-th class. 

y

4.1. Experiments on USPS Handwritten Digits 
Dataset 

The original dataset is from the well known US Postal 
Service (USPS) handwritten digits recognition corpus 
[14]. It contains 11000 normalized grey images of size 
16  16 pixels, with 1100 images for each of the ten class 
digits 0 ~ 9. For simplicity, our experimental dataset 
(named as USPS-01 dataset) consists of 600 images 
which were respectively selected the first 300 samples 
from each of two class digits: “0” and “1”. Each image 
was represented by 256-dimensional vector with trans-
forming pixel grey-value to the interval from 0 to1. Six 
hundred 256-dimensional vectors with corresponding to 
these training images were used to find the intrinsic 
low-dimensional coordinates by applying LE, ISOMAP, 
MVU and our IPLE. 

For constructing the connected graph based on Eucli-
dean distance, the neighborhood parameter 8k   in the 
first step of the four algorithms. Both LE and our IPLE 
algorithm all set the heat parameter . In the third 
step of our IPLE algorithm,the parameter of k1-nearest- 
neighbor graph 

1t 

1 20k  , the parameter of k2-farthest- 
point graph 2 20k  . In addition, both IPLE algorithm 
and MVU algorithm all used the semi-definite program-
ming tool CSDP v4.8 [16] to compute the inner product 
matrix K , where the iterations of the CSDP tool is set to 
50 times in the experiments. 

Figure 1 shows the two-dimensional embedding of 
600 images from handwritten digits “0” and “1”. Some 
original handwritten digit images are remarked on the 
corresponding 2-dimensional coordinates, which the 
change of the slant and stroke thickness can be observed. 
Two-dimensional manifold structures obtained by IPLE 
algorithm have the higher degree of separation for the 
two-class digits, while the changing laws of the slant and 
stroke thickness are preserved, as shown in Figure 1(d). 
The second row in Table 1 shows the ratio of between- 
class distance versus within-class distance for two di-
mensional coordinates of two-class handwritten digits 
(“0” and “1”). The ratio of IPLE is largest in four algo-
rithms, and it indicates that low dimensional structure 
obtained by IPLE has better clustering performance than 
LE, ISOMAP and MVU. Visualization experiments on 
USPS-01 dataset show the IPLE can obtain the better 
comprehensive performance in clustering and manifold 
structure, as Figure 1 and Table 1. 

Figure 2(a) shows the fraction of each of the top 20 
eigenvalues in the trace of the centered metric matrix by  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 1. Two-dimensional coordinates of 600 images in 
USPS-01 dataset and some digit images are remarked. (a) 
LE, (b) ISOMAP, (c) MVU, (d) IPLE. 

Table 1. The ratio of between-class distance versus within- 
class distance for two dimensional coordinates. 

       Algorithm

b wS S  

Data Set 

LE ISOMAP MVU IPLE 

USPS-01 dataset 0.1665 2.0848 2.6875 2.6969 

COIL-TWO dataset 9.0979e-023 1.8909 1.8046 9.9955 

 

 
(a) 

 
(b) 

Figure 2. Comparison of eigenvalues from experiments on 
USPS-01 dataset. Left: the fraction of each of the top 20 
eigenvalues in the trace; Right: the fraction of each of the 
bottom 20 eigenvalues in the trace. 
 
applying LE, ISOMAP, MVU and IPLE algorithms. In 
IPLE algorithms, there are four dominant eigenvalues, 
that is, the intrinsic dimension is four. In LE,ISOMAP 
and MVU,more than four dominant eigenvalues demon-
strate that their corresponding low-dimensional coordi-
nates contain some noise. Figure 2(b) shows the fraction 
of each of the bottom 20 eigenvalues in the trace. It 
shows that ISOMAP can’t guarantee to obtain the semi- 
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-positive matrix and the negative eigenvalues should not 
simply be removed. IPLE and MVU can guarantee to 
obtain the positive semi-definite metric matrix under the 
constraints of positive semi-definite programming. In 
Figure 3, from left to right, the i-th colored region de-
notes the fraction of the i-th eigenvalue in the trace, and 
it shows that the top four eigenvalues of IPLE preserve 
more information than that of ISOMA and MVU. 

4.2. Experiments on COIL20 Image Database 

The Columbia Object Image Library (COIL20) [15] was 
provided by Computer Vision Lab at Columbia Univer-
sity. It contains 1440 grey images of 20 objects (72 im-
ages per object). Images of each rotated object were tak-
en at pose intervals of 5 degrees. The size of each image 
is 128 × 128 pixels with 256 grey levels. The background 
of each image of CoIL20 database has been discarded, 
and the image consists of the smallest square that con-
tains the object. For reducing the experimental complex-
ity, our experimental dataset only used the 144 images of 
the two similar objects (the duck-object images and the 
cat-object images) and the image dataset is named as 
COIL-TWO in this paper. Seventy-two duck-object im-
ages are shown in Figure 4(a) and Seventy-two cat-ob- 
ject images are shown in Figure 4(b). In this experiment, 
each image was resized into 32 × 32 pixels and repre-
sented by 4096-dimensional vector with transforming 
pixel grey-value to the interval from 0 to 1. Obviously, 
the dimension of the intrinsic low dimensional space is 
two. So one hundred forty-four 4096-dimensional vectors 
with corresponding to these images are used to finding 
two-dimensional intrinsic coordinates by applying LE, 
ISOMAP, MVU and our IPLE algorithms. 

The above mentioned four algorithms all construct the 
adjacency graph based on Euclidean distance. For guar-
anteeing the connectivity of neighborhood graph, the 
neighborhood parameter  with corresponding to 
the first step of these algorithms. In IPLE algorithm, the 
parameter of k1-nearest-neighbor graph 

26k 

1 10k  , the 
parameter of k2-farthest-point graph , and the 
heat parameter . In addition, both IPLE algo-
rithm and MVU algorithm used the semi-definite pro- 

2k 10
200t 

 

 

Figure 3. The comparison of the dominant eigenvalues of 
the metric matrices obtained by ISOMAP, MVU and IPLE 
on USPS-01 dataset. Each region denotes the fraction of the 
corresponding eigenvalue in the trace. 

 
(a) 

 
(b) 

Figure 4. Sample images of two objects from COIL-20 Im-
age library, (named as COIL-TWO).(a) 144 sample images 
of the duck toy, (b) 144 sample images of the cat toy. 
 
gramming tool CSDP v4.8 [16] to compute the inner 
product matrix K, where the iterations of the CSDP tool 
is set to 40 times in the experiments. 

Figures 5(a)-(d) shows the results of two dimensional 
embedding by applying LE, ISOMAP, MVU and our 
IPLE on COIL-TWO image dataset. The third row in 
Table 1 shows the ratio of between-class distance versus 
within-class distance for two dimensional coordinates of 
two-class objects (“duck” toy and “cat” toy). The ratio of 
IPLE is largest in four algorithms, and it indicates that 
low dimensional structure obtained by IPLE is better 
clustering performance than LE, ISOMAP and MVU. In 
some degree, the intrinsic low dimensional visualization 
is better, as shown in Figure 5(d). 

Figure 6(a) shows the fraction of each of the top 20 
eigenvalues in the trace of the centered metric matrix by 
applying LE, ISOMAP, MVU and IPLE algorithms. To 
ISOMAP and MVU algorithms, there are three or four 
dominant eigenvalues. But IPLE only obtained two do-
minant eigenvalues, that is, the intrinsic dimension is two 
which is consistent with the intrinsic law of the practical 
image set that was sampled from two rotated objects. 
Figure 6(b) shows the fraction of each of the bottom 20 
eigenvalues in the trace. It shows that ISOMAP can’t 
guarantee to obtain the positive semi-definite matrix and 
the negative eigenvalues should not simply be removed 
in ISOMAP algorithm. IPLE and MVU can ensure to  
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Figure 5. Two dimensional embedding of 144 images in 
COIL-TWO dataset. 
 

 

Figure 6. Comparison of eigenvalues from experiments on 
COIL-TWO image dataset. Left: the fraction of each of the 
top 20 eigenvalues in the trace; Right: the fraction of each 
of the bottom 20 eigenvalues in the trace. 
 
obtain the positive semi-definite metric matrix under the 
constraints of positive semi-definite programming prob-
lem.In Figure 7, from left to right, the i-th colored region 
denotes the fraction of the i-th eigenvalue in the trace, 
and it shows that the top two eigenvalues of IPLE pre-
serve more information than that of ISOMA and MVU. 
That is, two dimensional structure obtained by IPLE is 
more meaningful. 

5. Conclusions 

In this paper, we propose an inner product Laplacian 
embedding algorithm based on semi-definite programming. 
The new algorithm avoids the problem of ISOMAP’s 
nonpositive semi-definite matrix decomposition, the 
problem of LE’s small and close dominant eigenvalues,  
 

 

Figure 7. The comparison of the dominant eigenvalues of 
the metric matrices obtained by ISOMAP, MVU and IPLE 
on COIL-TWO dataset. Each region denotes the fraction of 
the corresponding eigenvalue in the trace. 

and the problem of MVU’s non-clustering property. The 
problem of LE’s small and close dominant eigenvalues, 
experiments on USPS-01 dataset and COIL-TWO dataset 
demonstrate the feasibleness of IPLE algorithm. Experi-
mental results also show that the dominant eigenvalues 
of IPLE preserved more information and can obtain the 
better comprehensive performance in clustering and ma-
nifold structure. One of our future research tasks is to 
develop the incremental learning of IPLE for large scale 
datasets, as introduced the technique in literature [17-23]. 
And another possible extension is to consider the labels 
of samples for designing the semi-supervised or super-
vised inner product Laplacian embedding algorithm. 
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