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ABSTRACT 

In this paper, a new method of H  filtering for Lipschitz nonlinear systems is proposed in the form of an LMI optimi-
zation problem. The proposed filter has guaranteed decay rate (exponential convergence) and is robust against un-
known exogenous disturbance. In addition, thanks to the linearity of the proposed LMIs in the admissible Lipschitz con-
stant, it can be maximized via LMI optimization. This adds an extra important feature to the observer, robustness 
against nonlinear uncertainty. Explicit bound on the tolerable nonlinear uncertainty is derived. The new LMI formula-
tion also allows optimizations over the disturbance attenuation level ( H  cost). Then, the admissible Lipschitz con-
stant and the disturbance attenuation level of the H  filter are simultaneously optimized through LMI multiobjective 
optimization. 
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1. Introduction 

The design of nonlinear state observers has been an area 
of constant research for the last three decades and as a 
result, a wide variety of design techniques for nonlinear 
observers exist in the literature. Despite important pro-
gress, many outstanding problems still remain unsolved. 
A class of nonlinear systems of special attention is the 
so-called Lipschitz systems in which the mathematical 
model of the system satisfies a Lipschitz continuity con-
dition. Many practical systems satisfy the Lipschitz con-
dition, at least locally. Roughly speaking, in these sys-
tems, the rate of growth of the trajectories is bounded by 
the rate of growth of the states. Observer design for 
Lipschitz systems was first considered by Thau in his 
seminal paper [1] where he obtained a sufficient condi-
tion to ensure asymptotic stability of the observer. Thau’s 
condition provides a very useful analysis tool but does 
not address the fundamental design problem. Encouraged 
by Thau’s result, several authors studied observer design 
for Lipschitz systems [2-6]. All these methods share a 
common structure for the error dynamics of the nonlinear 
systems; namely the error dynamics can be represented 
as a linear system with a sector bounded nonlinearity in 
feedback. This type of problems are both theoretically  

and numerically tractable because they can be formulated 
as convex optimization problems [7,8]. Raghavan for-
mulated a procedure to tackle the design problem. His 
algorithm is based on solving an algebraic Riccati equa-
tion to obtain the static observer gain [2]. Unfortunately, 
Raghavan’s algorithm often fails to succeed even when 
the usual observability assumptions are satisfied. Ragha-
van showed that the observer design might still be tracta-
ble using state transformations. Another shortcoming of 
his algorithm is that it does not provide insight into what 
conditions must be satisfied by the observer gain to en-
sure stability. A rather complete solution of these prob-
lems was later presented by Rajamani [3]. Rajamani ob-
tained necessary and sufficient conditions on the ob-
server matrix that ensure asymptotic stability of the ob-
server error and formulated a design procedure, based on 
the use of a gradient based optimization method. He also 
discussed the equivalence between the stability condition 
and the minimization of the H  norm of a system in 
the standard form. However, he pointed out that the de-
sign problem is not solvable as a standard H  optimiza-
tion problem since the regularity assumptions required in 
the H framework are not satisfied. Using Riccati based 
approach, Pertew et al. [6] showed that the condition  
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introduced in [3] is related to a modified H  norm 
minimization problem satisfying all of the regularity as-
sumptions. It is worth mentioning that the H  problem 
in [3] is associated with the nominal stability of the ob-
server error dynamics while no disturbance attenuation is 
considered. Moreover, in all of the above references, the 
system model is assumed to be perfectly known with no 
uncertainty or disturbance. In order to guarantee robust-
ness against unknown exogenous disturbance, the nonlin-
ear H filtering was introduced by De Souza et al. [9,10] 
via the Riccati approach. In an H observer, the  - 
induced gain from the norm-bounded exogenous distur-
bance signals to the observer error is guaranteed to be 
below a prescribed level. On the other hand, the restric-
tive regularity assumptions in the Riccati approach can 
be relaxed using linear matrix inequalities (LMIs). In this 
paper, we introduce a novel nonlinear H  observer 
design method for Lipschitz nonlinear systems based on 
the LMI framework. Our solution follows the same ap-
proach as the original problem of Thau and proposes a 
natural way to tackle the problem, directly. Unlike the 
methods of [2,3,6], the proposed LMIs can be efficiently 
solved using commercially available software without 
any tuning parameters. In all aforementioned references, 
the Lipschitz constant of the system is assumed to be 
known and fixed. In this paper, the resulting LMIs are 
formulated such that to be linear in the Lipschitz constant 
of the nonlinear system. This adds an important extra 
feature to the observer, robustness against nonlinear un-
certainty. Maximizing the admissible Lipschitz constant, 
the observer can tolerate some nonlinear uncertainty for 
which an explicit norm-wise bound is derived. In addi-
tion to this robustness, we will extend our result such that 
the observer disturbance attenuation level (the H feature 
of the observer) can be optimized as well. Then, both the 
admissible Lipschitz constant and the disturbance at-
tenuation level are optimized simultaneously through 
multiobjective convex optimization. The rest of the paper 
is organized as follows: Section 2, introduces the prob-
lem and some background. In Section 3, the LMI formu-
lation of the problem and our observer design algorithm 
are proposed. The observer guaranteed decay rate and 
robustness against nonlinear uncertainty are discussed. In 
Section 4, we expand the result of Section 3, to an H  
nonlinear observer design method. Section 5, is devoted 
to the simulators optimization of the observer features 
through multiobjective optimization. In Section 6, the 
proposed observer performance is shown in some illus-
trative examples. 

2. Preliminaries and Problem Statement 

Consider the following continuous-time nonlinear system  

     = , n nx t Ax t x u A          (1) 

   = n py t Cx t C             (2) 

where , ,n m px u y      and  ,x u  contains 
nonlinearities of second order or higher. We assume that 
the system (1)-(2) is locally Lipschitz in a region   
including the origin with respect to x, uniformly in u , 
i.e.: 

   
   

* *
1 2 1 2

1 2

, ,

,

x u x u x x

x k x k

   

 
      (3) 

where .  is the induced 2-norm, *u  is any admissible 
control signal and > 0  is called the Lipschitz constant. 
If the nonlinear function   satisfies the Lipschitz con-
tinuity condition globally in n , then the results will be 
valid globally. Consider now an observer of the follow-
ing form 

       ˆ ˆ ˆ ˆ= , .x t Ax t x u L y Cx         (4) 

The observer error dynamics is given by 

     ˆe t x t x t                (5) 

         ˆ= , , .e t A LC e t x u x u    

The goal is to find a gain, L , such that:  
1) In the absence of disturbance, the observer error 

dynamics is asymptotically stable i.e.:  

  = 0lim t e t . 

2) In the presentence of unknown exogenous distur-
bance, a disturbance attenuation level is guaranteed. 
( H  performance). 

The result is simple and yet efficient with no regularity 
assumption. The observer error dynamics is asymptoti-
cally stable with guaranteed decay rate (the convergence 
is actually exponential as we will see). In addition, the 
observer is robust against nonlinear uncertainty and ex-
ogenous disturbance. The dismissible Lipschitz constant 
which as will be shown, determines the robustness mar-
gin against nonlinear uncertainty, and the disturbance 
attenuation level (the H  cost), are optimized through 
LMI optimization. 

3. An Algorithm for Nonlinear Observer  
Design 

In this section an LMI approach for the nonlinear ob-
server design problem introduced in Section 2 is pro-
posed and some performance measures of the observer 
are optimized. 
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3.1. Maximizing the Admissible Lipschitz  
Constant  

We want to maximizes the admissible Lipschitz constant 
of the nonlinear system (1-2) for which the observer error 
dynamics is asymptotically stable. The following theo-
rem states the main result of this section. 

Theorem 1. Consider the Lipschitz nonlinear system 
(1-2) along with the observer (4). The observer error 
dynamics (6) is (globally) asymptotically stable with 
maximum admissible Lipschitz constant if there exist 
scalers > 0  and > 0  and matrices > 0P  and F 
such that the following LMI optimization problem has a 
solution. 

 min   

s.t.  

<T T TA P PA C F FC I I            (7) 

1

2 > 0
1

2

I P

P I





 
 
 
 
  

            (8) 

once the problem is solved  
1=L P F                 (9) 

 * 1max =               (10) 

Proof: Suppose =Q I . The original problem as dis-
cussed in Section 2, can be written as 

  min max P   

s.t.  

    =
T TA LC P P A LC I          (11) 

 1 2 . > 0max P             (12) 

> 0P                  (13) 

which is a nonlinear optimization problem, hard to solve 
if not impossible. We proceed by converting it into an 
LMI form. A sufficient condition for existence of a solu-
tion for (11) is 

> 0, ( ) ( ) < .T TA LC P P A LC I I         (14) 

The above can be written as 

<T T TA P PA C L P PLC I I           (15) 

which is a bilinear matrix inequality. Defining the new 
variable  

= =T T T TF PL L P L P F          (16) 

it becomes  

<T T TA P PA C F FC I I            (17) 

In addition, since P  is positive definite  
   = maxP P  . So, from (12) we have 

  1
<

2
P


                (18) 

which is equivalent to  

2
1

> 0
2

TI P P


 
 

 
            (19) 

using Schur's complement lemma 

1

2
> 0

1

2

I P

P I





 
 
 
 
 
 

           (20) 

defining 
1

=


, (8) is achieved.  

Proposition 1. Suppose the actual Lipschitz constant 
of the system is   and the maximum admissible 
Lipschitz constant achieved by Theorem 2, is * . Then, 
the observer designed based on Theorem 2, can tolerate 
any additive Lipschitz nonlinear uncertainty with 
Lipschitz constant less than or equal *  . 

Proof: Assume a nonlinear uncertainty as follows  

     , = , ,x u x u x u           (21) 

     = ,x t Ax t x u          (22) 

where 

   1 2 1 2, , .x u x u x x        (23) 

Based on Schwartz inequality, we have Equation (24). 
According to the Theorem 1,  ,x u  can be any 
Lipschitz nonlinear function with Lipschitz constant less 
than or equal to * , 

    *
1 2 1 2, ,x u x u x x          (25) 

so, there must be 
* * .                  (26) 

Remark 1. If one wants to design an observer for a 
given system with known Lipschitz constant, then the 
LMI optimization problem can be reduced to an LMI 
feasibility problem (just satisfying the constraints) which 
is easier. 

 

           1 2 1 2 1 2 1 2 1 2, , , , , , .x u x u x u x u x u x u x x x x                    (24)
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From Theorem 1, it is clear that the gain L  obtained 

via solving the LMI optimization problem, can lead to 
stable error dynamics for every member in the class of 
the Lipschitz nonlinear functions with Lipschitz constant 
less than or equal to * . Thus, it neglects the structure of 
the given nonlinear function. It is possible to take advan-
tage of the structure of the  ,x u  in addition to the 
fact that its Lipschitz constant is  . According to 
Proposition 1, the margin of robustness against nonlinear 
uncertainty is *  . The Lipschitz constant of the sys-
tems can be reduced using appropriate coordinates trans-
formations. The transformation matrices that are picked 
are problem specific and they reflect the structure of the 
given nonlinearity [2]. The robustness margin can then 
be modified through coordinates transformations. Find-
ing the Lipschitz constant of a function is itself a global 
optimization problem, since the Lipschitz constant is the 
supremum of the magnitudes of directional derivatives of 
the function as shown in [11,12]. If the analytical form of 
the nonlinear function and its derivatives are known ex-
plicitly, any appropriate global optimization method may 
be applied to find the Lipschitz constant. If only the 
function values can be evaluated, a stochastic random 
search and probability density function fitting method 
may be used [13]. 

3.2. Guaranteed Decay Rate 

The decay rate of the system (6) is defined to be the 
largest > 0  such that  

   exp = 0lim
t

t e t


           (27) 

holds for all trajectories e . We can use the quadratic 
Lyapunov function   = TV e e Pe  to establish a lower 
bound on the decay rate of the (6). If 

     2
dV e t

V e t
dt

   for all trajectories, then 

       exp 2 0V e t t V e  , so that  

       
1

2exp 0e t t P e   for all trajectories, 

where  P  is the condition number of P and therefore 
the decay rate of the (6) is at least   [8]. In fact, decay 
rate is a measure of observer speed of convergence. 

Theorem 2. Consider Lipschitz nonlinear system (1-2) 
along with the observer (4). The observer error dynamics 
(6) is (globally) asymptotically stable with maximum 
admissible Lipschitz constant and guaranteed decay rate 
 , if there exist a fixed scaler > 0 , scalers > 0  
and > 0  and matrices > 0P  and F such that the 
following LMI optimization problem has a solution. 

 min   
. .s t  

2 <T T TA P PA P C F FC I I           (28) 

1

2 0
1

2

I P

P I





 
 

 
 
  

           (29) 

once the problem is solved 
1=L P F                (30) 

* 1max( ) =                (31) 

Proof: Consider the following Lyapunov function can-
didate  

     = TV t e t Pe t             (32) 

Then  

         
    

=

ˆ= 2 , ,

T T

TT T

V t e t Pe t e t Pe t

e Qe e P x u x u



   

  
    (33) 

To have    2V t V t   it suffices (33) to be less 
than zero, where:  

    2 = .
T TA LC P P A LC P Q        (34) 

The rest of the proof is the same as the proof of Theo-
rem 1.  

4. Robust H  Nonlinear Observer 

In this section we extend the result of the previous sec-
tion into a new nonlinear robust H  observer design 
method. Consider the system 

       = ,x t Ax t x u Bw t         (35) 

     =y t Cx t Dw t           (36) 

where    2 0,w t  L  is an unknown exogenous dis-
turbance. suppose that  

   =z t He t                (37) 

stands for the controlled output for error state where H  
is a known matrix. Our purpose is to design the observer 
parameter L  such that the observer error dynamics is 
asymptotically stable and the following specified H  
norm upper bound is simultaneously guaranteed. 

.z w                (38) 

The following theorem introduces a new method for 
nonlinear robust H  observer design. we first present 
an inequality that will be used in the proof of our result. 

Lemma 1 [14]. For any , nx y  and any positive 
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definite matrix n nP  , we have  

12 T T Tx y x Px y P y          (39) 

Theorem 3. Consider the Lipschitz nonlinear system 
(35-36) with given Lipschitz constant  , along with the 
observer (4). The observer error dynamics is (globally) 
asymptotically stable with decay rate   and minimum 

2 ( )w eL  gain,  , if there exist fixed scaler > 0 , 
scalers > 1 , > 0  and > 0  and matrices > 0P  
and F  such that the following LMI optimization prob-
lem has a solution. 

 min   

s.t. 

2 <T T TA P PA P C F FC I I           (40) 

 

 

2

2

1

2
> 0

1

2

H
I P

H
P I







 
 
 
  
  

      (41) 

1 1
2

< 02
T

T T T

H H I PB FD

B P D F I

 




  
     

  
   

  (42) 

Once the problem is solved 
1=L P F                 (43) 

 * min =               (44) 

Proof: The observer error dynamics will be 

           ˆ= , ,e t A LC e t x u x u B LD w      

                                          (45) 
consider the following Lyapunov function candidate  

     = TV t e t Pe t             (46) 

then  

         
    

   

=

ˆ= 2 , ,

T T

TT T

T T T T T

V t e t Pe t e t Pe t

e Qe e P x u x u

e PB FD w w B P D F e



   

   

  

(47) 

where, Q  is as in (34). We select =Q I . If = 0w  
the error dynamics is as Theorem 2, so the LMIs (7) and 
(8) which for =Q I  will become 

2 <T T TA P PA P C F FC I I           (48) 

2
> 0

2

I P

P I







 
 
 
 
 
 

         (49) 

are sufficient for the asymptotic stability of the error dy-
namics. Having > 1 , (18) always implies (49). 

Based on Rayleigh inequality 

 T T
maxe Qe Q e e          (50) 

Using Lemma 1 we can write 

              
         

1ˆ ˆ ˆ2 ( , , , , , ,

ˆ ˆ= , , , ,

TT T

TT

e P x u x u e Pe x u x u PP P x u x u

e Pe x u x u P x u x u

       

    
          (51) 

based on Rayleigh inequality we have 

   2
=T T

max maxe Pe P e P e e                                (52) 

                 2 22 2ˆ ˆ ˆ, , , , , , =
T T

max max maxx u x u P x u x u P x u x u P e P e e               (53) 

therefore, from the above and (18),  

        2 1 1
ˆ2 , , 1 .

2
T T T

maxe P x u x u P e e e e  


 
      

 
                  (54) 

According to (50) and (54) and knowing that =Q I , we have  

     1 1
2 .

2
T T T T T TV t e e e PB FD w w B P D F e 


 

       
 

                 (55) 

 
Now, we define  

 
0

= T TJ z z w w dt


         (56) 

therefore  

 
0

< T TJ z z w w V dt


              (57) 
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it follows that a sufficient condition for 0J   is that  

 0, , 0T Tt z z w w V              (58) 

but we have Equation (59). 
Thus, a sufficient condition for 0J   is that the 

above matrix which is the same as (42) be negative defi-
nite. Then  

0T Tz z w w z w             (60) 

Up until now, we have the LMIs (48), (20) and (42). If 
these LMIs are all feasible, then the problem is solvable 
and the observer synthesis is complete. However, (20) 
can be slightly modified to improve its feasibility. We 
proceed as follows: 

Inequality (51) can be rewritten as follows  

      ˆ2 , , 2T T
maxe P x u x u P e e      (61) 

following the same steps, the matrix in (59) will become  

 [2 ]
< 0.

T
max

T T T

H H P I PB FD

B P D F I

 


   
 

  
    (62) 

The above matrix can not be used together with (48) 
and (49) because it includes P  as one of the LMI vari-
ables, thus resulting in a problem that is not linear in P . 
It can, however, give us another insight about  max P . 
According to the Schur's complement lemma, (62) is 
equivalent to 

< 0I                  (63) 

    1
2 < 0.

TT
maxH H P I PB FD PB FD 


        

                                          (64) 

The third term in the above is always nonnegative, so 
it is necessary to have  

 [2 ] < 0T
maxH H P I           (65) 

but as for any other symmetric matrix, for 
TH H , we 

have  

   T T T
min maxH H I H H H H I        (66) 

or according to the definition of singular values  

   2 2TH I H H H I           (67) 

therefore, a sufficient condition for (65) is  

   2 2 < 0maxH P              (68) 

or  

   2

<
2max

H
P

 





           (69) 

but (18) must be also satisfied. To have both (18) and 
(69), it is sufficient that  

   21
<

2max

H
P







             (70) 

which is equivalent to (41).  
Remark 2. Similar to Remark 1, if one wants to design 

an observer for a given system with known Lipschitz 
constant and with a prespecified  , the LMI optimiza-
tion problem is reduced to an LMI feasibility problem. 

Remark 3. As an additional opportunity, we can first 
maximize the admissible Lipschitz constant using Theo-
rem 3, and then minimize   for the maximized  , 
using Theorem 3. In this case, according to Proposition 1, 
robustness against nonlinear uncertainty is also guaran-
teed. In the next section, we will show that how   and 
  can be simultaneously optimized using convex mul-
tiobjective optimization. It is clear that if no decay rate is 
specified, then the term 2 P  will be eliminated from 
LMI (40) in Theorem 3. 

5. Combined Performance using  
Multiobjective Optimization 

The LMIs proposed in Theorem 3 are linear in both ad-
missible Lipschitz constant and disturbance attenuation 
level and as mentioned earlier, each can be optimized. A 
more realistic problem is to choose the observer gain 
matrix by combining these two performance measures. 
This leads to a Pareto multiobjective optimization in 
which the optimal point is a trade-off between two or 
more linearly combined optimality criterions. Having a 
fixed decay rate, the optimization is over   (maximiza-
tion) and   (minimization), simultaneously. The  

 

   

1 1
2

2

1 1
2

2
= .

T T T T T T T T

T
T

T T T T T T

T T T

z z w w V e H He w w Ve H He e e

H H I PB FD
e e

e PB FD w w B P D F e w w
w w

B P D F I

   


 





 
        

 
  

     
                   

  

 

     (59)
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following theorem is in fact a generalization of the re-
sults of [2-6, 15], and [9] (for systems of class (1-2)) in 
which the Lipschitz constant is assumed to be known and 
fixed and the result of [7] in which a special class of sec-
tor nonlinearities is considered. 

Theorem 4. Consider the Lipschitz nonlinear system 
(35-36) along with the observer (4). The observer error 
dynamics is (globally) asymptotically stable with decay 
rate   and simultaneously maximized admissible 
Lipschitz constant  and minimized  2 w eL  gain,. 
 , if there exist fixed scalers 0 1   and > 0 , 
scalers > 1 , > 0 , > 0  and > 0  and matrices 

> 0P  and F  such that the following LMI optimization 
problem has a solution 

 1min          

s.t.  

2 <T T TA P PA P C F FC I I            (71) 

 

 

2

2

1

2 > 0
1

2

H
I P

H
P I







 
 

 
 

 
 

     (72) 

 1
2

2

2 0 < 0

0

T

T T T

H H I I PB FD

I I

B P D F I

 





    
 
  
 
  
  

  (73) 

Once the problem is solved,  

1=L P F               (74) 

* 1max( ) =               (75) 

* min( ) =              (76) 

Proof: The above is a scalarization of a multiobjective 
optimization with two optimality criteria. Since each of 
these optimization problems is convex, the scalarized 
problem is also convex [16]. The rest of the proof is the 
same as the proof of Theorem 3 where the LMI (73) is 
obtained from the LMI (42) using the Schur’s comple-
ment lemma.  

6. Illustrative Examples 

In this section the high performance of the proposed ob-
server is shown via three design examples. 

Example 1. Consider the following observable (A,C) 
pair  

 0 1
= , = 0 1

1 1
A C

 
  

 

The result of the iterative algorithm proposed in [38] is  
* = 0.49  

 = 69.5523 11.5679
T

L  

while using our proposed method in Theorem 1,  
* = 1.1933  

 = 56.8334 21.9074
T

L  

which means that the admissible Lipschitz constant is 
improved by a factor of 2.42 . 

Example 2. The following system is the unforced 
forth-order model of a flexible joint robotic arm as pre-
sented in [2,4,5]. The reason we have chosen this exam-
ple is that it is an important industrial application and has 
been widely used as a benchmark system to evaluate the 
performance of the observers designed for Lipschitz 
nonlinear systems. 

0 1 0 0 0

48.6 1.25 48.6 0 0
=

0 0 0 1 0

19.5 0 19.5 0 3.33sin( 3)

x x

x

   
       
   
   

    

  

1 0 0 0
= .

0 1 0 0
y x

 
 
 

 

The system is globally Lipschitz with Lipschitz con-
stant = 3.33 . Noticing the structure of   that has a 
zero entry in three of its channels, Raghavan [2], pro-
posed the coordinates transformation =x Tx , where  

 = 1,1,4,0.1T diag  under which the transformed sys-
tem has Lipschitz constant = 0.083 . Using Theorem 2, 

* = 0.4472  in the original coordinates and * = 2.4177  
in the transformed coordinates. The observer gain L , is 
obtained in the transformed coordinates and computed in 
the original coordinates as 1=L T L . Assuming 

= 0.2 ,  = 1 1 1 1
T

B ,  = 0.1 0.25
T

D ,  

4 4= 0.5 ,H I   

and using Theorem 3 we get, * = 0.5753 , = 2.0517 , 
= 0.0609 , and finally the observer gain will be 

33.4865 129.9249 59.89713 108.2134
= .

38.5694 282.8603 102.1561 171.0910

T

L
 
 
 

 

Figure 1, shows the true and estimated values of states. 
The actual states are shown along with the estimates ob-
tained using Raghavan's [2] and Aboky's [5] methods and 
our proposed LMI optimization method. The initial con-      
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Figure 1. The true and estimated states of Example 2. 

 
ditions for the system are    0 = 0 1 0 2

T
x   and 

those of the all observers are    ˆ 0 = 1 0 0.5 0
T

x  . 
As seen in Figure 1, the observer designed using the 
proposed LMI optimization method has the best conver-
gence of the three. Note that in addition to the better 
convergence, the proposed observer is an H  filter 
with maximized disturbance attenuation level while the 
observers designed based on the methods of [2-6] can 
only guarantee stability of the observer error. 

Example 3. In this example we show the usage of the 
multiobjective optimization of Theorem 4 in the design 
of H observers. Consider the following system  

 1 2=
T

x x x  

3
1

5 2 4 2
1 1 2 1 1

0 1
=

1 1 6 6 2 2

x
x x

x x x x x

  
           

  

 = 1 0 .y x  

The systems is locally Lipschitz. Its Lipschitz constant 
is region-based. Suppose we consider the region   as 
follows  

  2
1 2 1= , 0.25x x x   

in which the Lipschitz constant is = 0.4167 . We 
choose  

= 0.5H I ,  = 1 1
T

B , = 0.2D , = 0.05  

and solve the multiobjective optimization problem of 
Theorem 4 with = 0.9 . We get  

* = 0.5525  

* = 1.1705  

= 1.6260  

4= 2.2435 10   

 = 23.7025 13.7272 .
T

L  

The true and estimated values of states are 
shown in Figure 2. We have assumed that  

   0 = 0.2 1.45
T

x    

   ˆ 0 = 0.25 2
T

x   

     = 0.15exp sin .w t t t  

For any    2 0,w t  L , disturbance rejec-
tion ratio   should be less than or equal 0.3371 (ob-
tained for = 0 ). The actual disturbance rejection ratio 
of this simulation is 0.2302. If instead, = 0.5  then  

* = 0.4686 , = 1.4161 , = 0.0067  

 = 329.9735 244.1398
T

L  

Since the observer gain directly amplifies the measure-         
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Figure 2. The true and estimated states of Example 3 in the presence of disturbance. 
 

 

Figure 3. * , *  and ( )L , and the optimal trade-off curve with = 0.05 . 
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Figure 4. The optimal surface of * . 

 

 

Figure 5. The optimal surface of * . 
 
ment noise, sometimes, it is better to have an observer 
gain with smaller elements. There might also be practical 
difficulties in implementing high gains. We can control 
the Frobenius norm of L  either by changing the feasi-
bility radius of the LMI solver or by decreasing  1

min P  

which is  1
max P  , to decrease  L . The latter can 

be done by replacing > 0P  with >P I  in which 
> 0  can be either a fixed scaler or an LMI variable. 

Using these tricks, an observer with the same decay ratio 
= 0.5  but much smaller Frobenius norm of gain, can 
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be achieved 
* = 0.5314 , = 1.3973 , = 0.0125  
 = 134.4040 90.0881

T
L  

as seen, the price of this is bigger disturbance rejection 
ratio. The values of * , * , norm of the observer gain 
matrix, ( )L , and the optimal trade-off curve between 

*  and *  over the range of   when the decay rate 
is fixed  = 0.05  are shown in Figure 3. As seen in 
the figure, there is a trade of between the Lipschitz 
maximization (the robustness feature against nonlinear 
uncertainty) and the disturbance attenuation (the H  
performance). We like to have a *  as large as possible 
and a *  as small as possible. The parameter that con-
trols this trade off is the weight   used in the cost 
function of the proposed Pareto convex optimization. 
Pareto multiobjective optimization leads to an optimal 
curve rather than a single point. The selection of particu-
lar point on that curve is then based on the appropriate 
selection of   based on the acceptable values for *  
and * . 

The values of * , * , norm of the observer gain ma-
trix, ( )L , and the optimal trade-off curve between *  
and *  over the range of   when the decay rate is 
fixed  = 0.05  are shown in Figure 3. The optimal 
surfaces of *  and *  over the range of   when the 
decay rate is variable are shown in Figures 4,5, respec-
tively. 

7. Conclusions 

A new method of robust observer design for Lipschitz 
nonlinear systems proposed based on LMI optimization. 
The Lipschitz constant of the nonlinear system can be 
maximized so that the observer error dynamics not only 
be asymptotically stable but also the observer can toler-
ate some additive nonlinear uncertainty. In addition, the 
result extended to a robust H  nonlinear observer. The 
obtained observer has three features, simultaneously. 
Asymptotic stability, robustness against nonlinear uncer-
tainty and minimized guaranteed H  cost. Thanks to 
the linearity of the proposed LMIs in both admissible 
Lipschitz constant and the disturbance attenuation level, 
they can be simultaneously optimized through convex 
multiobjective optimization. The observer high perform-
ance showed through design examples. 
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