
Journal of Software Engineering and Applications, 2014, 7, 440-451
Published Online May 2014 in SciRes. http://www.scirp.org/journal/jsea
http://dx.doi.org/10.4236/jsea.2014.75041

How to cite this paper: Vogel-Heuser, B., et al. (2014) Challenges for Software Engineering in Automation. Journal of Soft-
ware Engineering and Applications, 7, 440-451. http://dx.doi.org/10.4236/jsea.2014.75041

Challenges for Software Engineering in
Automation
Birgit Vogel-Heuser1, Christian Diedrich2, Alexander Fay3, Sabine Jeschke4,
Stefan Kowalewski5, Martin Wollschlaeger6, Peter Göhner7
1Institute of Automation and Information Systems, Technische Universität München, München, Germany
2Institute for Automation and Communication, Otto von Guericke University Magdeburg, Magdeburg, Germany
3Institute of Automation Technology, Helmut-Schmidt-University, Hamburg, Germany
4Institute of Information Management in Mechanical Engineering, RWTH Aachen University, Aachen, Germany
5Computer Science 11—Embedded Software Laboratory, RWTH Aachen University, Aachen, Germany
6Institute for Applied Computer Science, Dresden University of Technology, Dresden, Germany
7Institute of Industrial Automation and Software Engineering, University of Stuttgart, Stuttgart, Germany
Email: vogel-heuser@ais.mw.tum.de, christian.diedrich@ifak.eu, alexander.fay@hsu-hh.de,

sabina.jeschke@ima-zlw-ifu.rwth-aachen.de, kowalewski@embedded.rwth-aachen.de,
martin.wollschlaeger@tu-dresden.de, peter.goehner@ias.uni-stuttgart.de

Received 16 April 2014; revised 10 May 2014; accepted 16 May 2014

Copyright © 2014 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract
This paper gives an introduction to the essential challenges of software engineering and require-
ments that software has to fulfill in the domain of automation. Besides, the functional characteris-
tics, specific constraints and circumstances are considered for deriving requirements concerning
usability, the technical process, the automation functions, used platform and the well-established
models, which are described in detail. On the other hand, challenges result from the circumstances
at different points in the single phases of the life cycle of the automated system. The requirements
for life-cycle-management, tools and the changeability during runtime are described in detail.

Keywords
Automation, Software Engineering, Models, Tools

1. Software Engineering in Automation
Automation deals with the automation and control of systems, consisting of hardware and a growing software
part. An automated system is composed of a technical process, which runs in a technical system that contains all

http://www.scirp.org/journal/jsea
http://dx.doi.org/10.4236/jsea.2014.75041
http://dx.doi.org/10.4236/jsea.2014.75041
http://www.scirp.org/
mailto:vogel-heuser@ais.mw.tum.de
mailto:christian.diedrich@ifak.eu
mailto:alexander.fay@hsu-hh.de
mailto:sabina.jeschke@ima-zlw-ifu.rwth-aachen.de
mailto:kowalewski@embedded.rwth-aachen.de
mailto:martin.wollschlaeger@tu-dresden.de
mailto:peter.goehner@ias.uni-stuttgart.de
http://creativecommons.org/licenses/by/4.0/

B. Vogel-Heuser et al.

441

necessary technical components required for automating the technical process, the automation system and the
process and operating personnel [1], see Figure 1. The technical system can be either a technical product, e.g. a
sensor itself or a washing machine, or a technical plant. Technical products are mass products with a limited
number of sensors and actuators and a high degree of automation, for example, home appliances. Due to the
special structure of the systems and the boundary conditions concerning process, hardware and interaction with
the technical process and operating personnel, specific requirements arise.

Automation systems are nowadays an inseparable part of everyday life, in various application domains. The
pervasive nature of such systems, their impact on humans’ physical and social environment and the correspond-
ing safety/security issues necessitates them, more specifically, their software and hence the software engineering
to fulfill strict quality standards. However, the combination of software and hardware and the distribution of the
systems in a wide range of different application domains increase the systems’ complexity and lead to complex
correlations in software engineering, which become more and more difficult to handle. Adding to this complex-
ity is the increased demand for high flexibility in today’s software solutions, which is needed to enable the adap-
tion to ever-changing market requests [2]. Furthermore, the development of these systems requires the collabo-
ration of diverse disciplines, whose target-oriented coordination is a crucial criterion for success [3] [4]. There-
fore, it is essential to gain a common understanding of the necessary requirements that have to be satisfied dur-
ing the engineering of the system.

In software engineering of automation systems, crucial requirements arise from the entire life cycle of the
automated systems—from the beginning of the engineering, over the runtime, to the end of its operation. Based
on the described characteristics, existing requirements for software engineering in automation from today’s per-
spective will be identified. These requirements shall lead to a better understanding and, thus, to a more success-
ful and constructive collaboration of automation and software engineering.

The state of the art in Software Engineering in automation is summarized in Vyatkin [2]. A view group work
on different sub-challenges, i.e. Estevez, Marcos et al. [5], Biffl and Zoitl [6], and Thramboulidis [7] and Vogel-
Heuser et al. on software engineering for plant and manufacturing systems [8]. But a more general and joined
approach including colleagues from computer science seems to be helpful; this is one of the reasons why the
authors summarize the domain specific challenges as a basis for further joined research.

The following section highlights the basic relations and refines the requirement categories. In the third chapter,
the specific challenges in automation software engineering are explained in detail. Finally, a summary of exist-
ing and further challenges will be discussed.

2. Basic Automation Principles and Resulting Constraints
Automation is characterized by transforming the functions of a system or technical plant from a manual to an

Figure 1. An example of product automation (washing machine on the left) and plant automation (production line on
the right).

B. Vogel-Heuser et al.

442

automatic process, in order to affect it target-oriented. The term “automatic” refers to the process or plant, which
proceeds or works under determined conditions without human engagement (compare [9], paragraph 351-21-40).
According to [10] a technical process is the totality of all operations in which matter, energy or information is
converted, transported or stored. This conversion may include a transformation from a starting condition into a
final condition. Automation in general requires access to information from this technical process (via sensors)
and/or a possibility to influence the technical process (via actuators).

According to the DIN standard (compare [9], paragraph 351-21-41), the level of automation of a system or
plant corresponds to the “proportion of automatic functions to the entire set of functions of a system or plant”.

Automation systems are systems consisting of a technical process running in a technical system that is auto-
mated by components necessary for automation. These components can be sensors, actuators and directly wired
components to interact with the technical system. The automation functionality is realized on automation com-
puters that are interconnected by a communication infrastructure. Finally, there are components to display in-
formation and to input user interventions to interact with the users [11].

Regarding the deployment domain of an automation system, it can realize product or plant automation. Prod-
uct automation is the case when the technical process runs in one device or machine whereas plant automation
frames out a technical process consisting of different sub-processes, which run on a spacious plant. Figure 1
shows abstractly the structure of a product automation system (washing machine) and a production automation
system (plant automation).

An important factor regarding the automation is the user respectively the user groups, which develop, operate
and maintain the system (Figure 1). Therefore, usability is an important source of extra functional requirements
[12]. The different user groups influence the technical process through the automation functions. In manufactur-
ing systems, different sub-processes are running spatially distributed (e.g. sequential production steps). Hence,
the appropriate automation functions are conceptually distributed and initially independent from each other. To
achieve higher-level operational goals (e.g. maximum output), higher-level functions are established, which in-
teract with the automation functions of the separate production steps leading to further dependencies. Nowadays,
the main parts of automation functions are usually realized in software. The reasons are lower costs and the ease
of software change in comparison to a mechanical or electrical solution. Another outstanding advantage of soft-
ware is that changes and thus, interventions during runtime of the automation system, can be accomplished
faster.

The automation functions, realized through software, are running on domain specific platforms (Figure 2).
Typical communication protocols used in modern automation systems are for instance CAN-Bus, Profibus and
Ethernet (Profinet, EtherCAT and Powerlink). Hardware management, running time and I/O-linkage are typi-
cally provided by the operating system. The operating systems used for automation purposes must provide
real-time properties and be fully customizable, for examples RedHawk Linux or LinuxCNC, Windows CE,
VxWorks or often also proprietary operating systems developed by PLC suppliers. Application functions are for
instance written in Java, C++ or C or in production automation IEC 61131-3 and C. Using the local operation
the connection between the application function and the underlying operating system is provided. This can be
realized by libraries or driver components.

In this context, platform is used as a generic term for hardware as embedded system with input to sensors,
output to actuators and control panels as well as the firmware, communication and hardware-specific automation
functions. Considering the characteristics of automation platforms is inevitable for adequate software engineer-
ing. It guarantees the realization of optimally adapted and high-quality automation functions.

Furthermore, a closed loop of dependencies can be identified between the acquisition of information, infor-
mation processing via automation functions, open and closed-loop control signals of the actuators and their ef-
fect on the technical process. The consideration of these closed loops in terms of potential feedbacks and oscilla-
tion of the system during software engineering is extremely important to accomplish a controllable behavior of
the system and to keep the steady state, i.e. operate the system in a safe way.

The definition and specification of new products involves information from different engineering phases [13],
e.g. development/construction, operation and maintenance, as well as several disciplines like mechanical engi-
neering, electrical engineering and software engineering. Changes in one discipline can affect other disciplines.
These challenges are aggravated by the different life cycles and change frequency of the differing disciplines
like mechanics (e.g. machine or housing), electrics/electronics (e.g. automation device or CPU) and information
technology including software engineering (see Figure 3).

B. Vogel-Heuser et al.

443

Automation device (AT)

Communication

Local operation Application functions

HW-management
– Timer
– Memory Flash Card
– Power supply

Running time I/O-linkage

Signal processing
Signal analysis
Parameter ization support
Text/language selection...

Web PC Mobile Field

Figure 2. Typical components of an automation platform.

lifecycle

Development and
construction

operation Commissioning of the
overall system

Commissioning after the
reengineering

Electrical / Electrotechnical Hardware

Software

Machine and Mechanical engineering
time t

10 – 30 years

3 – 5 years

6 – 12
month

Figure 3. Life cycles of the different disciplines involved in the plant and product automation accord-
ing to Li et al. [14] (different cycles in product automation).

These challenges, concerning the life-cycle-management, and the temporal dependencies in the life cycles

have to be kept in mind during software engineering in order to support evolvable software over long time peri-
ods, i.e. 10 - 15 years and to support online changes at runtime.

The special skill of automation engineers lies in their ability to connect and integrate methods from other sci-
entific disciplines to an integrative overall process for the development of industrial used technical systems.
Thereby, the specific challenges of controlling highly critical technical processes have to be considered already
in the engineering phase and appropriate and adjusted software engineering methods are necessary to deliver
high-quality results.

 Another essential basis of automation is the employment of models. Models are required for the conceptual
design, implementation, testing, optimization and diagnosis of automation systems. Research in automation em-
braces models of various scientific disciplines, e.g. from computer science, and adapts them according to the
needs of automation. However, designing software based on formal models is not yet common in the automation
industry, albeit much research has been done regarding the generation of PLC code from formal models [2].

For the design and realization (i.e. programming) of automation functions, diverse models and notations have
been developed over the past decades or have been transferred and adapted from other disciplines. For example,
Boolean algebra as well as automata theory were transferred from mathematics. From electrical engineering the
circuit plan (Ladder Diagram [15]) and the signal-oriented representation of function plans (Function Block

B. Vogel-Heuser et al.

444

Diagram [15]) were adopted. An overview of the requirements for PLC programming and an evaluation of some
notations has been developed by the “GMA”, the German national membership organization of “IFAC” [16]
(see overview extended by UML derivatives, Table A1 in Appendix). The required characteristics of the mod-
els on the one hand, and the tools on the other hand, hence, are crucial for automation software engineering.

The efforts to introduce automation in production processes as well as in processes of other application areas
have changed fundamentally over the last years. While in the beginning the focus was on the automation of
fixed, recurring activities, today’s attempts try to assemble flexible systems for varying tasks. Next to the instal-
lation of automated systems, the automation of already existing, however not yet automated or merely semi-
automated processes and activities is a major task of automation. For example, in case of errors in the produc-
tion system or the automation system, changes in the software have to be performed by craftsmen, i.e. electri-
cians during runtime; for instance, the setting of outputs and the bridging of sensor requests until a hardware de-
fect is repaired by replacing a device, in order to keep the plant's downtime at minimum. Thus, the software en-
gineering approaches need to be appropriate for craftsman, as well, or otherwise specific views and fault han-
dling levels for craftsmen need to be added.

3. Challenges in Automation Software Engineering
The conditions of using software in plant automation and the basic relations lead to challenges for the software,
the hardware, on which the software runs, and consequently the software engineering. These characteristics will
be explained in this chapter in detail.

3.1. Usability Challenges
During the systems’ development, utilization and maintenance various user groups are involved. This requires
software engineering to consider all different stakeholders and provide suitable integrated methods and proc-
esses. In detail, the following circumstances have to be considered:

Software engineering in automation contains several levels of software development: Generic basic modules
are created independent from the specific projects by computer scientists or engineers with strong software en-
gineering skills in nearly each company. These modules are then provided in a library for reuse. This group of
developers commonly use high level and object oriented languages and model driven approaches. During auto-
mation engineering, the existing basic software modules have to be connected by engineers to build the applica-
tion software. During the operation and maintenance, short-term changes have to be conducted mostly by cus-
tomer technicians and crafters at site [17].

For building applications, rather mechanical or electrical engineers are appointed. They use the generic basic
modules and combine them by adopting the languages of [15]: for continuous control engineering, Continuous
Function Charts (CFC) are often employed. For discrete control engineering, the Function Block Diagram (FBD)
is wide-spread in Europe, whereas in the Americas, mainly the assembler-like Instruction List (IL) and the cir-
cuit diagram-like Ladder Diagram (LD) are in use (compare Figure 4). For complex control functions, design-
ing the control code in MATLAB/Simulink is suitable, which has to be translated into IEC 61131-3 or C code
afterwards. The Pascal-like language Structured Text has an increasing influence nowadays as well as object-
oriented enhancements of IEC 61131-3. Due to several limitations of IEC 61131-3, the IEC 61499 standard,
which offers an extension to the IEC 61131-3 Function Block Diagram, has been defined to improve the devel-
opment of industrial systems. It is used by industrial groups as well as in the academic field and is classified as a
basis for the development of best practices in industrial engineering, albeit its effectiveness has been criticized
[7].

Traditionally, a function-oriented design approach was used in PLC programming, but due to some limita-
tions associated therewith, new approaches like object-oriented programming and aspect-oriented programming
have been developed. Depending on the chosen design approach, different challenges regarding the usability
have to be overcome [2].

3.2. Changeability during Runtime
Changes during runtime are especially necessary in the process industry, i.e. chemical, petro-chemical and
pharmaceutical industry. In the machine- and plant-manufacturing industry the sub-system test in the factory of

B. Vogel-Heuser et al.

445

Figure 4. Examples of a) Ladder Diagram (LD), b) Function Block Diagram (FBD), and c) Instruction List (IL) of the 5
programming languages. Three fans (L1 to L3) are monitored refereeing to their malfunction (Lx = false). In case that none
of the fans operates the signal no fan should be created and will be used for further failure handling.

the machine supplier is gaining more and more importance in order to reduce the commissioning and startup
time on the construction site. The startup consists of an input-/output-check as well as the actual startup of the
subsystems until the system integration test, which is completed through acceptance testing. As an essential
functionality during the startup, the control code has to be adapted to the actual situation of plant and process.
Regularly, the application engineer does not perform the startup himself (only in case of a prototype of a plant or
plant section). During the operation and maintenance phase, the monitoring of variables and the online manipu-
lation of the program, e.g. through forcing of variables, or the safe exchange of parts of the program and the safe
change of the allocation of variables in the program, have to be supported. Thereby, also a multi-user-mode is
necessary. For an efficient re-engineering or optimization of the plant, the capturing and analysis of already ex-
isting programs is essential. In order to control changes and manage different versions of a plant’s automation
software, a number of different approaches in software configuration management have been taken (refer to
Vyatkin [2] for a brief summary). The possibility of online-observation and -changes is a unique feature of a
PLC in comparison to Industrial PCs (IPCs) using high-level language programming. The final test of the soft-
ware of a plant is usually carried out on-site, to be able to include the boundary conditions, e.g. raw material,
and to verify all aspects of the function, e.g. humidity, which is relevant for many processes, or the raw material
for production.

3.3. Basic Automation Functions
There is a basic variety of automation functions, concerning measuring, open and closed-loop control. The
automated process control requires additional functions like e.g. monitoring, archiving, alarming, manipulating
and saving (for more details see Table A1 in Appendix).

In comparison to software systems in the automotive sector, in plant automation the operation modes consti-
tute another orthogonal requirement [18]. While these operation modes have no significance in regard to em-
bedded systems, as the embedding system, e.g. an automobile can in case of an occurring fault be stopped and
the embedded system can be shut down or fall into a safety mode. In plant automation the operating personnel
has to eliminate the source of the fault and bring the plant from manual mode or even after an emergency shut-
down back into automatic mode and resume the operation. This requires for the software that automation func-
tions and, therefore, most modules not only have to be operated in automatic mode but also in manual mode, if
necessary with other signals, other operation controls and reduced speed. This as well as error handling has to be
included in software engineering in automation [19]. Furthermore, a future challenge will be the appropriate
support for the operators in case of failures, i.e. a stepwise trouble shooting assistance.

Additional system aspects have to be considered in the design of automation software, e.g. the causal and
temporal associations, resulting from the automation-affected technical process and physical structure of the
technical system (through material and energy flows as well as information that impacts these flows), have to be
considered, in order to avoid undesirable side effects or even instabilities of the system. Also the characteristics
of those components of the technical system that are directly relevant for the execution of automation functions
(sensors, actuators, information processing devices, communication devices) have to be observed, for example
with regard to signal propagation time, processing speed, computing and storage capacity, security and reliabil-

B. Vogel-Heuser et al.

446

ity to name only some. Moreover, the automation functions have to be highly adaptable by configuration and
parameterization, in order to support reuse and achieve in this way the necessary economic quantity of the
automation components.

3.4. Specific Platforms and Their Constraints
The successful realization of automation mainly depends on how the existing, re-engineered and new plants,
machines and components can be transferred into a consolidated automation concept and automation architec-
ture. Therefore, a software solution has to be provided, which integrates these systems and ensures the interop-
erability [20] of the existing heterogeneous software and hardware landscape. Specifically, the following chal-
lenges have to be considered:

There is a big variety of existing microcontrollers and real time operating systems. Up to now, there is no
trend to standardization in this field of automation. Main reasons for that are the different functionalities em-
bedded in the devices, reaching from primitive binary sensors to highly complex drives and analysis-devices.
Thereby, the execution time of the function realization has to be observed according to the sampling theorem, as
automation functions often affect time-continuous systems. Within one device, synchronous and asynchronous
function executions are carried out in parallel and changes of the application functions during operation have to
be supported.

Usually, several automation devices, connected by industrial communication systems, implement jointly a
function within one cycle, e.g. a closed loop control. Thereby, deterministic industrial communication systems
have to be used and synchronization across devices has to be realized within a µs to ms range to fulfill the real
time requirements of automation systems.

The access to the automation functions during operation is conducted in parallel from different host-systems
with different constraints regarding timing and functions (e.g. control parameterization and service or diagnosis).
Thus, different Quality of Service (QoS) of the communication in the device, the concurrent access to the func-
tions from different hosts and the handling of various functionalities through operators with different authoriza-
tions and qualifications are necessary as well as maintaining consistency of the automation function parameteri-
zation.

Moreover, in certain application areas, very high numerical calculation accuracy (e.g. calculation of the flow
rate with 64-Bit floating-point numbers), the fulfillment of the functional safety, joint communication- and power-
lines for devices and very long time in use (10 years and longer) are common and necessary (see Figure 3).

Domain specific languages for the configuration, parameterization and programming of automation devices
are crucial for the operation in diverse application areas. In addition, the functional modularization and assign-
ment to hierarchical levels in order to ensure determinism during execution despite the complex interrelations
within very big systems (with more than 10.000 I/O-signals), is crucial. Furthermore, technologies to integrate
automation devices and thus, ensure interoperability of the cooperating functions and very long time in use of
the devices are of significant importance [21].

Because most automation systems consist of distributed controllers (see Figure 1, right side) and are con-
nected via communication networks in the design process the automation software need to be distributed to a
specific controller guaranteeing the required constraints regarding Quality of Service, e.g. real time requirements.
To support this complex task the FAVA approach has been developed [22]. Distributed automation systems are
also focused by Vyatkin [23].

3.5. Closed Loop Control and Real Time Behavior for a Safe and Secure Operation
Because the technical process in plant automation requires an open- or closed-loop control, further requirements
arise. Sensors give information about physical quantities of the technical process, which are gathered constantly
by the automation software and processed with the goal to manipulate those (and, if required, also other) physi-
cal quantities through the actuators. In this loop (Figure 5) process signals are transferred typically between the
automation device and the technical process via sensors, analogue-digital conversion, field bus systems and ac-
tuators loosing time and accuracy in each of the devices.

The described structure leads to some important extra functional requirements for automation software: the
real-time capability is essential, as the physical surrounding cannot wait like a human user. Safety is another
important criterion, since malfunctioning of the automated technical systems can cause enormous damages. A

B. Vogel-Heuser et al.

447

Technical
Process

Sensor

Measuring
Element

Actuator

Operating
Element

*

=I

=I

=I

Input/Output-module

Input/Output-module

A

D

A

D

Bus
Coupler

Bus
Coupler

Bus/
Network

Bus/
Network

Bus
coupler
(active,

bus
master)

CPU

Figure 5. Transmission of process signals between the automation device (CPU, e.g. PLC) and the technical process [24].

consequence of the described structure, which is often not realized directly, is the fundamental difference in the
way requirements for this kind of automation software have to be acquired in comparison to requirement acqui-
sition for “classical” software. In automation, the focus is not on the behavior of the intended software, but on
the behavior of the technical system and the technical process that is automated with software (Figure 1). This is
different from inclusion of the hardware, on which the software runs, as the behavior results from the dynamics
of the influenced technical system, technical process and its feedback with the automation system and its soft-
ware.

Most requirements, therefore, have to be acquired first for the entire system, from which the requirements for
the automation software can be derived. For example, the requirements for a velocity control system for vehicles
result from the quality criterion of the closed loop (e.g. maximum overshoot). The dynamics of the vehicle
(“How big is the inertia due to the mass and possible influence through the motor and the brakes?”) are in oppo-
sition to those requirements. Only the joint analysis of both aspects, for which often models of the system have
to be developed and analyzed, leads to the requirements for the software (e.g. that a PID control algorithm with
certain parameters should be used or that a certain response time has to be met).

3.6. Life-Cycle-Management
In plant automation, especially in plant manufacturing, it is crucial to keep the downtime, caused by software
changes, as low as possible or to completely avoid it. Thus, a requirement of automation is the ability to change
the software during runtime, meaning during the operation of the plant, and also to replace parts of the hardware,
e.g. sensors or actuators, during runtime as well as to ensure the compatibility of the software for respectively
long periods (Section 2).

As mentioned at the beginning, various components—hardware as well as software—act together in automa-
tion. Thereby, the life and innovation cycles of those components differ considerably. The time in use of a
manufacturing system is very dependent on the industry sector. Ensuring the faultless functionality of the inte-
grated components is a big challenge in plant automation, due to the shorter life cycles of the single components,
especially the software components. Furthermore, the systems are constantly enhanced regarding their function-
alities and price.

The generic life cycle model for automation, developed by [25] and currently in standardization by IEC, dif-
ferentiates between types and instances of products. Thereby, a type defines a product, which fulfills specific
requirements and is developed further through the integration of new functions or the introduction of new tech-
nologies. In this way, new versions with different characteristics are generated. Each manufactured unit of a
certain type defines an instance and can be identified through an unambiguous identifier (e.g. serial number).
Each instance of a product has a certain life time (Product Life Time), reaching from its creation to its disposal.
For software products, this means that different versions have to be used and maintained in parallel. For this
purpose, an accordingly powerful version management is required, which assigns unique version identifiers
based on defined rules. For the definition of such a version-terminology, the compatibility of the components
has to be taken into account. A compatibility model, based on [26], is included in [25]. The focus of all stake-
holders in the value chain on the life-cycle-management and the proactive consideration, beginning at the plan-
ning phase of a system, based on a common model, is essential to minimize the total cost of ownership (TCO).

3.7. Models in Automation
To support the engineering of automation systems, a multitude of kinds of models has been invented or derived

B. Vogel-Heuser et al.

448

from other scientific disciplines over the years. In general, the following partial models are required [27]:
1) Models of the system that shall be automated, describing its structure and behavior (dynamics);
2) Requirement model (concerning structural and dynamical, functional and extra functional requirements);
3) Models of existing automation (partial) solutions that should be used;
4) Procedural models for the engineering activities, i.e. the conception, definition and realization of automa-

tion systems;
5) Models of the overall automated system, including a verification in which way the requirements are satis-

fied;
The models interact as shown in Figure 6: Based on the models 1, 2 and 3 model 5 is developed through the

application of the model 4. These models can have different degrees of formalization: informal, semi-formal and
formal models are used [16]. The advantages of formal models, despite their analyzability, should always be set
in contrast to the considerable effort of creating them for real systems.

Originally, a system’s mechanical, electrical and software parts are modelled separately and combined at the
end of the modelling process. However, this approach is unfit to handle the complexity, dynamics and uncer-
tainty of today’s automation plants. In order to enable synergetic modeling of mechatronic systems, models such
as the SysML 3 + 1 view-model are in development. The SysML 3 + 1 view-model is an attempt to integrate
modeling tools of the involved disciplines developing mechatronic systems i.e., IEC 61499 for software models
and the Modelicamodelling language to represent a system’s mechanics (refer to Thramboulidisfor more details
[7]).

The models of category 1 (models of the system that shall be automated) and 2 (requirements) are provided
by stakeholders outside the automation and computer science domain and are usually highly informal. A for-
malization can, due to time pressure in projects, not be enforced. Besides the necessary effort made by some re-
searchers and safety critical or reliable systems Software Engineering for automation systems in general has to
cope with these informal information sources.

3.8. Application of Tools in Software Engineering
The development and analysis of models (see 3.7) require appropriate software tools. A significant aspect is the
coupling to the tools of mechanical and electrical engineering, as well as to the tools of preceding life cycle
phases and, due to the necessity of changes during operation, also of subsequent phases, i.e. operation and
maintenance. The model-driven engineering (MDE)-approaches, which are common in software engineering,
with code generation and changes exclusively in the model, cannot be realized in plant automation [28], because
on construction sites worldwide changes in the code on the target platform have to be performed quickly, a con-
sultation with a development department (in the worst case in New Zealand with a time difference of 12 hours)
or a waiting period are not acceptable. For brief description of several software design approaches including

Model of the system
to be automated

(construction and
behavior)

Model of the
requirements

(for the construction
and the dynamics,

functional and extra
functional)

Model of the
existing automation

solutions (partial
solutions)

(existent, available
functions)

Model of the engineering-
approach

(conception, configuration and
realization of automation

systems)

Model of the overall system
(including validation of the way

in which requirements were met)

Figure 6. Creation of an overall system model for the automation soft-
ware [27].

B. Vogel-Heuser et al.

449

areas such as architecture, methods, design strategies and evaluation notations, refer to [2].
According to the extra functional requirements from the domain discussed in the previous sections the fol-

lowing requirements for tools have to be emphasized:
The tools have to be available for a long period of time (reliability → availability, maintainability, portability)

and have to be tailored to the respective user groups (usability, functional suitability). They have to support a
modular planning- and development-process, as automation systems are a combination of pre-assembled (partial)
systems. Thus, the tools have to support library concepts of component types (maintainability → reusability) and
special configuration processes. Especially for the integrative and successful cooperation of all stakeholders the
interoperability [29] of the used software tools and the support of a variant- and version-management in terms of
a life-cycle-management is essential.

Numerous developments from the area of mainstream software engineering (such as service-orientation or
model-based engineering) have been adopted in the field of industrial automation. However, their relevance and
applicability in plant automation is limited and the implementation of standardization is necessary to enhance
their significance in industrial application [2].

Also refer to Vyatkin [2] for an overview of current software approaches including requirements engineering
as well as design strategies and construction issues.

4. Summary and Future Research Directions
This article gives an introduction to the essential challenges of software engineering and requirements that soft-
ware has to fulfill in the domain of automation. Thereby, the functional characteristics, specific constraints and
circumstances are considered for deriving requirements concerning usability, the technical process, the automa-
tion functions, used platform and the well-established models, which are described in detail. On the other hand,
challenges result from the circumstances at different points in the single phases of the life cycle of the automated
system. These requirements—namely requirements for life-cycle-management, tools and the changeability dur-
ing runtime—are described in detail.

Many approaches from general software engineering, like object orientation or MDE-approaches, have al-
ready been incorporated into plant automation. However, they reach their limits, if they are not adapted to the
specific requirements. Methods and modeling techniques from software engineering need to be studied and
evaluated based on the discussed criteria regarding their applicability or needed adaptation for the automation
domain. As one demonstrator for joined work, a simplified demonstrator has been developed providing many
engineering documents [30]. Especially, management of variants and versions is still an open issue as well as
interconnection and data exchange between models of software engineering in automation, mechanical engi-
neering and electrical engineering, taking into account the interdependencies of different models in the case of
change management. Work in this field is on the one hand focused on a German collaborative research area
(SFB 768 [31]) as well as on a priority program (SPP 1593 [32]) including both researchers from software engi-
neering and from automation.

References
[1] Göhner, P. (2013) Automation Technology I—Lecture Notes. Institute of Industrial Automation and Software Engi-

neering, University of Stuttgart, Stuttgart.
[2] Vyatkin, V. (2013) Software Engineering in Factory and Energy Automation: State of the Art Review. IEEE Transac-

tions on Industrial Informatics, 9, 1234-1249. http://dx.doi.org/10.1109/TII.2013.2258165
[3] Jooß, C., Vossen, R., Leisten, I. and Jeschke, S. (2012) Knowledge Engineering in Interdisciplinary Research Clusters.

Proceedings of IEEE International Conference on Industrial Engineering and Engineering Management (IEEM),
Hong Kong, 10-13 December 2012, 1845-1852.

[4] Jazdi, N., Maga, C. and Göhner, P. (2010) Improved Systematisation in Plant Engineering and Industrial Solutions Bu-
siness—Increased Efficiency through Domain Engineering (Mehr Systematikfür den Anlagenbau und das industrielle
Lösungsgeschäft—Gesteigerte Effizienzdurch Domain Engineering). Automation Technology (Automatisierungstech-
nik), 9, 524-532.

[5] Estévez, E., Marcos, M. and Orive, D. (2007) Automatic Generation of PLC Automation Projects from Component-
Based Models. The International Journal of Advanced Manufacturing Technology, 35, 527-540.
http://dx.doi.org/10.1007/s00170-007-1127-4

[6] Biffl, S., Schatten, A. and Zoitl, A. (2009) Integration of Heterogeneous Engineering Environments for the Automation

http://dx.doi.org/10.1109/TII.2013.2258165
http://dx.doi.org/10.1007/s00170-007-1127-4

B. Vogel-Heuser et al.

450

Systems Lifecycle. IEEE International Conference on Industrial Informatics, Cardiff, 23-26 June 2009, 576-581.
[7] Thramboulidis, K. (2010) The 3+ 1 SysML View-Model in Model Integrated Mechatronics. Journal of Software Engi-

neering and Applications, 3, 109-118.
[8] Vogel-Heuser, B., Braun, S., Kormann, B. and Friedrich, D. (2011) Implementation and Evaluation of UML as Mod-

eling Notation in Object Oriented Software Engineering for Machine and Plant Automation. Proceedings of the 18th
IFAC World Congress, 18, 9151-9157.

[9] International Electrotechnical Commission (2006) International Electrotechnical Vocabulary—Part 351: Control
Technology. IEC Standard IEC 60050-351.

[10] Lauber, R. and Göhner, P. (1999) Prozessautomatisierung 1. Springer, Berlin.
[11] Maga, C., Jazdi, N. and Göhner, P. (2011) Requirements on Engineering Tools for Increasing Reuse in Industrial

Automation. 16th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA’11),
Toulouse, 5-9 September 2011, 1-7.

[12] Yazdi, F., Vieritz, H., Jazdi, N., et al. (2011) A Concept for User-centered Development of Accessible User Interfaces
for Industrial Automation Systems and Web Applications. International Conference on Universal Access in Hu-
man-Computer Interaction (UAHCI), Orlando, 9-14 July 2011, 301-310.

[13] NAMUR (2003) Handling PCT Projects. NAMUR Worksheet NA 35.
[14] Li, F., Bayrak, G., Kernschmidt, K. and Vogel-Heuser, B. (2012) Specification of the Requirements to Support Infor-

mation Technology-Cycles in the Machine and Plant Manufacturing Industry. IFAC Symposium on Information Con-
trol Problems in Manufacturing (INCOM), Bukarest, 23-25 May 2012, 1077-1082.

[15] International Electrotechnical Commission (2009) Programmable Logic Controllers—Part 3: Programming Languages.
IEC Standard 61131-3.

[16] Verein Deutscher Ingenieuree (2005) Classification and Evaluation of Description Methods in Automation and Control
Technology. VDI/VDE Guideline 3681.

[17] Vogel-Heuser, B. (Ed.) (2009) Automation and Embedded Systems—Improvement of Efficiency in Engineering
(Automation and Embedded Systems—Effizienzsteigerungim Engineering). Kassel University Press, Kassel.

[18] International Electrotechnical Commission (2010) Function Blocks (FB) for Process Control—Part 3: Electronic De-
vice Description Language (EDDL). IEC Standard 61804-3.

[19] Feldmann, S., Fuchs, J. and Vogel-Heuser, B. (2012) Modularity, Variant and Version Management in Plant Automa-
tion—Future Challenges and State of the Art. International Design Conference (DESIGN), Dubrovnik, 21-24 May
2012, 1689-1698.

[20] Diedrich, C., Lüder, A. and Hundt, L. (2011) Importance of Interoperability within Engineering and Use of Automated
Production Systems (Bedeutung der Interoperabilitätbei Entwurf und Nutzungautomatisierter Produktionssysteme).
Automation Technology (Automatisierungstechnik), 59, 426-438.

[21] Diedrich, C. (2007) Integration Technologies of Field Devices in Distributed Control and Engineering Systems. In:
Zurawski, R., Ed., The Industrial Information Technology Handbook, CRC Press, Boca Raton, 11.1-11.24.

[22] Frank, T., Hadlich, T., Eckert, K., Diedrich, C., Fay, A. and Vogel-Heuser, B. (2012) Using Contact Points to Integrate
Discipline Spanning Real-Time Requirements in Modeling Networked Automation Systems for Manufacturing Sys-
tems. IEEE International Conference on Automation Science and Engineering (CASE), Seoul, 20-24 August 2012,
851-856. http://dx.doi.org/10.1109/CoASE.2012.6386422

[23] Vyatkin, V. (2011) IEC 61499 as Enabler of Distributed and Intelligent Automation: State of the Art Review. IEEE
Transactions on Industrial Informatics, 7, 768-781.

[24] Vogel-Heuser, B., Feldmann, S., Werner, T. and Diedrich, C. (2011) Modeling Network Architecture and Time Be-
havior of Distributed Control Systems in Industrial Plant Automation. Annual Conference of the IEEE Industrial Elec-
tronics Society (IECON), Melbourne, 7-10 November 2011, 2232-2237.

[25] Zentralverband Elektrotechnik-und Elektronikindustrie (2012) Life-Cycle-Management for Automation Products and
Systems. http://www.zvei.org/Verband/Publikationen/Seiten/Guideline-Life-Cycle.aspx

[26] International Electrotechnical Commission (2007) Obsolescence Management—Application Guide. IEC Standard
62402.

[27] Fay, A. (2011) The Role of Models in the Engineering of Automation Systems. Workshop on Model Integrated
Mechatronics, Saarbrücken.

[28] Vogel-Heuser, B., Braun, S. and Kormann, B. (2011) Implementation and Evaluation of UML as Modeling Notation in
Object Oriented Software Engineering for Machine and Plant Automation. IFAC World Congress, 18, 9151-9157.

[29] Barth, M., Drath, R., Fay, A., et al. (2012) Evaluation of the Openness of Automation Tools for Interoperability in En-

http://dx.doi.org/10.1109/CoASE.2012.6386422
http://www.zvei.org/Verband/Publikationen/Seiten/Guideline-Life-Cycle.aspx

B. Vogel-Heuser et al.

451

gineering Tool Chains. IEEE International Conference on Emerging Technologies and Factory Automation (ETFA),
Krakow, 17-21 September 2012, 1-8.

[30] Vogel-Heuser, B., Legat, C., Folmer, J. and Feldmann, S. (2014) Researching Evolution in Industrial Plant Automation:
Scenarios and Documentation of the Pick and Place Unit. Technical Report No.TUM-AIS-TR-01-14-02.
https://mediatum.ub.tum.de/node?id=1208973

[31] SFB 768 Managing Cycles in Innovation Processes. http://www.sfb768.tum.de/index.php?id=5&L=1
[32] DFG Priority Programme 1593. Design for Future—Managed Software Evolution. http://www.dfg-spp1593.de/

Appendix
Table A1. Aspects of automation functions (DE-domain expert).

 Hardware requirements Temporal
requirements

Description
medium

User
Human Machine

Interface
…

Measuring
Is bound on sensor/

transmitter, watchdog
timer

Sampling theorem Embedded system at
development

Plant operator
Operating staff

Service staff

Setting,
switching

Is bound on actuator,
watchdog timer Sampling theorem Embedded system at

development

Plant operator
Operating staff

Service staff

Regulating,
controlling

Not hardware bound,
watchdog timer Sampling theorem

Programmable by master,
technician, AT- or DE,

e.g. IEC 61131-3

Plant operator
Operating staff

Service staff

Archiving Not hardware bound With timestamp Such as IT systems
Plant operator
Operating staff

Service staff

Registering Not hardware bound With timestamp Such as IT systems
Plant operator
Operating staff

Service staff

Prompt Industrial capability In human dynamics
(1/2 ms)

Programmable by master,
technician, AT- or DE,

e.g. IEC 61131-3

Plant operator
Operating staff

Service staff

Manipulating Industrial capability In human dynamics
(1/2 ms)

Programmable by master,
technician, AT- or DE,

e.g. IEC 61131-3

Plant operator
Operating staff

Service staff

Saving Special requirements Sampling theorem Specialists, TÜV, IEC
61508

Plant operator
Operating staff

Service staff

https://mediatum.ub.tum.de/node?id=1208973
http://www.sfb768.tum.de/index.php?id=5&L=1
http://www.dfg-spp1593.de/

	Challenges for Software Engineering in Automation
	Abstract
	Keywords
	1. Software Engineering in Automation
	2. Basic Automation Principles and Resulting Constraints
	3. Challenges in Automation Software Engineering
	3.1. Usability Challenges
	3.2. Changeability during Runtime
	3.3. Basic Automation Functions
	3.4. Specific Platforms and Their Constraints
	3.5. Closed Loop Control and Real Time Behavior for a Safe and Secure Operation
	3.6. Life-Cycle-Management
	3.7. Models in Automation
	3.8. Application of Tools in Software Engineering

	4. Summary and Future Research Directions
	References
	Appendix

