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ABSTRACT 

In on-line role-playing games (RPG), each race holds some attributes and skills. Each skill contains several abilities 
such as physical damage, hit rate, etc. Parts of the attributes and all the abilities are a function of the character’s level, 
which are called Ability-Increasing Functions (AIFs). A well-balanced on-line RPG is characterized by having a set of 
well-balanced AIFs. In this paper, we propose an evolutionary design method, including integration with an improved 
Probabilistic Incremental Program Evolution (PIPE) and a Cooperative Coevolutionary Algorithm (CCEA), for on-line 
RPGs to maintain the game balance. Moreover, we construct a simplest turn-based game model and perform a series of 
experiments based on it. The results indicate that the proposed method is able to obtain a set of well-balanced AIFs effi-
ciently. They also show that in this case the CCEA outperforms the simple genetic algorithm, and that the capability of 
PIPE has been significantly improved through the improvement work. 
 
Keywords: Game Design; Game Balance; Cooperative Coevolutionary Algorithm; Probabilistic Incremental Program 

Evolution 

1. Introduction 

In recent years, on-line Role-playing games (RPGs) be-
come more and more popular all over the world. An 
on-line RPG is a multi-player virtual world which con-
sists of several distinct races. Unlike most of board 
games (such as Chess, Shogi, Go, etc.), which are sym-
metrical systems, while on-line RPGs are regarded as 
asymmetrical ones since each race has some unique ca-
pabilities. For example: wizard can perform spells, while 
knight specializes in close fighting. Before starting the 
game, players should first create one character belonging 
to a certain race, then play the game by both exploring 
the virtual world and fighting with others. 

To be enjoyable, the game must be balanced well [1]. 
In other words, for the individual player, it must be nei-
ther too easy nor too hard, and for players competing 
against each other, fairness is crucial. A game without 
balance is untidy and ugly, flaws are reflected in the ex-
perience of playing it. An unbalanced game is less satis-
fying. More seriously, from the designer’s viewpoint, not 
only time but also effort has been wasted. If parts of the 
game are not well-balanced, there will be a risk that some 
of them will be used rarely, if at all, in which case the 
time spent developing them has gone to waste. 

The concept of balance can be divided into two parts, 
balance of Player-versus-Environment (PvE) and balance 
of Player-versus-Player (PvP) [2]. In this paper, specifi-
cally, the term PvP refers to “1 versus 1” because it is the 
core of on-line RPG’s combat systems. Generally, bal-
ance of PvE mainly means the difficulty control of the 
game, while balance of PvP, existing only in asymmetri-
cal games, refers to the power balancing between races. 
When designing an on-line RPG, the power of a race will 
be represented by some attributes and a set of skills each 
of which consists of several abilities. All the abilities and 
parts of the attributes are a function of the character’s 
level, called the Ability-Increasing Functions (AIFs). So 
the main task of balancing PvP is to construct a set of 
AIFs by which there are no dominating strategies in the 
game world and each race should have the same prob-
ability to win unless designers have some special design 
purposes. 

Traditionally, game companies solve the balance prob-
lem by designer’s talent and human testing. In the case of 
single-player games and some multi-player games which 
do not allow players to fight with each other, called PvE 
games, such approach can handle the problem very well, 
even though it is expensive in both time and resources. 
The challenges of PvE games come from the environ-
ment rather than other players, so there is only one aim *Corresponding author. 
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of the tuning process, namely to satisfy the human side. 
That is why the traditional way succeeded. However, in 
the case of on-line RPG, the traditional method causes 
two problems. Firstly, since designers can not ensure the 
inexistence of dominating strategies, testers have to take 
a lot of time to play the games and even human testers 
can not explore all strategies. Secondly, once a dominat-
ing strategy is identified, all the AIFs need to be modi-
fied to make the game in balance, which is too compli-
cated for human testing to handle. For instance(refer to 
Figure 1), supposing there are three races (A, B, C) in 
the game world, designers may modify B’s AIFs to get a 
balanced relationship between A and B, then similarly 
modify C’s AIFs to get the balanced relationship be-
tween B and C. After that, the relationship between C 
and A becomes determinate because all the AIFs have 
already been constructed, which means that the last rela-
tionship is uncontrollable. This is a multi-objective opti-
mization problem which will become hard to solve with 
the number of races increasing. The number of uncon-
trollable relationships, denoted by NUR, can be calcu-
lated by the following formula:  

NUR 1
2

n
n

 
   
 

             (1) 

where n is the number of races.  
Leigh, et al. [3] have presented a solution for balanc-

ing a two-player, real-time action game called CaST. 
They use the competitive coevolutionary algorithm to 
search the dominating strategies and once found, tune the 
game rules and parameters. This solution highlights 
game imbalance as well as provides intuition towards 
balancing the game. It can be applied to on-line RPGs 
with some improvements. Alternatively, Olsen [4] has 
described the outline of an automated testing framework 
for on-line RPGs. In such framework, game designers 
firstly create all AIFs empirically. Then the in-game  

combat data, recorded in game log, is used to construct a 
set of decision-making models by which a set of complex 
AI systems can be built. Based on those AIs, combats are 
simulated to verify whether one race is superior to an-
other. If so, the AIFs will be continually tuned, until the 
game is in balance. Moreover, the decision-making mod-
els are refined periodically and after each refinement, the 
combat simulations as well as the tuning tasks should be 
redone (refer to Figure 2). This approach can be re-
garded as a kind of dynamic balance adjustment in which 
the dominating strategies are identified dynamically. 

However, in those two solutions, the AIFs still will be 
adjusted by hand-tuning which is inefficient and time- 
consuming. Moreover, since strengthening one race will 
definitely weaken the others, the result of tuning opera-
tions may, somehow, become worse. In this paper, we 
propose an evolutionary method for on-line RPGs to ob-
tain a set of well-balanced AIFs. The method includes 
integration with an improved Probabilistic Incremental 
Program Evolution (PIPE) and a Cooperative Coevolu-
tionary Algorithm (CCEA). 

The remainder of this paper is organized as follows. 
Section 2 presents a brief but necessary overview of ge-
netic algorithm and genetic programming. Section 3 ex-
plains the CCEA technology, followed by the details of 
PIPE in Section 4. Section 5 introduces the proposed  
 

 

Figure 1. There is one uncontrollable relationship in the 
game having three races. 

 

 

Figure 2. Working process of the automated testing framework. 
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design method as well as the simplest turn-based on-line 
RPG model. Section 6 demonstrates the experiments and 
their results. Conclusions and possible future research 
directions are placed in the last section. 

2. Genetic Algorithm and Genetic  
Programming 

Genetic Algorithm (GA) [5] is a probabilistic search al-
gorithm based on the mechanics of natural selection and 
natural genetics. It iteratively transforms a population of 
objects, usually a fixed-length binary string and each 
with an associated fitness value, into a new population of 
offspring objects by using three operators that are selec-
tion, crossover and mutation. 

The theoretical basis of GA, the schema theorem, for-
malized by Holland [5] and popularized by Goldberg [6]. 
A schema,  *11*0**H  , is a template for the 7- 
length individuals in which 2nd and 3rd locus are “1” 
while 5th locus is “0”. The asterisk “*” is the wild card 
symbol which matches either a “0” or a “1” at a particu-
lar position. Schema order, denoted by , is the 
number of non “*” genes in schema H. Moreover, 
schema defining length, denoted by 

 o H

 H , is the dis-
tance between first and last non “*” gene in schema H. 
The schema theorem is given as follow:  

Theorem 1. Given a simple GA with proportional 
selection, single point crossover and gene wise mutation. 
Then the expected number of schema H at generation 

 is,  1t 

       , 1 , 1
f H

E m H t m H t
f

       

where  

   0
1c m

H
p o H

l


   


p  

Here,  is the number of individuals matching 
schema H at generation t, 

 ,m H t
 f H  denotes the mean fit-

ness of individuals matching schema H, f  is the mean 
fitness of individuals in the population of generation t, pc 
and pm denote the crossover rate and the mutation rate, 
respectively. 

It means that short, low-order, above-average sche-
mata receive exponentially increasing trials in subse-
quent generations of a genetic algorithm. If we consider 
the algorithm without variational operators, then 0  . 

Genetic programming (GP) [7-9] is a specialization of 
GA in which each individual of the population is a 
tree-structured program. It is a machine learning tech-
nique used to automatically solve problems without re-
quiring the user to know or specify the form or structure 
of the solution in advance. At the most abstract level, GP 
is a systematic, domain-independent method for getting 
computers to solve problems automatically starting from 

a high-level statement of what needs to be done. 
Figure 3 shows the tree structure of the program: 

 cos sinx x y  , where  ,x y  is called the terminal 
set and  ,cos,sin,   is the function set. Such two sets 
together form the solutions of the target problem. While 
GA is usually concerned with modifying fixed-length 
strings, which associated with parameters of a function, 
GP is concerned with actually creating and manipulating 
the (non-fixed length) structure of the program (or func-
tion). Consequently, GP is a much more complex and 
difficult topic.  

3. Cooperative Coevolutionary Algorithm 

CCEAs [10,11] have been applied to solve large and 
complex problems, such as multiagent systems [12-14], 
rule learning [15,16], fuzzy modeling [17], and neural 
network training [18]. It models an ecosystem which 
consists of two or more species. Mating restrictions are 
enforced simply by evolving the species in separate 
populations which interact with one another within a 
shared domain model and have a cooperative relationship. 
The original architecture of the CCEA for optimization 
can be summarized as follows:  

1) Problem Decomposition: Decompose the target 
problem into smaller subcomponents and assign each of 
the subcomponents to a population.  

2) Subcomponents Interaction: Combine the individual 
of a particular population with representatives selected 
from others to form a complete solution, then evaluate 
the solution and attribute the score to the individual for 
fitness.  

3) Subcomponent Optimization: Evolve each popula-
tion separately by using a different evolutionary algo-
rithm, in turn.  

The empirical analyses have shown that the power of 
CCEAs depends on the decomposition work as well as 
separate evolving of these populations resulting in sig-
nificant speedups over simple GAs [19-21]. Here, we 
give the theoretical evidence of such results with the fol-
lowing two assumptions.  

1) The elitists of CCEA populations are chosen as the 
representatives.  

2) There are no variational operators in both the simple 
 

 

Figure 3. The tree structure of cos x + sin(x*y). 
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GA and CCEA.  
Let’s begin with some definitions.  
Definition 1. Given schemata: 1 2, , , nH H H , where 

iH  denotes a schema of the ith CCEA population, the 
n-expanded schema, denoted by 1

nH , is the sequential 
concatenation of the n schemata. For example, let 

 1H 1 0   ,  2 1 1H    , then  2
1 1 0 1H    1 .  

Definition 2. Let there be n populations in the CCEA. 
A complete genotype is the sequential concatenation of n 
individuals selected from n different populations. If all 
the individuals are representatives, then the complete 
genotype is the best one.  

Definition 3. Given an individual I of the ith CCEA 
population, the expanded genotype of I is the best com-
plete genotype in which the ith representative is replaced 
by I.  

Definition 4. Given a target problem f, the two algo-
rithms, simple GA and CCEA, are comparable if the 
population of the simple GA consists of all the expanded 
genotypes in the CCEA.   

Theorem 2. Let a target problem f be decomposed 
into n subcomponents, ri be the increasing rate of the 
individuals matching Hi in the ith CCEA population, 
rCCEA be the increasing rate of the complete genotypes 
matching 1

nH  in the CCEA, and rSGA be the increasing 
rate of the individuals matching 1

nH  in the simple GA. 
If the two algorithms are comparable, then,  

1)   SGA
=1

<
n

i
i

r r

2) ,    CCEA 1 2min , , ,
n

nr k r r r    1k 

Proof. Since the two algorithms are comparable, in the 
simple GA, the number of individuals matching 1

nH  at 
generation t can be calculated by:  

   1
1

, ,
n

n
i

i

m H t M H t


   

where  ,i M H t  denotes the number of individuals 
matching Hi at generation t, in the ith CCEA population. 
Then according to the schema theorem (refer to Theorem 
1), we have,  

   
 

 

 

1
1 1

1

1
1

,
, 1 ,

,

,

n

i
n n i

n

i

n
n

i
i

f H t
E m H t m H t

F i t

m H t r







    

 







 

where in the ith CCEA population,  ,if H t  and 

 ,F i t  denote the mean fitness of individuals matching 

Hi and the mean fitness of all individuals, at generation t, 

respectively. 
In the case of CCEA, because 1

nH  is the conjunction 
of Hi, the number of the complete genotypes matching 

1
nH  at generation t is given by:  

   1
1

, ,
n

n
i

i

M H t M H t


  

Again, according to the schema theorem, we obtain the 
following equation:  

   , 1 ,i iE M H t M H t r  i     

Then,  

   

 

    

1
1

1

1 1 2

, 1 , 1

,

, min , , ,

n
n

i
i

n

i i
i

nn
n

E M H t E M H t

M H t r

M H t k r r r





       

 

  







 

where 
 1 1 2

1
min , , ,

n
i

i n

r
k

r r r

  
.  

Hence, obviously, with the increasing of the  
 1min , , nr r , 1

nH  will receive a much higher in-
creasing rate in the CCEA.  

However, Theorem 2 does not mean that CCEAs is 
superior to simple GAs, which depends on the target 
problems. Actually, since the representatives are neces-
sary in calculating the fitness of the individual of an arbi-
trary population, the relationships between populations 
impose a great influence on the efficiency of CCEAs [22, 
23]. It has been proved that even with prefect informa-
tion, infinite population size and no variational operators, 
CCEAs can be expected to converge to suboptimal solu-
tion [23], while simple GAs does not suffer from such 
affliction [24-26]. However, Liviu [27] has emphasized 
that CCEAs will settle in the globally optimal solution 
with arbitrarily high probability, when properly set and if 
given enough resources. 

4. Probabilistic Incremental Program  
Evolution 

PIPE [28] is a technology for synthesizing programs. 
Unlike traditional GP, It creates population according to 
an adaptive probability distribution over all possible pro-
grams with respect to a predefined instruction set. In 
each generation, the distribution is refined by using the 
information learned from the best program or the best 
program found so far (elitist) to guide the evolutionary 
search [29]. It has been shown that PIPE achieved better 
results than traditional GP in solving function regression 
problem and 6-bit parity problem [28]. 

PIPE stores the probability distribution in the Prob-
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abilistic Prototype Tree (PPT), which is generally a com-
plete n-ary tree with infinitely many nodes, where n is 
the maximal number of function arguments. Each node 

jN  in a PPT consists of a value jR  which is randomly 
taken from a problem-dependent set of constants and a 
variable probability vector jP


 for instruction set, which 

is initialized as follows.  

 

 

, :

1
, :

T
j

T
j

P
P I I I T

l
P

P I I I F
l

  


  

          (2) 

where PT is a predefined, constant probability for select-
ing an instruction from T (the terminal set), l is the total 
number of terminals in T and k is the total number of 
functions in F (the function set). 

As we mentioned above, there are two kinds of learn-
ing mechanisms in the PIPE, generation-based learning 
(GBL) and elitist learning (EL). GBL is the main learn-
ing algorithm and the purpose of EL is to use the best 
program found so far as an attractor. The pseudo-code of 
PIPE follows:  

1) GBL.  
2) REPEAT.  
3) With probability  DO EL.  el

4) Otherwise DO GBL.  
P

5) UNTIL termination criterion is reached.  
where  is a user-defined constant in elP  0,1 . 

The process of GBL can be divided into five distinct 
phases:  

1) Creation of program population. A population of 
programs ROG j

P  ( 0 < ;  is population size) 

is generated using the PPT.  

<j PS PS

2) Population evaluation. Each program ROG j
P  of the 

current population is evaluated on the given task and 

assigned a fitness value  ROG j
FIT P

ROP

 according to the 

predefined fitness function. The best program of the 
current population is denoted by . The elitist is 

preserved in .  

Gb

ROGelP

3) Learning from population. Prototype tree probabili-

ties are modified such that the probability  of 

creating  increases. This procedure is called 

adapt_PPT_towards  which is implemented as 

follows. 

 ROGb
P P

ROGb
P

 ROGb
P 

First  is computed by looking at all PPT 

nodes 

 ROGb
P P

jN  used to generate :  ROGb
P

    
ROG

ROG ROG
: used to generatej b

j jb
j N P

P P P I P 

where  ROGb
P P  denotes the instruction of program 

 at node position j. ROGb
P

Then a target probability  for  is cal- 

culated:  
TARGETP ROGb

P

 

   
 


TARGET ROG

ROG
ROG

ROG

1

b

el

b

b

P P P

FIT P
P P lr

FIT P








   



   (4) 

where  is a constant learning rate and lr   is a posi- 
tive user-defined constant. Given , all single  TARGP ET

node probabilities   ROGbj jP I P  are increased itera- 

tively:  
a) REPEAT  

b)      ROG ROGb bj j j jP I P P I P  

   ROG1
b

lr
j jc lr P I P      

c) UNTIL  ROG TARGETb
P P P   

where  is a constant influencing the number of 
iterations.  

lrc

4) Mutation of prototype tree. All probabilities  jP I  
stored in nodes jN  that were accessed to generate pro- 
gram  are mutated with probability ROGb

P
pMP :  

ROG

p

b

M
M

P
P

z P



               (5) 

where the user-defined parameter PM denotes the overall 
mutation probability, z is the number of instructions in  

instruction set S and ROGb
P  denotes the number of 

nodes in program . Selected probability vector 

components are then mutated as follows:  
ROGb

P

    1j j jP I P I mr P I              (6) 

where mr is the mutation rate, another user-defined pa-

rameter. All mutated vectors jP


 are finally renormal-

ized:  

   
   

*
:j

j j

j
I S

P I
P I P I I S

P I


  


      (7) 

b
   (3) 

5) Prototype tree pruning. At the end of each genera-
tion the prototype tree is pruned. PPT subtrees attached 
to nodes that contain at least one probability vector 
component above a threshold Tp can be pruned. The 
pruning operation results in more concise population than 
traditional GP.  

In the EL, on the other hand, adapt_PPT_towards  
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  is modified to adapt_PPT_towards  ROGelP ,   ROGb
P

that is, PPT is adapted towards the elitist program with-
out creating and evaluating population. 

We notice that PIPE does not use the Elitist-Preserving 
Strategy (EPS) in which the individual with the highest 
fitness survives to be an individual of next generation. 
The EPS is a useful option by which, in some case, the 
performance of evolutionary algorithms can be improved 
[30-32]. In fact, there is a serious problem in applying it 
to PIPE, that is, if a low-quality elitist hasn’t been re-
placed for many generations, PPT will converge to the 
suboptimal solution. So, in order to enable the EPS op-
tion, an improvement has been made by adding a factor, 
named satisfied fitness value (FITc), into Formula (4). 
The improved one is given by:  

      
 

 

ROG
TARGET ROG ROG

ROG

ROG

1

exp

el

b b

b

bc

FIT P
P P P P P lr

FIT P

FIT FIT P

K






    



 
    
 

(8) 

where K is a positive user-defined constant which used to 
control the pressure of learning. It is important to note 
that once PIPE employs the EPS, the EL will no longer 
be necessary. 

5. Design Method 

With the assumption that all the dominating strategies 
have been identified, the task of balancing PvP is re-
duced to constructing a set of AIFs by which each race 
has the same probability to win. In order to solve this 
multi-objective optimization problem, we build a single 
aggregate objective function by weighted linear sum of 
the objectives, which means the relationships between 
the AIFs become cooperative. Therefore, we propose to 
use the CCEA to search the optimal solution, where each 
population is evolved by the improved PIPE. The 
pseudo-code of the proposed method follows:  

1) Create a (population, PPT) pair for each AIF.  
2) FOR population , all population.  ip P
3) Initialize .  i

4) Construct  by .  
PPT
pi iPPT

i5) Select representative  randomly.  repROG
P

6) .   rep
i

ROG
FIT P  

7) END FOR.  
8) REPEAT.  
9) FOR population , all population.  i

10) Evaluate individual of  with representatives 
from the others.  

p P
ip

11) IF    ROG ROGrepb

iFIT P FIT P .  

12) Replace  with .  
ROGrep
iP ROGb

P

13) END IF.  
14) Learn from 

bROGP  and refine .  iPPT

15) Reproduce  with EPS.  ip
16) END FOR.  
17) UNTIL the termination criteria are met.  
In an arbitrary group, the win probability of combatant 

1 is regarded as a discrete random variable all outcomes 
of which are equally likely. So, similar to the portfolio 
theory, we define the fitness function mainly by using the 
mean and variance of the win probability of the combat-
ant. The better individuals will return lower values in 
evaluation process. The function is given by:  

      
 

2

ROG 1
1

2 rule

m

g g g
g

FIT P w E P V P

w f S




     

 


     (9) 

where  denotes the number of “1 versus 1” 

groups, n is the number of races, 

2

n
m

 
  
 

 1 , ,g g l g LgP p p p   ,  

a random variable, is the win probability of combatant 1 
of group g, plg is it’s value at level l, and L is the maxi-
mum level.  0,1g  , called balance factor, is a user- 
defined constant,   0f S rule  denotes how good the 
complete solution S conforms to the designed rules. 

In order to test the proposed method, we construct a 
simplest turn-based on-line RPG model as the platform 
for experiments. The contents of design are listed as fol-
lows:  

1) There are three distinct races (R1, R2, R3) in the 
game world with the maximum level of L.  

2) Each race has only one skill and two attributes 
which are health and dodge rate.  

3) Each skill includes only one ability, the physical 
damage.  

so, plg can be calculated by the following formula ap-
proximately.  
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1) population size = 100, the number of populations = 

6. 
The Simple GA:  
1) population size = 600.  Here, we suppose that combat ends within T rounds, 

 denotes the probability that combatant 1 launch 
the lethal attack at round i,  is the probability 
that combatant 2 hasn’t launched the lethal attack before 
round i + 1, Dk, LTk, hk, dk refer to the dodge rate, life-
time, health value and damage value of combatant k, re-
spectively, where . 

 l ip F
 l ip F 

 1,2k 

Considering the stochastic nature of evolutionary al-
gorithms, each of the algorithms is repeated 100 times. 
Figure 4 depicts a set of AIFs corresponding to the 
smallest fitness obtained by CCEA_I. It is important to 
note that all the designed rules are well obeyed. To verify 
whether the AIFs are well-balanced, according to For-
mula 10, we calculate plg and show the mean and vari-
ance of Pg in Table 1, which indicates that  gE P  is 
close to 0.5 and  gV P  is close to 0, for  1,2,3 g . 
Hence, the AIFs can be accepted as well-balanced. 

6. Experiments and Results 

In this section, we conduct the comparison of the pro-
posed algorithm, denoted by CCEA_I, with the proposed 
algorithm using original PIPE instead of the improved 
one, denoted by CCEA_O, and the proposed algorithm 
using the simple GA instead of the CCEA, denoted by 
SGA_I. The environments are set as follows. 

We compare the algorithms both in terms of final 
best-ever fitness and computation time. The comparison 
results are plotted in Figure 5. In this case, it is obvious 
that both CCEA_I and CCEA_O are superior to SGA_I. 
By counting the number of executions in which the final 
best-ever fitness is larger than 10, we obtain 6 for 
CCEA_I while 26 for CCEA_O. Moreover, the average 
computation time of 100 executions is 35.6991 for 
CCEA_I, whereas the value is 56.2348 with respect to 
CCEA_O. Hence, in case that PIPE employs the EPS, the 
capability of PIPE has been improved significantly by 
the improvement work. 

The Game Model:  
1) The maximum level: 10L  .  
2) The dodge rate: , , 1 0.2RD  2 0.6RD  3 0.1RD  .  
3) Rules of health value:      h l1 2 3R R R

   
h l h l  .  

 3 1 2R R R ld l d l d  .  4) Rules of damage value: 
5) All the AIFs must be monotone increasing and 

, .    20kLT l   1,2k 
The Fitness Function: [(1)]  
1) Balance factor: 1 2 3 0.5    

20 30T 
.  7. Conclusion and Future Work 

2) , , .  1 2

The Improved and Original PIPE: [(1)]  
10w  w 

This paper presented an evolutionary design method 
which contains integration with a CCEA and an im-
proved PIPE for solving the balance problem of on-line 
RPGs. We demonstrated the theoretical evidence of why 
CCEAs, in some case, is faster than simple GAs, and in 
order to enable the EPS option, we improved the learning 
mechanism of PIPE. Through a series of experiments, we 
have shown that the proposed method is the most effi-
cient way to obtain a set of well-balanced AIFs for the  

1) Function and terminal sets have been used:  
 and ,  , , ,sin,cos,expF      ,T R l  0,50R  

denotes the generic random constant.  
2) The termination criteria: maximal generation = 300 

and .  0.075cFIT 
 lr3) , , 0.01lr 0.1c  0.4MP  , ,  

, .  
0.3mr 

0.999999PT  2K 
The CCEA:  

 

 

Figure 4. The best AIFs obtained by the proposed algorithm. 
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Figure 5. Performance comparison of the three algorithms in terms of final best-ever fitness as well as computation time with 
100 executions. 
 

Table 1. Verification data. 

Group g = 1 (A vs B) g = 2 (B vs C) g = 3 (C vs A)

 gE P  0.4803 0.4734 0.532 

 gV P  0.0115 0.0233 0.0323 

 
target game model. 

The game model presented above is a turn-based game 
in which each race has only one skill with only one abil-
ity. While this may seem an extreme simplification, it 
should be noted that the original intent of this work was 
to lay a foundation of study, and that foundation would 
begin with simpler systems for which behavioral under-
standing is more tractable. In future works, we will con-
struct an action-based game model, which is much more 
complicated than the turn-based one. In such game model, 
since there are no formulas for calculating the win prob-
ability, we have to use the Monte Carlo method which 
costs too much for evolutionary algorithms. Therefore, 
we plan to model the combat using the discrete competi-
tive Markov decision process by which the win probabil-
ity can be obtained quickly. 
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