
Journal of Software Engineering and Applications, 2012, 5, 574-582
http://dx.doi.org/10.4236/jsea.2012.58066 Published Online August 2012 (http://www.SciRP.org/journal/jsea)

Solving the Balance Problem of On-Line Role-Playing
Games Using Evolutionary Algorithms

Haoyang Chen*, Yasukuni Mori, Ikuo Matsuba

Advanced Integration Science, Graduate School of Chiba University, Chiba, Japan.
Email: *chenhaoyang@graduate.chiba-u.jp, yasukuni@faculty.chiba-u.jp, matsuba@faculty.chiba-u.jp

Received May 6th, 2012; revised June 14th, 2012; accepted June 22nd, 2012

ABSTRACT

In on-line role-playing games (RPG), each race holds some attributes and skills. Each skill contains several abilities
such as physical damage, hit rate, etc. Parts of the attributes and all the abilities are a function of the character’s level,
which are called Ability-Increasing Functions (AIFs). A well-balanced on-line RPG is characterized by having a set of
well-balanced AIFs. In this paper, we propose an evolutionary design method, including integration with an improved
Probabilistic Incremental Program Evolution (PIPE) and a Cooperative Coevolutionary Algorithm (CCEA), for on-line
RPGs to maintain the game balance. Moreover, we construct a simplest turn-based game model and perform a series of
experiments based on it. The results indicate that the proposed method is able to obtain a set of well-balanced AIFs effi-
ciently. They also show that in this case the CCEA outperforms the simple genetic algorithm, and that the capability of
PIPE has been significantly improved through the improvement work.

Keywords: Game Design; Game Balance; Cooperative Coevolutionary Algorithm; Probabilistic Incremental Program

Evolution

1. Introduction

In recent years, on-line Role-playing games (RPGs) be-
come more and more popular all over the world. An
on-line RPG is a multi-player virtual world which con-
sists of several distinct races. Unlike most of board
games (such as Chess, Shogi, Go, etc.), which are sym-
metrical systems, while on-line RPGs are regarded as
asymmetrical ones since each race has some unique ca-
pabilities. For example: wizard can perform spells, while
knight specializes in close fighting. Before starting the
game, players should first create one character belonging
to a certain race, then play the game by both exploring
the virtual world and fighting with others.

To be enjoyable, the game must be balanced well [1].
In other words, for the individual player, it must be nei-
ther too easy nor too hard, and for players competing
against each other, fairness is crucial. A game without
balance is untidy and ugly, flaws are reflected in the ex-
perience of playing it. An unbalanced game is less satis-
fying. More seriously, from the designer’s viewpoint, not
only time but also effort has been wasted. If parts of the
game are not well-balanced, there will be a risk that some
of them will be used rarely, if at all, in which case the
time spent developing them has gone to waste.

The concept of balance can be divided into two parts,
balance of Player-versus-Environment (PvE) and balance
of Player-versus-Player (PvP) [2]. In this paper, specifi-
cally, the term PvP refers to “1 versus 1” because it is the
core of on-line RPG’s combat systems. Generally, bal-
ance of PvE mainly means the difficulty control of the
game, while balance of PvP, existing only in asymmetri-
cal games, refers to the power balancing between races.
When designing an on-line RPG, the power of a race will
be represented by some attributes and a set of skills each
of which consists of several abilities. All the abilities and
parts of the attributes are a function of the character’s
level, called the Ability-Increasing Functions (AIFs). So
the main task of balancing PvP is to construct a set of
AIFs by which there are no dominating strategies in the
game world and each race should have the same prob-
ability to win unless designers have some special design
purposes.

Traditionally, game companies solve the balance prob-
lem by designer’s talent and human testing. In the case of
single-player games and some multi-player games which
do not allow players to fight with each other, called PvE
games, such approach can handle the problem very well,
even though it is expensive in both time and resources.
The challenges of PvE games come from the environ-
ment rather than other players, so there is only one aim *Corresponding author.

Copyright © 2012 SciRes. JSEA

Solving the Balance Problem of On-Line Role-Playing Games Using Evolutionary Algorithms 575

of the tuning process, namely to satisfy the human side.
That is why the traditional way succeeded. However, in
the case of on-line RPG, the traditional method causes
two problems. Firstly, since designers can not ensure the
inexistence of dominating strategies, testers have to take
a lot of time to play the games and even human testers
can not explore all strategies. Secondly, once a dominat-
ing strategy is identified, all the AIFs need to be modi-
fied to make the game in balance, which is too compli-
cated for human testing to handle. For instance(refer to
Figure 1), supposing there are three races (A, B, C) in
the game world, designers may modify B’s AIFs to get a
balanced relationship between A and B, then similarly
modify C’s AIFs to get the balanced relationship be-
tween B and C. After that, the relationship between C
and A becomes determinate because all the AIFs have
already been constructed, which means that the last rela-
tionship is uncontrollable. This is a multi-objective opti-
mization problem which will become hard to solve with
the number of races increasing. The number of uncon-
trollable relationships, denoted by NUR, can be calcu-
lated by the following formula:

NUR 1
2

n
n

 
   
 

 (1)

where n is the number of races.
Leigh, et al. [3] have presented a solution for balanc-

ing a two-player, real-time action game called CaST.
They use the competitive coevolutionary algorithm to
search the dominating strategies and once found, tune the
game rules and parameters. This solution highlights
game imbalance as well as provides intuition towards
balancing the game. It can be applied to on-line RPGs
with some improvements. Alternatively, Olsen [4] has
described the outline of an automated testing framework
for on-line RPGs. In such framework, game designers
firstly create all AIFs empirically. Then the in-game

combat data, recorded in game log, is used to construct a
set of decision-making models by which a set of complex
AI systems can be built. Based on those AIs, combats are
simulated to verify whether one race is superior to an-
other. If so, the AIFs will be continually tuned, until the
game is in balance. Moreover, the decision-making mod-
els are refined periodically and after each refinement, the
combat simulations as well as the tuning tasks should be
redone (refer to Figure 2). This approach can be re-
garded as a kind of dynamic balance adjustment in which
the dominating strategies are identified dynamically.

However, in those two solutions, the AIFs still will be
adjusted by hand-tuning which is inefficient and time-
consuming. Moreover, since strengthening one race will
definitely weaken the others, the result of tuning opera-
tions may, somehow, become worse. In this paper, we
propose an evolutionary method for on-line RPGs to ob-
tain a set of well-balanced AIFs. The method includes
integration with an improved Probabilistic Incremental
Program Evolution (PIPE) and a Cooperative Coevolu-
tionary Algorithm (CCEA).

The remainder of this paper is organized as follows.
Section 2 presents a brief but necessary overview of ge-
netic algorithm and genetic programming. Section 3 ex-
plains the CCEA technology, followed by the details of
PIPE in Section 4. Section 5 introduces the proposed

Figure 1. There is one uncontrollable relationship in the
game having three races.

Figure 2. Working process of the automated testing framework.

Copyright © 2012 SciRes. JSEA

Solving the Balance Problem of On-Line Role-Playing Games Using Evolutionary Algorithms 576

design method as well as the simplest turn-based on-line
RPG model. Section 6 demonstrates the experiments and
their results. Conclusions and possible future research
directions are placed in the last section.

2. Genetic Algorithm and Genetic
Programming

Genetic Algorithm (GA) [5] is a probabilistic search al-
gorithm based on the mechanics of natural selection and
natural genetics. It iteratively transforms a population of
objects, usually a fixed-length binary string and each
with an associated fitness value, into a new population of
offspring objects by using three operators that are selec-
tion, crossover and mutation.

The theoretical basis of GA, the schema theorem, for-
malized by Holland [5] and popularized by Goldberg [6].
A schema,  *11*0**H  , is a template for the 7-
length individuals in which 2nd and 3rd locus are “1”
while 5th locus is “0”. The asterisk “*” is the wild card
symbol which matches either a “0” or a “1” at a particu-
lar position. Schema order, denoted by , is the
number of non “*” genes in schema H. Moreover,
schema defining length, denoted by

 o H

 H , is the dis-
tance between first and last non “*” gene in schema H.
The schema theorem is given as follow:

Theorem 1. Given a simple GA with proportional
selection, single point crossover and gene wise mutation.
Then the expected number of schema H at generation

 is, 1t 

       , 1 , 1
f H

E m H t m H t
f

     

where

   0
1c m

H
p o H

l


   


p

Here, is the number of individuals matching
schema H at generation t,

 ,m H t
 f H denotes the mean fit-

ness of individuals matching schema H, f is the mean
fitness of individuals in the population of generation t, pc
and pm denote the crossover rate and the mutation rate,
respectively.

It means that short, low-order, above-average sche-
mata receive exponentially increasing trials in subse-
quent generations of a genetic algorithm. If we consider
the algorithm without variational operators, then 0  .

Genetic programming (GP) [7-9] is a specialization of
GA in which each individual of the population is a
tree-structured program. It is a machine learning tech-
nique used to automatically solve problems without re-
quiring the user to know or specify the form or structure
of the solution in advance. At the most abstract level, GP
is a systematic, domain-independent method for getting
computers to solve problems automatically starting from

a high-level statement of what needs to be done.
Figure 3 shows the tree structure of the program:

 cos sinx x y  , where  ,x y is called the terminal
set and  ,cos,sin,  is the function set. Such two sets
together form the solutions of the target problem. While
GA is usually concerned with modifying fixed-length
strings, which associated with parameters of a function,
GP is concerned with actually creating and manipulating
the (non-fixed length) structure of the program (or func-
tion). Consequently, GP is a much more complex and
difficult topic.

3. Cooperative Coevolutionary Algorithm

CCEAs [10,11] have been applied to solve large and
complex problems, such as multiagent systems [12-14],
rule learning [15,16], fuzzy modeling [17], and neural
network training [18]. It models an ecosystem which
consists of two or more species. Mating restrictions are
enforced simply by evolving the species in separate
populations which interact with one another within a
shared domain model and have a cooperative relationship.
The original architecture of the CCEA for optimization
can be summarized as follows:

1) Problem Decomposition: Decompose the target
problem into smaller subcomponents and assign each of
the subcomponents to a population.

2) Subcomponents Interaction: Combine the individual
of a particular population with representatives selected
from others to form a complete solution, then evaluate
the solution and attribute the score to the individual for
fitness.

3) Subcomponent Optimization: Evolve each popula-
tion separately by using a different evolutionary algo-
rithm, in turn.

The empirical analyses have shown that the power of
CCEAs depends on the decomposition work as well as
separate evolving of these populations resulting in sig-
nificant speedups over simple GAs [19-21]. Here, we
give the theoretical evidence of such results with the fol-
lowing two assumptions.

1) The elitists of CCEA populations are chosen as the
representatives.

2) There are no variational operators in both the simple

Figure 3. The tree structure of cos x + sin(x*y).

Copyright © 2012 SciRes. JSEA

Solving the Balance Problem of On-Line Role-Playing Games Using Evolutionary Algorithms 577

GA and CCEA.
Let’s begin with some definitions.
Definition 1. Given schemata: 1 2, , , nH H H , where

iH denotes a schema of the ith CCEA population, the
n-expanded schema, denoted by 1

nH , is the sequential
concatenation of the n schemata. For example, let

 1H 1 0   ,  2 1 1H    , then  2
1 1 0 1H    1 .

Definition 2. Let there be n populations in the CCEA.
A complete genotype is the sequential concatenation of n
individuals selected from n different populations. If all
the individuals are representatives, then the complete
genotype is the best one.

Definition 3. Given an individual I of the ith CCEA
population, the expanded genotype of I is the best com-
plete genotype in which the ith representative is replaced
by I.

Definition 4. Given a target problem f, the two algo-
rithms, simple GA and CCEA, are comparable if the
population of the simple GA consists of all the expanded
genotypes in the CCEA.

Theorem 2. Let a target problem f be decomposed
into n subcomponents, ri be the increasing rate of the
individuals matching Hi in the ith CCEA population,
rCCEA be the increasing rate of the complete genotypes
matching 1

nH in the CCEA, and rSGA be the increasing
rate of the individuals matching 1

nH in the simple GA.
If the two algorithms are comparable, then,

1) SGA
=1

<
n

i
i

r r

2) ,  CCEA 1 2min , , ,
n

nr k r r r    1k 

Proof. Since the two algorithms are comparable, in the
simple GA, the number of individuals matching 1

nH at
generation t can be calculated by:

   1
1

, ,
n

n
i

i

m H t M H t


 

where  ,i M H t denotes the number of individuals
matching Hi at generation t, in the ith CCEA population.
Then according to the schema theorem (refer to Theorem
1), we have,

   
 

 

 

1
1 1

1

1
1

,
, 1 ,

,

,

n

i
n n i

n

i

n
n

i
i

f H t
E m H t m H t

F i t

m H t r







    

 







where in the ith CCEA population,  ,if H t and

 ,F i t denote the mean fitness of individuals matching

Hi and the mean fitness of all individuals, at generation t,

respectively.
In the case of CCEA, because 1

nH is the conjunction
of Hi, the number of the complete genotypes matching

1
nH at generation t is given by:

   1
1

, ,
n

n
i

i

M H t M H t




Again, according to the schema theorem, we obtain the
following equation:

   , 1 ,i iE M H t M H t r  i   

Then,

   

 

    

1
1

1

1 1 2

, 1 , 1

,

, min , , ,

n
n

i
i

n

i i
i

nn
n

E M H t E M H t

M H t r

M H t k r r r





       

 

  







where
 1 1 2

1
min , , ,

n
i

i n

r
k

r r r

  
.

Hence, obviously, with the increasing of the
 1min , , nr r , 1

nH will receive a much higher in-
creasing rate in the CCEA.

However, Theorem 2 does not mean that CCEAs is
superior to simple GAs, which depends on the target
problems. Actually, since the representatives are neces-
sary in calculating the fitness of the individual of an arbi-
trary population, the relationships between populations
impose a great influence on the efficiency of CCEAs [22,
23]. It has been proved that even with prefect informa-
tion, infinite population size and no variational operators,
CCEAs can be expected to converge to suboptimal solu-
tion [23], while simple GAs does not suffer from such
affliction [24-26]. However, Liviu [27] has emphasized
that CCEAs will settle in the globally optimal solution
with arbitrarily high probability, when properly set and if
given enough resources.

4. Probabilistic Incremental Program
Evolution

PIPE [28] is a technology for synthesizing programs.
Unlike traditional GP, It creates population according to
an adaptive probability distribution over all possible pro-
grams with respect to a predefined instruction set. In
each generation, the distribution is refined by using the
information learned from the best program or the best
program found so far (elitist) to guide the evolutionary
search [29]. It has been shown that PIPE achieved better
results than traditional GP in solving function regression
problem and 6-bit parity problem [28].

PIPE stores the probability distribution in the Prob-

Copyright © 2012 SciRes. JSEA

Solving the Balance Problem of On-Line Role-Playing Games Using Evolutionary Algorithms 578

abilistic Prototype Tree (PPT), which is generally a com-
plete n-ary tree with infinitely many nodes, where n is
the maximal number of function arguments. Each node

jN in a PPT consists of a value jR which is randomly
taken from a problem-dependent set of constants and a
variable probability vector jP


 for instruction set, which

is initialized as follows.

 

 

, :

1
, :

T
j

T
j

P
P I I I T

l
P

P I I I F
l

  


  

 (2)

where PT is a predefined, constant probability for select-
ing an instruction from T (the terminal set), l is the total
number of terminals in T and k is the total number of
functions in F (the function set).

As we mentioned above, there are two kinds of learn-
ing mechanisms in the PIPE, generation-based learning
(GBL) and elitist learning (EL). GBL is the main learn-
ing algorithm and the purpose of EL is to use the best
program found so far as an attractor. The pseudo-code of
PIPE follows:

1) GBL.
2) REPEAT.
3) With probability DO EL. el

4) Otherwise DO GBL.
P

5) UNTIL termination criterion is reached.
where is a user-defined constant in elP  0,1 .

The process of GBL can be divided into five distinct
phases:

1) Creation of program population. A population of
programs ROG j

P (0 < ; is population size)

is generated using the PPT.

<j PS PS

2) Population evaluation. Each program ROG j
P of the

current population is evaluated on the given task and

assigned a fitness value  ROG j
FIT P

ROP

 according to the

predefined fitness function. The best program of the
current population is denoted by . The elitist is

preserved in .

Gb

ROGelP

3) Learning from population. Prototype tree probabili-

ties are modified such that the probability of

creating increases. This procedure is called

adapt_PPT_towards which is implemented as

follows.

 ROGb
P P

ROGb
P

 ROGb
P 

First is computed by looking at all PPT

nodes

 ROGb
P P

jN used to generate : ROGb
P

    
ROG

ROG ROG
: used to generatej b

j jb
j N P

P P P I P 

where  ROGb
P P denotes the instruction of program

 at node position j. ROGb
P

Then a target probability for is cal-

culated:
TARGETP ROGb

P

 

   
 


TARGET ROG

ROG
ROG

ROG

1

b

el

b

b

P P P

FIT P
P P lr

FIT P








   



 (4)

where is a constant learning rate and lr  is a posi-
tive user-defined constant. Given , all single TARGP ET

node probabilities   ROGbj jP I P are increased itera-

tively:
a) REPEAT

b)      ROG ROGb bj j j jP I P P I P

   ROG1
b

lr
j jc lr P I P   

c) UNTIL  ROG TARGETb
P P P

where is a constant influencing the number of
iterations.

lrc

4) Mutation of prototype tree. All probabilities  jP I
stored in nodes jN that were accessed to generate pro-
gram are mutated with probability ROGb

P
pMP :

ROG

p

b

M
M

P
P

z P



 (5)

where the user-defined parameter PM denotes the overall
mutation probability, z is the number of instructions in

instruction set S and ROGb
P denotes the number of

nodes in program . Selected probability vector

components are then mutated as follows:
ROGb

P

    1j j jP I P I mr P I      (6)

where mr is the mutation rate, another user-defined pa-

rameter. All mutated vectors jP


 are finally renormal-

ized:

   
   

*
:j

j j

j
I S

P I
P I P I I S

P I


  


 (7)

b
 (3)

5) Prototype tree pruning. At the end of each genera-
tion the prototype tree is pruned. PPT subtrees attached
to nodes that contain at least one probability vector
component above a threshold Tp can be pruned. The
pruning operation results in more concise population than
traditional GP.

In the EL, on the other hand, adapt_PPT_towards

Copyright © 2012 SciRes. JSEA

Solving the Balance Problem of On-Line Role-Playing Games Using Evolutionary Algorithms 579

 is modified to adapt_PPT_towards  ROGelP ,  ROGb
P

that is, PPT is adapted towards the elitist program with-
out creating and evaluating population.

We notice that PIPE does not use the Elitist-Preserving
Strategy (EPS) in which the individual with the highest
fitness survives to be an individual of next generation.
The EPS is a useful option by which, in some case, the
performance of evolutionary algorithms can be improved
[30-32]. In fact, there is a serious problem in applying it
to PIPE, that is, if a low-quality elitist hasn’t been re-
placed for many generations, PPT will converge to the
suboptimal solution. So, in order to enable the EPS op-
tion, an improvement has been made by adding a factor,
named satisfied fitness value (FITc), into Formula (4).
The improved one is given by:

      
 

 

ROG
TARGET ROG ROG

ROG

ROG

1

exp

el

b b

b

bc

FIT P
P P P P P lr

FIT P

FIT FIT P

K






    



 
    
 

(8)

where K is a positive user-defined constant which used to
control the pressure of learning. It is important to note
that once PIPE employs the EPS, the EL will no longer
be necessary.

5. Design Method

With the assumption that all the dominating strategies
have been identified, the task of balancing PvP is re-
duced to constructing a set of AIFs by which each race
has the same probability to win. In order to solve this
multi-objective optimization problem, we build a single
aggregate objective function by weighted linear sum of
the objectives, which means the relationships between
the AIFs become cooperative. Therefore, we propose to
use the CCEA to search the optimal solution, where each
population is evolved by the improved PIPE. The
pseudo-code of the proposed method follows:

1) Create a (population, PPT) pair for each AIF.
2) FOR population , all population. ip P
3) Initialize . i

4) Construct by .
PPT
pi iPPT

i5) Select representative randomly. repROG
P

6) .  rep
i

ROG
FIT P  

7) END FOR.
8) REPEAT.
9) FOR population , all population. i

10) Evaluate individual of with representatives
from the others.

p P
ip

11) IF    ROG ROGrepb

iFIT P FIT P .

12) Replace with .
ROGrep
iP ROGb

P

13) END IF.
14) Learn from

bROGP and refine . iPPT

15) Reproduce with EPS. ip
16) END FOR.
17) UNTIL the termination criteria are met.
In an arbitrary group, the win probability of combatant

1 is regarded as a discrete random variable all outcomes
of which are equally likely. So, similar to the portfolio
theory, we define the fitness function mainly by using the
mean and variance of the win probability of the combat-
ant. The better individuals will return lower values in
evaluation process. The function is given by:

      
 

2

ROG 1
1

2 rule

m

g g g
g

FIT P w E P V P

w f S




     

 


 (9)

where denotes the number of “1 versus 1”

groups, n is the number of races,

2

n
m

 
  
 

 1 , ,g g l g LgP p p p   ,

a random variable, is the win probability of combatant 1
of group g, plg is it’s value at level l, and L is the maxi-
mum level.  0,1g  , called balance factor, is a user-
defined constant,   0f S rule denotes how good the
complete solution S conforms to the designed rules.

In order to test the proposed method, we construct a
simplest turn-based on-line RPG model as the platform
for experiments. The contents of design are listed as fol-
lows:

1) There are three distinct races (R1, R2, R3) in the
game world with the maximum level of L.

2) Each race has only one skill and two attributes
which are health and dodge rate.

3) Each skill includes only one ability, the physical
damage.

so, plg can be calculated by the following formula ap-
proximately.

     1
1

1

2

T

l g l i l i l i
i

p p F p F p


 F      (10)

where

           

 

2 2
2 2 2

2

2

1
1

1

0

LT l i LT l

l i

i
D D i LT

LT lp F

i LT l

  
    

 

l



 
 

  

 

1 1

1 1 1
0

1

1

1

LT l
j i j

jl i

i
D D i LT l

jp F

i LT l






  
       

 



Copyright © 2012 SciRes. JSEA

Solving the Balance Problem of On-Line Role-Playing Games Using Evolutionary Algorithms

Copyright © 2012 SciRes. JSEA

580

   
 

2
2

1

h l
LT l

d l

 
  
 

    
 

1
1

2

h l
LT l

d l

 
  
 

1) population size = 100, the number of populations =

6.
The Simple GA:
1) population size = 600. Here, we suppose that combat ends within T rounds,

 denotes the probability that combatant 1 launch
the lethal attack at round i, is the probability
that combatant 2 hasn’t launched the lethal attack before
round i + 1, Dk, LTk, hk, dk refer to the dodge rate, life-
time, health value and damage value of combatant k, re-
spectively, where .

 l ip F
 l ip F 

 1,2k 

Considering the stochastic nature of evolutionary al-
gorithms, each of the algorithms is repeated 100 times.
Figure 4 depicts a set of AIFs corresponding to the
smallest fitness obtained by CCEA_I. It is important to
note that all the designed rules are well obeyed. To verify
whether the AIFs are well-balanced, according to For-
mula 10, we calculate plg and show the mean and vari-
ance of Pg in Table 1, which indicates that  gE P is
close to 0.5 and  gV P is close to 0, for  1,2,3 g .
Hence, the AIFs can be accepted as well-balanced.

6. Experiments and Results

In this section, we conduct the comparison of the pro-
posed algorithm, denoted by CCEA_I, with the proposed
algorithm using original PIPE instead of the improved
one, denoted by CCEA_O, and the proposed algorithm
using the simple GA instead of the CCEA, denoted by
SGA_I. The environments are set as follows.

We compare the algorithms both in terms of final
best-ever fitness and computation time. The comparison
results are plotted in Figure 5. In this case, it is obvious
that both CCEA_I and CCEA_O are superior to SGA_I.
By counting the number of executions in which the final
best-ever fitness is larger than 10, we obtain 6 for
CCEA_I while 26 for CCEA_O. Moreover, the average
computation time of 100 executions is 35.6991 for
CCEA_I, whereas the value is 56.2348 with respect to
CCEA_O. Hence, in case that PIPE employs the EPS, the
capability of PIPE has been improved significantly by
the improvement work.

The Game Model:
1) The maximum level: 10L  .
2) The dodge rate: , , 1 0.2RD  2 0.6RD  3 0.1RD  .
3) Rules of health value:      h l1 2 3R R R

   
h l h l  .

 3 1 2R R R ld l d l d  . 4) Rules of damage value:
5) All the AIFs must be monotone increasing and

, .   20kLT l   1,2k 
The Fitness Function: [(1)]
1) Balance factor: 1 2 3 0.5    

20 30T 
. 7. Conclusion and Future Work

2) , , . 1 2

The Improved and Original PIPE: [(1)]
10w  w 

This paper presented an evolutionary design method
which contains integration with a CCEA and an im-
proved PIPE for solving the balance problem of on-line
RPGs. We demonstrated the theoretical evidence of why
CCEAs, in some case, is faster than simple GAs, and in
order to enable the EPS option, we improved the learning
mechanism of PIPE. Through a series of experiments, we
have shown that the proposed method is the most effi-
cient way to obtain a set of well-balanced AIFs for the

1) Function and terminal sets have been used:
 and ,  , , ,sin,cos,expF      ,T R l  0,50R

denotes the generic random constant.
2) The termination criteria: maximal generation = 300

and . 0.075cFIT 
 lr3) , , 0.01lr 0.1c  0.4MP  , ,

, .
0.3mr 

0.999999PT  2K 
The CCEA:

Figure 4. The best AIFs obtained by the proposed algorithm.

Solving the Balance Problem of On-Line Role-Playing Games Using Evolutionary Algorithms 581

Figure 5. Performance comparison of the three algorithms in terms of final best-ever fitness as well as computation time with
100 executions.

Table 1. Verification data.

Group g = 1 (A vs B) g = 2 (B vs C) g = 3 (C vs A)

 gE P 0.4803 0.4734 0.532

 gV P 0.0115 0.0233 0.0323

target game model.

The game model presented above is a turn-based game
in which each race has only one skill with only one abil-
ity. While this may seem an extreme simplification, it
should be noted that the original intent of this work was
to lay a foundation of study, and that foundation would
begin with simpler systems for which behavioral under-
standing is more tractable. In future works, we will con-
struct an action-based game model, which is much more
complicated than the turn-based one. In such game model,
since there are no formulas for calculating the win prob-
ability, we have to use the Monte Carlo method which
costs too much for evolutionary algorithms. Therefore,
we plan to model the combat using the discrete competi-
tive Markov decision process by which the win probabil-
ity can be obtained quickly.

REFERENCES
[1] A. Rollings and D. Morris, “Game Architecture and De-

sign: A New Edition,” New Readers, Indianapolis, 2004.

[2] E. Adams, “Fundamentals of Game Design,” 2nd Edition,
New Readers, Berkeley, 2009.

[3] R. Leigh, J. Schonfeld and S. Louis, “Using Coevolution
to Understand and Validate Game Balance in Continuous
Games,” Proceedings of the 10th Annual Conference on
Genetic and Evolutionary Computation, Atlanta, 12-16
July 2008, pp. 1563-1570. doi:10.1145/1389095.1389394

[4] J. M. Olsen, “Game Balance and AI Using Payoff Matri-
ces,” In: B. S. Jones and T. Alexander, Eds., Massively
Multiplayer Game Development, Charles River Media

Inc., Hingham, 2002, pp. 38-48.

[5] J. H. Holland, “Adaptation in Natural and Artificial Sys-
tems: An Introductory Analysis with Applications to Bi-
ology,” Control and Artificial Intelligence, MIT Press,
Cambridge, 1975.

[6] D. E. Goldberg, “Genetic Algorithms in Search, Optimi-
zation and Machine Learning,” Addison Wesley, San
Francisco, 1989.

[7] N. L. Cramer, “A Representation for the Adaptive Gen-
eration of Simple Sequential Programs,” Proceedings of
an International Conference on Genetic Algorithms and
Their Applications, Pittsburgh, 24-26 July 1985, pp. 183-
187.

[8] J. R. Koza, “Genetic Programming—On the Program-
ming of Computers by Means of Natural Selection,” MIT
Press, Cambridge, 1992.

[9] R. Poli, W. B. Langdon and N. F. Mcphee, “A Field
Guide to Genetic Programming,” Lulu, Morrisville, 2008.

[10] P. Husbands and F. Mill, “Simulated Coevolution as the
Mechanism for Emergent Planning and Scheduling,” Pro-
ceedings of the 4th International Conference on Genetic
Algorithms, San Diego, 13-16 July 1991, pp. 264-270.

[11] M. Potter, “The Design and Analysis of a Computational
Model of Cooperative Coevolution,” Ph.D. Thesis, George
Mason University, Fairfax, 1997.

[12] L. Bull, T. C. Fogarty and M. Snaith, “Evolution in
Multi-Agent Systems: Evolving Communicating Classi-
fier Systems for Gait in a Quadrupedal Robot,” Proceed-
ings of the 6th International Conference on Genetic Algo-
rithms, Pittsburgh, 15-19 July 1995, pp. 382-388.

[13] M. Potter, L. Meeden and A. Schultz, “Heterogeneity in
the Coevolved Behaviors of Mobile Robots: The Emer-
gence of Specialists,” Proceedings of the 17th Interna-
tional Conference on Artificial Intelligence, Seattle, 4
August 2001, pp. 1337-1343.

[14] K. S. Hwang, J. L. Lin and H. L. Huang, “Dynamic Patrol
Planning in a Cooperative Multi-Robot System,” Com-
munications in Computer and Information Science, Vol.
212, 2011, pp. 116-123.

Copyright © 2012 SciRes. JSEA

http://dx.doi.org/10.1145/1389095.1389394

Solving the Balance Problem of On-Line Role-Playing Games Using Evolutionary Algorithms 582

doi:10.1007/978-3-642-23147-6_14

[15] M. Potter and K. De Jong, “The Coevolution of Antibod-
ies for Concept Learning,” Proceedings of the 5th Inter-
national Conference on Parallel Problem Solving from
Nature, Kraków, 11-15 September 1998, pp. 530-539.
doi:10.1007/BFb0056895

[16] Y. Wen and H. Xu, “A Cooperative Coevolution-Based
Pittsburgh Learning Classifier System Embedded with
Memetic Feature Selection,” Proceedings of IEEE Con-
gress on Evolutionary Computation, New Orleans, 5-8
June 2011, pp. 2415-2422.

[17] A. Carlos and S. Moshe, “Fuzzy CoCo: A Coopera-
tive-Coevolutionary Approach to Fuzzy Modeling,” IEEE
Transactions on Fuzzy Systems, Vol. 9, No. 5, 2001, pp.
727-737. doi:10.1109/91.963759

[18] R. Chandra and M. Zhang, “Cooperative Coevolution of
Elman Recurrent Neural Networks for Chaotic Time Se-
ries Prediction,” Neurocomputing, Vol. 86, 2012, pp.
116-123. doi:10.1016/j.neucom.2012.01.014

[19] M. Potter and K. De Jong, “A Cooperative Coevolution-
ary Approach to Function Optimization,” Proceedings of
the 3rd International Conference on Parallel Problem
Solving from Nature, Jerusalem, 9-14 October 1994, pp.
249-257. doi:10.1007/3-540-58484-6_269

[20] M. Potter and K. De Jong, “Cooperative Coevolution: An
Architecture for Evolving Co-Adapted Subcomponents,”
Evolutionary Computation, Vol. 1, No. 8, 2000, pp. 1-29.
doi:10.1162/106365600568086

[21] R. P. Wiegand, W. Liles and K. De Jong, “An Empirical
Analysis of Collaboration Methods in Cooperative Co-
evolutionary Algorithms,” Proceedings of the Genetic
and Evolutionary Computation Conference, Dublin, 12-
16 July 2001, pp. 1235-1242.

[22] T. Jansen and R. P. Wiegand, “Exploring the Explorative
Advantage of the CC (1+1) EA,” Proceedings of the Ge-
netic and Evolutionary Computation Conference, Chi-
cago, 12-16 July 2003, pp. 310-321.

[23] R. P. Wiegand, “An Analysis of Cooperative Coevolu-
tionary Algorithms,” Ph.D. Thesis, George Mason Uni-
versity, Fairfax, 2004.

[24] C. Reeves and J. Rowe, “Genetic Algorithms Principles
and Perspectives: A Guide to GA Theory,” Kluwer, New
York, 2002.

[25] L. Schmitt, “Theory of Genetic Algorithms,” Theoretical
Computer Science, Vol. 259, No. 1-2, 2001, pp. 1-61.
doi:10.1016/S0304-3975(00)00406-0

[26] M. Vose, “The Simple Genetic Algorithm,” MIT Press,
Cambridge, 1999.

[27] P. Liviu, “Theoretical Convergence Guarantees for Co-
operative Coevolutionary Algorithms,” Evolution Com-
putation, Vol. 18, No. 4, 2010, pp. 581-615.

[28] R. P. Salustowicz and J. Schmidhuber, “Probabilistic
Incremental Program Evolution,” Evolutionary Computa-
tion, Vol. 5, No. 2, 1997, pp. 123-141.
doi:10.1162/evco.1997.5.2.123

[29] S. Baluja, “Population-Based Incremental Learning: A
Method for Integrating Genetic Search Based Function
Optimization and Competitive Learning,” Technical Re-
port, CMU-CS-94-163, Carnegie Mellon University, Pit-
tsburgh, 1994.

[30] K. De Jong, “An Analysis of the Behavior of a Class of
Genetic Adaptive Systems,” Ph.D. Thesis, University of
Michigan, Ann Arbor, 1975.

[31] A. Fujino, T. Tobita, K. Segawa, K. Yoneda and A. To-
gawa, “An Elevator Group Control System with Floor-
Attribute Control Method and System Optimization Us-
ing Genetic Algorithms,” IEEE Transactions on Indus-
trial Electronics, Vol. 44, No. 4, 1997, pp. 546-552.
doi:10.1109/41.605632

[32] K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, “A Fast
and Elitist Multiobjective Genetic Algorithm: NSGA-II,”
Evolutionary Computation, Vol. 6, No. 2, 2002, pp. 182-
197. doi:10.1109/4235.996017

Copyright © 2012 SciRes. JSEA

http://dx.doi.org/10.1007/BFb0056895
http://dx.doi.org/10.1109/91.963759
http://dx.doi.org/10.1016/j.neucom.2012.01.014
http://dx.doi.org/10.1007/3-540-58484-6_269
http://dx.doi.org/10.1162/106365600568086
http://dx.doi.org/10.1016/S0304-3975(00)00406-0
http://dx.doi.org/10.1162/evco.1997.5.2.123
http://dx.doi.org/10.1109/41.605632
http://dx.doi.org/10.1109/4235.996017

