
Journal of Software Engineering and Applications, 2012, 5, 21-28
http://dx.doi.org/10.4236/jsea.2012.51004 Published Online January 2012 (http://www.SciRP.org/journal/jsea)

21

LR(K) Parser Construction Using Bottom-Up Formal
Analysis

Nazir Ahmad Zafar

Department of Computer Science, King Faisal University, Hofuf, Saudi Arabia.
Email: nazafar@kfu.edu.sa

Received October 13th, 2011; revised November 16th, 2011; accepted November 28th, 2011

ABSTRACT

Design and construction of an error-free compiler is a difficult and challenging process. The main functionality of a
compiler is to translate a source code to an executable machine code correctly and efficiently. In formal verification of
software, semantics of a language has more meanings than the syntax. It means source program verification does not
give guarantee the generated code is correct. This is because the compiler may lead to an incorrect target program due
to bugs in itself. It means verification of a compiler is much more important than verification of a source program. In
this paper, we present a new approach by linking context-free grammar and Z notation to construct LR (K) parser. This
has several advantages because correctness of the compiler depends on describing rules that must be written in formal
languages. First, we have defined grammar then language derivation procedure is given using right-most derivations.
Verification of a given language is done by recursive procedures based on the words. Ambiguity of a language is
checked and verified. The specification is analyzed and validated using Z/Eves tool. Formal proofs are presented using
powerful techniques of reduction and rewriting available in Z/Eves.

Keywords: Compiler Construction; LR(K) Parser; Context-Free Grammar; Z Specification; Correctness; Verification

1. Introduction

A compiler is a program that translates a source code into
its equivalent machine readable code. The translation
process is termed as compilation which then can be used
to execute the resultant code specified in the original
source code. It is noted that the source language is at
higher level as compared to machine code. The higher
level languages not only increase abstraction level be-
tween source and resulting codes but also increase com-
plexity to formalize such abstract structures. The target
language is normally a low level language generated
from a source code.

Compiler construction has always been considered as
an advanced research area than other programming pra-
ctices mainly due to the size and complexity of the code
generated. The design and construction of a fully verified
compiler will remain a challenge of twenty first century.
As mentioned above, the main functionality of a com-
piler is to translate a source code written by programmers
to an executable machine code correctly and efficiently.
Although a lot of work is done in this area but compiler
construction is a mature area of research which needs
further investigation. This is because the bugs in the
compiler can lead to an incorrect machine code even the
source code is fully verified to be correct. Further, as

executable generated code is tested and if bugs are de-
tected it might be due to the source program or compiler
itself. This issue has led to verification of a compiler that
proves that a source program is correct before allowing it
to run on the machine.

Formal methods are mathematical-based techniques
used for specification, proving and verification of soft-
ware and hardware systems [1]. The process of formal
verification means applying these approaches to verify
the properties ensuring correctness of a system. Formal
verification of software targets the source program where
semantics of the language gives precise meanings to the
program analyzed. On the other hand, program verifi-
cation does not mean that the resultant executable code is
correct as specified by the semantics of the source pro-
gram. This is because the compiler may lead to an in-
correct target program because of the bugs in the com-
piler and it can invalidate the guarantees ensured by the
formal methods. It proves that verification of a compiler
is much more important than verification of a source
program to be compiled.

Parser or syntactic analyzer is an important part of a
compiler. Parsing is the process of analyzing a sequence
of tokens generated by the lexical analyzer to determine
its grammatical structure with respect to a given gram-
mar. More precisely, task of a parser is to determine how

Copyright © 2012 SciRes. JSEA

LR(K) Parser Construction Using Bottom-Up Formal Analysis 22

an input string can be derived from the start symbol of
the grammar using set of rules called production of the
grammar. There are two main approaches of parsing, i.e.,
top-down and bottom-up parsing. In top-down, left most
derivations are used to accept an input stream and tokens
are consumed from left to right. Whereas in case of bottom-
up parsing, right-most derivations are used to accept an
input stream and tokens are consumed from left to right.
LR(K) and shift-reduce parsers are examples of bottom-
up parsers.

In the previous work [2], formal verification of top
down parsing was done. Few other preliminary results of
this research were presented in [3,4] by formalizing some
important concepts of context-free grammar. In this pa-
per, the bottom-up parsing analysis of a sequence of
tokens generated from the lexical analyzer is presented
using Z by right most derivations. Ambiguity of the lan-
guage is checked and its well-defined-ness is verified.
Initially, formal definition of context-free grammar is
given. In next, a right most derivation procedure is des-
cribed by replacing non-terminals with terminals and
non-terminals using bottom up approach. Then LR(1)
parser is described first for a word and then extended to a
language. The derivation procedure is defined to analyze
a sequence of tokens using production rules of the
context-free grammar. The parsing analysis for a langu-
age is specified by introducing recursion using deriva-
tions used in generation of a word. Ambiguity of a word
is checked by specifying if there exists more than two
right most derivation trees for a given words. The same
notion is formalized for the language to check if it is am-
biguous or well-defined. The formal specification is ana-
lyzed and validated using Z Eves tool set. The results of
this paper will be used in our ongoing project on constru-
ction and verification of a compiler. The major objectives
of this research are:
 Linking context-free grammar and formal techniques

to be useful in the verification of a compiler;
 Preparing a synthesis of approaches to be used in the

development of automated tools;
 Identifying and proposing an integration of existing

traditional and formal approaches;
 Establishing a syntactically and semantically verified

relationship between Z and context-free grammar.
Under the current development in formal methods, it is

not possible to develop a complete and consistent soft-
ware system using a single formal technique and hence
integration of approaches is required. Although integra-
tion of approaches is a well-researched area [5-11], but
there does not exist much work on formalization of auto-
mata and context-free languages. Dong et al. have des-
cribed an integration of timed automata and Object Z
[12,13]. Constable has proposed a formalization of few
important concepts of automata theory using Nuprl which
is a formal language [14,15]. A formal linkage is investi-

gated between Petri-nets and Z notation in [16]. An inte-
gration of B, a formal technique, and UML, a semi-
formal technique, is presented in [17,18]. Wechler has
introduced few algebraic structures using fuzzy automata
[19]. A formal treatment of fuzzy automata and language
theory is discussed in [20]. In [21], an important notion
of algebraic theory and automata theory is presented.
Rest of the paper is organized as follows:

In Section 2, an introduction to formal methods is gi-
ven. In Section 3, the role of context-free grammar in
parsers for compiler construction is provided. Formal
construction of LR(K), for K = 1, is given in Section 4.
Model analysis for validating the specification is given in
Section 5. Finally, conclusion and future work are dis-
cussed in Section 6.

2. Formal Methods

Formal methods are mathematical techniques and nota-
tions used for describing and analyzing properties of
software and hardware systems. These techniques are
based on discrete mathematics such as sets, sequences,
relations, functions, graphs, automata, first order logic
and higher order logic. Formal approaches may be classi-
fied mainly in terms of property oriented and model des-
criptive methods.

Property oriented formal methods are used to describe
software in terms of properties and invariants defined
that must be true. Model oriented formal methods are
used to construct a model of a system focusing on both
statics and dynamics of the system [22]. Although use of
formal methods can be observed in almost all major areas
of computer science but mainly their use can be found to
improve quality by describing and specifying software
systems in a well-defined and structured manner. Al-
though there are various notations of formal methods but
at the current stage of their development, it needs an
integration of formal and existing traditional approaches
for a consistent design and complete description of a sy-
stem.

Z notation is a specification language used at an ab-
stract level of modeling the systems. The Z is a model
centered approach based on sets, sequences, bags, rela-
tions and first order predicate logic [23]. Usually, Z is
used for specifying behavior of sequential programs by
the abstract data types. Z is selected for this research to
be linked with context-free language because both have
abstract power of expressing the systems. The Z has
standard set operators, for example, union, intersection,
comprehensions, Cartesian products and power sets. The
logic of Z is formulated using first order predicate cal-
culus and refinements. The Z allows organizing a system
into its smaller components using a powerful structure
named as schema. The schema defines a way in which
state of a system can be specified, refined and modified.
Mathematical refinement is a promising aspect of Z sup-

Copyright © 2012 SciRes. JSEA

LR(K) Parser Construction Using Bottom-Up Formal Analysis 23

porting verifiable stepwise transformation of an abstract
specification into an executable code [24]. Once a formal
specification is written in Z, it can further be refined and
transformed into an implemented system.

3. Parsers and Context Free Grammar

Verifying compiler is a branch of software engineering
that deals to show or prove that a compiler behaves
according to its language specification. Developing com-
piler using testing and formal methods are two most
common techniques for compiler validation and verifi-
cation. Testing of compiler has various disadvantages
similar to computer programs testing, for example, it is
hard to prove that compiler is completely error-free or
optimized. On the other hand, the primary objective of
writing a compiler is to prove that it is correct and error
free. There are various research papers referring that
many tested compilers have significant number of bugs
and errors in the code [25]. Formal methods are used in
compiler validation and verification to find proofs re-
ducing complexity and ensuring correctness of the con-
struction procedure.

Because of an accuracy needed, complexity in size and
optimization required, compiler construction is an ad-
vanced research area, and as a result construction of a
fully verified compiler is a challenge of the twenty first
century. The main functionality of a compiler is to trans-
late a source code to an executable optimized machine
code correctly. The accuracy in compiler construction is
required because the bugs in it can lead to an incorrect
generated machine code even the source code is verified.
Constructing and verifying parser is an important phase
of a compiler whose functionality is to analyze a sequ-
ence of tokens to determine the grammatical structure
with respect to a given grammar. Top-down and bottom-
up parsing are two main approaches of parsing. In
bottom-up parsing, tokens are consumed from left to
right and right-most derivations are used from the given
set of productions of the grammar. LR(K) and shift-
reduce parsers are examples of bottom-up parsers. The
context-free grammar (CFG) has an important role in
verification of parser in a compiler.

CFG was developed by Chomsky who described lin-
guistics in a grammatical form and converted into mathe-
matical models providing a precise mechanism of des-
cribing the languages. The CFG provides a simple and an
efficient approach of parsing, it can be determined to
show that a particular pattern can be generated, and the
way of generation is determined as well. Every CFG
without null production has an equivalent grammar in
Chomsky Normal Form (CNF). By equivalence, we
mean both the grammars generate the same language.
The CNF grammar is important in both theoretical and
practical aspects. For example, using CNF, it can be de-
cided for a given input if it can be accepted in a poly-

nomial time algorithm. Context-free languages have their
own limitations as well. For example, some operators
which are well-defined in other models of automata
theory do not behave well in context-free grammar. As
an example, the intersection of two context-free langu-
ages, is not context-free in general. Similarly, the com-
plement of a CFG may not be context-free.

There are various applications of context-free gram-
mar in addition to compilers. Robotics, software engin-
eering and maintenance, speech recognition are few app-
lication areas of it [26]. Applications of context-free
grammar in pattern recognition increase an accuracy of
the patterns to be recognized. This is because it can pro-
vide a higher level of abstraction by defining the seman-
tics rules for patterns as compared to other specifications
techniques, for example, strings and regular expressions.
This abstract level semantic analysis can be used to re-
duce the false identification of the patterns [27]. The app-
lications of pattern recognition can be observed every-
where from language processing to computer networks.
In speech recognition, the spoken words can be generated
by CFG using dynamic programming algorithms. In soft-
ware engineering, the components in a source code are
recognized using context-free grammar [28]. As the out-
put of parsing is larger and less-ambiguous, therefore, for
interactive voice response systems, the use of CFG can
be highly effective [29,30].

4. LR(K) Formal Analysis

In this section, formal specification of LR(K), for K = 1,
is described for parsing analysis of an input strings and a
language. The ambiguity of a language is checked and its
verification is done to generate the correct code. To for-
malize the parser, first the formal definition of context-
free grammar is given. The context-free grammar is a 4-
tuple (N, T, R, S0) where:
 N is a finite set of variables called non-terminal repre-

senting different types of clauses in a sentence and
showing states in the parsing tree;

 T is a finite set of terminals where final contents of an
input sentence are based on a set of terminals;

 R is a relation consisting of set of all the rules or
productions of the grammar;

 S0 is a start variable used to represent the whole input
string and initial state in the parsing tree.

In context-free grammar, every rule is of the form: S
→ t where S is a non-terminal consisting of a single
character and t is a string containing only terminals or
combination of terminals and non-terminals. The t might
be an empty string. All notations of the type S → t are
called rules or productions and are applied in a sequence
to produce a parsing tree. The parsing tree ends with
terminals termed as leaves of the tree where each internal
node of the tree is a non-terminal producing one or more
further nodes. The left hand side of a production rule is

Copyright © 2012 SciRes. JSEA

LR(K) Parser Construction Using Bottom-Up Formal Analysis 24

always a single non-terminal. Since all rules have non-
terminals on the left hand side and, hence, can easily be
replaced with the string on the right hand side of the
production rule. The context in which the symbols occur
is not important and, hence, the grammar is called
context-free grammar. The CFG is always recognized by
a finite state machine having a single infinite tap thereat.
The current state is pushed at the start and is recovered at
the end for keeping track of the nested units.

In the formal analysis, CFG is represented using Z
notation consisting of 4-tuple as defined above. Mathe-
matically, R in the definition of CFG is a relation from N
to (N T)* such that  t  (N T)*, S  N and (S, t)
R. The notation “*” represents to any combination of
symbols of N and T. In the specification of CFG, X is de-
fined as a set of symbols which is a collection of termi-
nals or non-terminals. We define the sets of non-ter-
minals by N and set of terminals by T based on the
definition of X. The X, N and T are defined as sets at an
abstract level of specification over which operators
cannot be defined.

[X]; T = X; N = X
Formal definition of context-free grammar is given

below and is represented by the schema Grammer. The
schema consists of five components, i.e., terminals, non-
terminals, symbols, productions and inistate representing
set of terminals, set of non-terminals, set of all symbols
of the grammar, set of productions and start variable. The
set of terminals is a type of power set of T, the set of
non-terminals is a type of power set of N and the set of
symbols is a power set of X. The productions are a set of
rules defined by the relation between N and seq X. The
start variable is of type of N. In the schema, it is des-
cribed that there exists exactly one rule, (S0, t)  pro-
ductions where S0 is the start non-terminal and t is a
string of type seq X. The components of the grammar are
given in first part of the schema and invariants are
defined in the second part of it.

4.1. Invariants

 The start variable is an element of non-terminals.
 The sets of terminals and non-terminals are non-

empty.
 There does not exist any element which is common to

both sets of terminals and non-terminals.
 Each element in the sets of terminals and non-ter-

minals is an element of the set of symbols.
 Each element in the set of symbols is an element of

the sets of terminals or non-terminals.
 The domain of production relation is a subset of the

non-terminals.
 Each element in the range of production relation is a

subset of set of symbols.
 There exists at least one production rule which con-

tains start variable on the left hand side of it.

4.2. Derivation from Production Rules

In this section, process of derivations is described to be
used for parsing analysis of words and languages using
right most derivations by the production rules of the
given grammar. In the formal procedure, the substitution
are performed recursively to derive a string of terminal
and non-terminal. Formal definition is given by the sche-
ma Right Derivations. The schema consist of three compo-
nents gram, single and multiple representing grammar,
single derivation and multiple derivations based on the
production rules. First, a process of generating a word is
described and then extended to generate the whole lan-
guage. If s1 and s2 are two strings, we say s1 yields s2 if
∃ a∈N and b, s3, s4∈ seq X such that 1 3 4s s a s

 

and 2 3 4s s b s
 

 where s4 is a sequence of terminals.
It is noted that a is an element in set of variables, the
ranges of sequences b, s3 are subsets of symbols and (a,
b) is a production rule.

Copyright © 2012 SciRes. JSEA

LR(K) Parser Construction Using Bottom-Up Formal Analysis 25

4.3. Words Parsing Analysis

Now we describe bottom-up parsing analysis of a se-
quence of tokens generated from the lexical analyzer
using the schema LRW1. The schema consists of three
components that is gram, word? and multiple. The defi-
nitions and types of gram and multiple are same as de-
fined above. The variable word? is an input string to be
generated by the parser using bottom-up approach based
on the productions rules. A sequence of derivations using
right most derivations is used as defined above. In the
specification, it is described that word? can be generated
if there exists a sequence of derivations consisting of
order pairs (w(i), w(i + 1)) where w(i) produces w(i + 1).
As we are describing LR(1), the input is read from left to
right where production are used from the right side of the
derivation procedure.

Now we check the ambiguity of the word generated

using the schema LRW1A. The schema consists of same
three components gram, word? and multiple as in case of
derivation of the word. In the schema, it is stated that
word is ambiguously generated if there exists two deriva-
tions or parsing trees for the same word.

In the schema given below, it is verified that the given
word of the language is generated unambiguously. In the
schema, it is stated that word is unambiguously generated
if there exists two derivations or parsing trees for the
same word then both the parsing trees must be same.

4.4. Language Parsing Analysis

Finally, verification of a language generated from a con-
text-free grammar is done using right most derivation.
The verification procedure of a word is defined above
which is extended now to the whole language. For this
purpose, the schema LRL1 given below is defined which
consists of three components that is gram, language? and
multiple. The variable language? is an input language to
be generated by the parser using bottom-up approach. A
sequence of derivations using right most derivations is
used as in case of derivation of a word. In the specifica-
tion, it is described that language? is generated if for any
word in the language there exists a sequence of deriva-
tions consisting of order pairs (s(i), s(i + 1)) where s(i)
produces s(i + 1).

Copyright © 2012 SciRes. JSEA

LR(K) Parser Construction Using Bottom-Up Formal Analysis 26

In next, we check the ambiguity of the language using
the schema LRL1A. The schema consists of same three
components gram, language? and multiple as in case of
derivation of the language. In the schema, it is stated that
language is ambiguously generated if there a word in the
language such that there exists two derivations or parsing
trees for the word.

In the schema given below, it is verified that the given

language is generated unambiguously. In the schema, it
is stated that language is unambiguous if for any word if
there exists two derivations or parsing trees for the same
word then both the parsing trees must be same. Grammar
used, input language to be generated and derivation rules
are defined in first part of the schema and language deri-
vation process is described in the second part of the
schema. This complete our formal model for construction
of LR(1).

5. Model Analysis

In this section, formal analysis is done for the specifi-
cation. Although computer tools are rigorously used for
the formal specification but, on the hand, there does not
exist any real computer tool which may assure about
complete correctness of a formal model. Therefore, even
the specification is well-written using any of the formal
specification languages it may contain potential bugs or
errors. That is an art of writing a formal specification
never guarantee that the system is correct, complete and
consistent. But if the specification is checked and ana-
lyzed with a computer tool it certainly increases the con-
fidence over the system to be developed by identifying the
errors, if exists, in the syntax and semantics of the formal
specification.

The Z/Eves is one of the powerful tools which is used
for analyzing the specification written for construction of
LR(1). A snapshot of the tool for analyzing the formal
specification using Z/Eves tool is presented in Figure 1.
The first column on the left of the figure shows status of
the syntax checking and the second column represents
the proof correctness of the specification. The symbol
“Y” stands that the specification is correct syntactically
and proof is also correct while the symbol “N” shows
that errors exist which can be listed with the tool support.
All the schemas are checked to prove that specification is
correct in syntax and has a correct proof. Some proofs
were conducted by reduction and rewriting techniques
available in the tool.

Summary of the results of the formal specification is
presented in Table 1. In the first column of the table,
name of schema is given for which the specification is
described. These schemas are analyzed by using the mo-
del exploration techniques provided in the Z/Eves tool.
The symbol “Y” in column 2 indicates that all the sche-
mas are well-written and proved automatically. Simi-
larly, domain checking, reduction and proof by reduction
are represented in columns 3, 4 and 5, respectively. The
character “Y*” annotated with “*” describes that the sche-
mas are proved by performing reduction on the predi-

Table 1. Results of model analysis.

Schema Name
Syntax Type

Check
Domain
Check

Reduction Proof

Grammer Y Y Y Y

Right Derivations Y Y Y Y

LRW1 Y Y Y* Y

LRW1A Y Y Y Y

LRW1U Y Y Y Y

LRL1 Y Y Y Y

LRL1A Y Y Y* Y

LRL1U Y Y Y* Y

Copyright © 2012 SciRes. JSEA

LR(K) Parser Construction Using Bottom-Up Formal Analysis

Copyright © 2012 SciRes. JSEA

27

Figure 1. Snapshot of the model analysis.

cates to make the specification more meaningful.

6. Conclusions and Future Work

Design, construction and verification of a correct com-
piler is more important than verification of the source
programs to be compiled. Verification of a compiler assures
guarantee that the executable code generated from the
source code behaves exactly as described in the source
program. Parsing analysis is an important part of com-
piler construction. Bottom-up parsing is suitable for auto-
matic parser generation and handles a larger class of gra-
mmars. In this paper, formal procedure of LR(1) parser is
proposed and verified. Identification and analysis of am-
biguities is provided which is a real challenge in parsers
development. Regular expressions and context-free gra-
mmars are widely used in construction of the compiler.
Regular expressions are not much powerful and are used
to identify tokens from the source program. The design
and construction of a complier can be benefited by link-
ing context-free grammar to Z specification. This is be-
cause Z enhances reliability and correctness being ab-
stract in nature and having computer tool support. In this
research, formal specification helped us to make it possi-
ble describing unambiguous and easy to understand the
resultant formal model. The specification is verified and
validated using Z/Eves tool.

An extensive survey of existing work was performed
before initiating this research. Some of the interesting

works [31-39] were found but our approach is different
because of abstract and conceptual level integration of
CFG and Z. In the benefits of using Z, every object is
assigned a unique type providing a useful programming
practice. Several type checking tools exist to support the
formal specification. The Z/Eves is a powerful tool to
prove and analyze the specification. The rich mathemati-
cal notations made it possible to reason about behavior of
a system more effectively. Formalization of some other
concepts, useful in compiler verification, are in progress
and will appear soon in our future work.

REFERENCES
[1] C. J. Burgess, “The Role of Formal Methods in Software

Engineering Education and Industry,” Technical Report,
University of Bristol, Bristol, 1995.

[2] K. A. Buragga and N. A. Zafar, “Formal Parsing Analysis
of Context-Free Grammar Using Left Most Derivations,”
International Conference on Software Engineering Ad-
vances, 2011.

[3] N. A. Zafar, S. A. Khan and B. Kamran, “Formal Proce-
dure of Deriving Language from Context-Free Grammar,”
International Conference on Intelligence and Information
Technology, Vol. 1, 2010, pp. 533-536.

[4] N. A. Zafar and B. Kamran, “Formal Construction of
Possible Operators on Context-Free Grammar,” Interna-
tional Conference on Intelligence and Information Tech-
nology, 2010.

[5] H. Beek, A. Fantechi, S. Gnesi and F. Mazzanti, “State/

LR(K) Parser Construction Using Bottom-Up Formal Analysis 28

Event-Based Software Model Checking,” Integrated Fo-
rmal Methods, Springer, Berlin, 2004, pp. 128-147.

[6] O. Hasan and S. Tahar, “Verification of Probabilistic
Properties in the HOL Theorem Prover,” Integrated For-
mal Methods, Springer, Berlin, 2007, pp. 333-352.

[7] F. Gervais, M. Frappier and R. Laleau, “Synthesizing B
Specifications from EB3 Attribute Definitions,” Inte-
grated Formal Methods, Springer, Berlin, 2005, pp. 207-
226. doi:10.1007/11589976_13

[8] K. Araki, A. Galloway and K. Taguchi, “Integrated For-
mal Methods,” Proceedings of the 1st International Con-
ference on Integrated Formal Methods, Springer, Berlin,
1999.

[9] B. Akbarpour, S. Tahar and A. Dekdouk, “Formalization
of Cadence SPW Fixed-Point Arithmetic in HOL,” Inte-
grated Formal Methods, Springer, Berlin, 2002, pp.
185-204.

[10] J. Derrick and G. Smith, “Structural Refinement of Ob-
ject-Z/CSP Specifications,” The Institute of Finance
Management, Springer, Berlin, 2000, pp. 194-213.

[11] T. B. Raymond, “Integrating Formal Methods by Unify-
ing Abstractions,” Springer, Berlin, 2004, pp. 441-460.

[12] J. S. Dong, R. Duke and P. Hao, “Integrating Object-Z
with Timed Automata,” 2005, pp. 488-497.

[13] J. S. Dong, et al., “Timed Patterns: TCOZ to Timed
Automata,” The 6th International Conference on Formal
Engineering Methods, 2004, pp. 483-498.

[14] R. L. Constable, et al., “Formalizing Automata II: Decid-
able Properties,” Technical Report, Cornell University,
Cornell, 1997.

[15] R. L. Constable, et al., “Constructively Formalizing
Automata Theory,” Foundations of Computing Series,
MIT Press, Cambridge, 2000.

[16] M. Heiner and M. Heisel, “Modeling Safety Critical Sys-
tems with Z and Petri Nets,” International Conference on
Computer Safety, Reliability and Security, Springer, Ber-
lin, 1999, pp. 361-374. doi:10.1007/3-540-48249-0_31

[17] H. Leading and J. Souquieres, “Integration of UML and B
Specification Techniques: Systematic Transformation
from OCL Expressions into B,” Asia-Pacific Software
Engineering Conference, 2002, pp. 495-504.

[18] H. Leading and J. Souquieres, “Integration of UML
Views Using B Notation,” Proceedings of Workshop on
Integration and Transformation of UML Models, 2002.

[19] W. Wechler, “The Concept of Fuzziness in Automata and
Language Theory,” Akademic-Verlag, Berlin, 1978.

[20] N. M. John and S. M. Davender, “Fuzzy Automata and
Languages: Theory and Applications,” Chapman & Hall,
London, 2002.

[21] M. Ito, “Algebraic Theory of Automata and Languages,”
World Scientific Publishing Co., Singapore, 2004.
doi:10.1142/9789812562685

[22] M. Brendan and J. S. Dong, “Blending Object-Z and
Timed CSP: An Introduction to TCOZ,” 20th Interna-
tional Conference on Software Engineering, IEEE Com-
puter Society, Kyoto, 1998.

[23] J. M. Spivey, “The Z Notation: A Reference Manual,”
Printice-Hall, Austin, 1989.

[24] J. M. Wing, “A Specifier, Introduction to Formal Meth-
ods,” IEEE Computer, Vol. 23, No. 9, 1990, pp. 8-24.
doi:10.1109/2.58215

[25] C. Lindig, “Random Testing of C Calling Conventions,”
ACM, 2005.

[26] J. A. Anderson, “Automata Theory with Modern Applica-
tions,” Cambridge University Press, Cambridge, 2006.
doi:10.1017/CBO9780511607202

[27] H. C. Young, J. Moscola and J. W. Lockwood, “Con-
text-Free Grammar Based Token Tagger in Reconfigur-
able Devices,” Proceedings of International Conference
of Data Engineering, 2005, p. 78.

[28] M. V. D. Brand, A. Sellink and C. Verhoef, “Generation
of Components for Software Renovation Factories from
Context-Free Grammars,” Counselors of Real Estate,
2001, pp. 144-153.

[29] M. Balakrishna, D. Moldovan and E. K. Cave, “Auto-
matic Creation and Tuning of Context-Free Grammars for
Interactive Voice Response Systems,” IEEE NLP-KE,
2005, pp. 158-163.

[30] L. Pedersen and H. Reza, “A Formal Specification of a
Programming Language: Design of Pit,” 2nd Interna-
tional Symposium on Leveraging Applications of Formal
Methods, Verification and Validation, 2008, pp. 111-118.

[31] D. P. Tuan, “Computing with Words in Formal Methods,”
Technical Report, University of Canberra, Canberra,
2000.

[32] S. A. Vilkomir and J. P. Bowen, “Formalization of Soft-
ware Testing Criterion,” South Bank University, London,
2001.

[33] A. Hall, “Correctness by Construction: Integrating For-
mality into a Commercial Development Process,” Praxis
Critical Systems Limited, Springer, Berlin, Vol. 2391,
2002, pp. 139-157.

[34] B. A. L. Gwandu and D. J. Creasey, “Importance of For-
mal Specification in the Design of Hardware Systems,”
Birmingham University, Birmingham, 1994.

[35] D. K. Kaynar and N. Lynchn, “The Theory of Timed I/O
Automata,” Morgan & Claypool Publishers, 2006.

[36] D. Jackson, I. Schechter and I. Shlyakhter, “Alcoa: The
Alloy Constraint Analyzer,” Proceedings of the 22nd In-
ternational Conference of Software Engineering, 2000, pp.
730-733.

[37] D. Aspinall and L. Beringer, “Optimisation Validation,”
Electronic Notes in Theoretical Computer Science, Vol.
176, No. 3, 2007, pp. 37-59.
doi:10.1016/j.entcs.2006.06.017

[38] S. Briaisa and U. Nestmannb, “A Formal Semantics for
Protocol Narrations,” Theoretical Computer Science, Vol.
389, No. 3, 2007, pp. 484-511.

[39] L. Freitas, J. Woodcock and Y. Zhang, “Verifying the
CICS File Control API with Z/Eves: An Experiment in
the Verified Software Repository,” Science of Computer
Programming, Vol. 74, No. 4, 2009, pp. 197-218.
doi:10.1016/j.scico.2008.09.012

Copyright © 2012 SciRes. JSEA

http://dx.doi.org/10.1007/11589976_13
http://dx.doi.org/10.1007/3-540-48249-0_31
http://dx.doi.org/10.1142/9789812562685
http://dx.doi.org/10.1109/2.58215
http://dx.doi.org/10.1017/CBO9780511607202
http://dx.doi.org/10.1016/j.entcs.2006.06.017
http://dx.doi.org/10.1016/j.scico.2008.09.012

