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ABSTRACT 

Design and construction of an error-free compiler is a difficult and challenging process. The main functionality of a 
compiler is to translate a source code to an executable machine code correctly and efficiently. In formal verification of 
software, semantics of a language has more meanings than the syntax. It means source program verification does not 
give guarantee the generated code is correct. This is because the compiler may lead to an incorrect target program due 
to bugs in itself. It means verification of a compiler is much more important than verification of a source program. In 
this paper, we present a new approach by linking context-free grammar and Z notation to construct LR (K) parser. This 
has several advantages because correctness of the compiler depends on describing rules that must be written in formal 
languages. First, we have defined grammar then language derivation procedure is given using right-most derivations. 
Verification of a given language is done by recursive procedures based on the words. Ambiguity of a language is 
checked and verified. The specification is analyzed and validated using Z/Eves tool. Formal proofs are presented using 
powerful techniques of reduction and rewriting available in Z/Eves. 
 
Keywords: Compiler Construction; LR(K) Parser; Context-Free Grammar; Z Specification; Correctness; Verification 

1. Introduction 

A compiler is a program that translates a source code into 
its equivalent machine readable code. The translation 
process is termed as compilation which then can be used 
to execute the resultant code specified in the original 
source code. It is noted that the source language is at 
higher level as compared to machine code. The higher 
level languages not only increase abstraction level be- 
tween source and resulting codes but also increase com- 
plexity to formalize such abstract structures. The target 
language is normally a low level language generated 
from a source code.  

Compiler construction has always been considered as 
an advanced research area than other programming pra- 
ctices mainly due to the size and complexity of the code 
generated. The design and construction of a fully verified 
compiler will remain a challenge of twenty first century. 
As mentioned above, the main functionality of a com- 
piler is to translate a source code written by programmers 
to an executable machine code correctly and efficiently. 
Although a lot of work is done in this area but compiler 
construction is a mature area of research which needs 
further investigation. This is because the bugs in the 
compiler can lead to an incorrect machine code even the 
source code is fully verified to be correct. Further, as 

executable generated code is tested and if bugs are de- 
tected it might be due to the source program or compiler 
itself. This issue has led to verification of a compiler that 
proves that a source program is correct before allowing it 
to run on the machine. 

Formal methods are mathematical-based techniques 
used for specification, proving and verification of soft- 
ware and hardware systems [1]. The process of formal 
verification means applying these approaches to verify 
the properties ensuring correctness of a system. Formal 
verification of software targets the source program where 
semantics of the language gives precise meanings to the 
program analyzed. On the other hand, program verifi- 
cation does not mean that the resultant executable code is 
correct as specified by the semantics of the source pro- 
gram. This is because the compiler may lead to an in- 
correct target program because of the bugs in the com- 
piler and it can invalidate the guarantees ensured by the 
formal methods. It proves that verification of a compiler 
is much more important than verification of a source 
program to be compiled. 

Parser or syntactic analyzer is an important part of a 
compiler. Parsing is the process of analyzing a sequence 
of tokens generated by the lexical analyzer to determine 
its grammatical structure with respect to a given gram- 
mar. More precisely, task of a parser is to determine how 
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an input string can be derived from the start symbol of 
the grammar using set of rules called production of the 
grammar. There are two main approaches of parsing, i.e., 
top-down and bottom-up parsing. In top-down, left most 
derivations are used to accept an input stream and tokens 
are consumed from left to right. Whereas in case of bottom- 
up parsing, right-most derivations are used to accept an 
input stream and tokens are consumed from left to right. 
LR(K) and shift-reduce parsers are examples of bottom- 
up parsers.  

In the previous work [2], formal verification of top 
down parsing was done. Few other preliminary results of 
this research were presented in [3,4] by formalizing some 
important concepts of context-free grammar. In this pa- 
per, the bottom-up parsing analysis of a sequence of 
tokens generated from the lexical analyzer is presented 
using Z by right most derivations. Ambiguity of the lan- 
guage is checked and its well-defined-ness is verified. 
Initially, formal definition of context-free grammar is 
given. In next, a right most derivation procedure is des- 
cribed by replacing non-terminals with terminals and 
non-terminals using bottom up approach. Then LR(1) 
parser is described first for a word and then extended to a 
language. The derivation procedure is defined to analyze 
a sequence of tokens using production rules of the 
context-free grammar. The parsing analysis for a langu- 
age is specified by introducing recursion using deriva- 
tions used in generation of a word. Ambiguity of a word 
is checked by specifying if there exists more than two 
right most derivation trees for a given words. The same 
notion is formalized for the language to check if it is am- 
biguous or well-defined. The formal specification is ana- 
lyzed and validated using Z Eves tool set. The results of 
this paper will be used in our ongoing project on constru- 
ction and verification of a compiler. The major objectives 
of this research are:  
 Linking context-free grammar and formal techniques 

to be useful in the verification of a compiler; 
 Preparing a synthesis of approaches to be used in the 

development of automated tools; 
 Identifying and proposing an integration of existing 

traditional and formal approaches; 
 Establishing a syntactically and semantically verified 

relationship between Z and context-free grammar. 
Under the current development in formal methods, it is 

not possible to develop a complete and consistent soft- 
ware system using a single formal technique and hence 
integration of approaches is required. Although integra- 
tion of approaches is a well-researched area [5-11], but 
there does not exist much work on formalization of auto- 
mata and context-free languages. Dong et al. have des- 
cribed an integration of timed automata and Object Z 
[12,13]. Constable has proposed a formalization of few 
important concepts of automata theory using Nuprl which 
is a formal language [14,15]. A formal linkage is investi-  

gated between Petri-nets and Z notation in [16]. An inte- 
gration of B, a formal technique, and UML, a semi- 
formal technique, is presented in [17,18]. Wechler has 
introduced few algebraic structures using fuzzy automata 
[19]. A formal treatment of fuzzy automata and language 
theory is discussed in [20]. In [21], an important notion 
of algebraic theory and automata theory is presented. 
Rest of the paper is organized as follows: 

In Section 2, an introduction to formal methods is gi- 
ven. In Section 3, the role of context-free grammar in 
parsers for compiler construction is provided. Formal 
construction of LR(K), for K = 1, is given in Section 4. 
Model analysis for validating the specification is given in 
Section 5. Finally, conclusion and future work are dis- 
cussed in Section 6. 

2. Formal Methods 

Formal methods are mathematical techniques and nota- 
tions used for describing and analyzing properties of 
software and hardware systems. These techniques are 
based on discrete mathematics such as sets, sequences, 
relations, functions, graphs, automata, first order logic 
and higher order logic. Formal approaches may be classi- 
fied mainly in terms of property oriented and model des- 
criptive methods.  

Property oriented formal methods are used to describe 
software in terms of properties and invariants defined 
that must be true. Model oriented formal methods are 
used to construct a model of a system focusing on both 
statics and dynamics of the system [22]. Although use of 
formal methods can be observed in almost all major areas 
of computer science but mainly their use can be found to 
improve quality by describing and specifying software 
systems in a well-defined and structured manner. Al- 
though there are various notations of formal methods but 
at the current stage of their development, it needs an 
integration of formal and existing traditional approaches 
for a consistent design and complete description of a sy- 
stem. 

Z notation is a specification language used at an ab- 
stract level of modeling the systems. The Z is a model 
centered approach based on sets, sequences, bags, rela- 
tions and first order predicate logic [23]. Usually, Z is 
used for specifying behavior of sequential programs by 
the abstract data types. Z is selected for this research to 
be linked with context-free language because both have 
abstract power of expressing the systems. The Z has 
standard set operators, for example, union, intersection, 
comprehensions, Cartesian products and power sets. The 
logic of Z is formulated using first order predicate cal- 
culus and refinements. The Z allows organizing a system 
into its smaller components using a powerful structure 
named as schema. The schema defines a way in which 
state of a system can be specified, refined and modified. 
Mathematical refinement is a promising aspect of Z sup- 
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porting verifiable stepwise transformation of an abstract 
specification into an executable code [24]. Once a formal 
specification is written in Z, it can further be refined and 
transformed into an implemented system. 

3. Parsers and Context Free Grammar 

Verifying compiler is a branch of software engineering 
that deals to show or prove that a compiler behaves 
according to its language specification. Developing com- 
piler using testing and formal methods are two most 
common techniques for compiler validation and verifi- 
cation. Testing of compiler has various disadvantages 
similar to computer programs testing, for example, it is 
hard to prove that compiler is completely error-free or 
optimized. On the other hand, the primary objective of 
writing a compiler is to prove that it is correct and error 
free. There are various research papers referring that 
many tested compilers have significant number of bugs 
and errors in the code [25]. Formal methods are used in 
compiler validation and verification to find proofs re- 
ducing complexity and ensuring correctness of the con- 
struction procedure. 

Because of an accuracy needed, complexity in size and 
optimization required, compiler construction is an ad- 
vanced research area, and as a result construction of a 
fully verified compiler is a challenge of the twenty first 
century. The main functionality of a compiler is to trans- 
late a source code to an executable optimized machine 
code correctly. The accuracy in compiler construction is 
required because the bugs in it can lead to an incorrect 
generated machine code even the source code is verified.  
Constructing and verifying parser is an important phase 
of a compiler whose functionality is to analyze a sequ- 
ence of tokens to determine the grammatical structure 
with respect to a given grammar. Top-down and bottom- 
up parsing are two main approaches of parsing. In 
bottom-up parsing, tokens are consumed from left to 
right and right-most derivations are used from the given 
set of productions of the grammar. LR(K) and shift- 
reduce parsers are examples of bottom-up parsers. The 
context-free grammar (CFG) has an important role in 
verification of parser in a compiler. 

CFG was developed by Chomsky who described lin- 
guistics in a grammatical form and converted into mathe- 
matical models providing a precise mechanism of des- 
cribing the languages. The CFG provides a simple and an 
efficient approach of parsing, it can be determined to 
show that a particular pattern can be generated, and the 
way of generation is determined as well. Every CFG 
without null production has an equivalent grammar in 
Chomsky Normal Form (CNF). By equivalence, we 
mean both the grammars generate the same language. 
The CNF grammar is important in both theoretical and 
practical aspects. For example, using CNF, it can be de- 
cided for a given input if it can be accepted in a poly-  

nomial time algorithm. Context-free languages have their 
own limitations as well. For example, some operators 
which are well-defined in other models of automata 
theory do not behave well in context-free grammar. As 
an example, the intersection of two context-free langu- 
ages, is not context-free in general. Similarly, the com- 
plement of a CFG may not be context-free. 

There are various applications of context-free gram- 
mar in addition to compilers. Robotics, software engin- 
eering and maintenance, speech recognition are few app- 
lication areas of it [26]. Applications of context-free 
grammar in pattern recognition increase an accuracy of 
the patterns to be recognized. This is because it can pro- 
vide a higher level of abstraction by defining the seman- 
tics rules for patterns as compared to other specifications 
techniques, for example, strings and regular expressions. 
This abstract level semantic analysis can be used to re- 
duce the false identification of the patterns [27]. The app- 
lications of pattern recognition can be observed every- 
where from language processing to computer networks. 
In speech recognition, the spoken words can be generated 
by CFG using dynamic programming algorithms. In soft- 
ware engineering, the components in a source code are 
recognized using context-free grammar [28]. As the out- 
put of parsing is larger and less-ambiguous, therefore, for 
interactive voice response systems, the use of CFG can 
be highly effective [29,30]. 

4. LR(K) Formal Analysis 

In this section, formal specification of LR(K), for K = 1, 
is described for parsing analysis of an input strings and a 
language. The ambiguity of a language is checked and its 
verification is done to generate the correct code. To for- 
malize the parser, first the formal definition of context- 
free grammar is given. The context-free grammar is a 4- 
tuple (N, T, R, S0) where: 
 N is a finite set of variables called non-terminal repre- 

senting different types of clauses in a sentence and 
showing states in the parsing tree; 

 T is a finite set of terminals where final contents of an 
input sentence are based on a set of terminals; 

 R is a relation consisting of set of all the rules or 
productions of the grammar; 

 S0 is a start variable used to represent the whole input 
string and initial state in the parsing tree. 

In context-free grammar, every rule is of the form: S 
→ t where S is a non-terminal consisting of a single 
character and t is a string containing only terminals or 
combination of terminals and non-terminals. The t might 
be an empty string. All notations of the type S → t are 
called rules or productions and are applied in a sequence 
to produce a parsing tree. The parsing tree ends with 
terminals termed as leaves of the tree where each internal 
node of the tree is a non-terminal producing one or more 
further nodes. The left hand side of a production rule is 
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always a single non-terminal. Since all rules have non- 
terminals on the left hand side and, hence, can easily be 
replaced with the string on the right hand side of the 
production rule. The context in which the symbols occur 
is not important and, hence, the grammar is called 
context-free grammar. The CFG is always recognized by 
a finite state machine having a single infinite tap thereat. 
The current state is pushed at the start and is recovered at 
the end for keeping track of the nested units. 

In the formal analysis, CFG is represented using Z 
notation consisting of 4-tuple as defined above. Mathe- 
matically, R in the definition of CFG is a relation from N 
to (N T)* such that  t  (N T)*, S  N and (S, t) 
R. The notation “*” represents to any combination of 
symbols of N and T. In the specification of CFG, X is de- 
fined as a set of symbols which is a collection of termi- 
nals or non-terminals. We define the sets of non-ter- 
minals by N and set of terminals by T based on the 
definition of X. The X, N and T are defined as sets at an 
abstract level of specification over which operators 
cannot be defined. 

[X]; T = X; N = X 
Formal definition of context-free grammar is given 

below and is represented by the schema Grammer. The 
schema consists of five components, i.e., terminals, non- 
terminals, symbols, productions and inistate representing 
set of terminals, set of non-terminals, set of all symbols 
of the grammar, set of productions and start variable. The 
set of terminals is a type of power set of T, the set of 
non-terminals is a type of power set of N and the set of 
symbols is a power set of X. The productions are a set of 
rules defined by the relation between N and seq X. The 
start variable is of type of N. In the schema, it is des- 
cribed that there exists exactly one rule, (S0, t)  pro- 
ductions where S0 is the start non-terminal and t is a 
string of type seq X. The components of the grammar are 
given in first part of the schema and invariants are 
defined in the second part of it. 

 

 

4.1. Invariants 

 The start variable is an element of non-terminals. 
 The sets of terminals and non-terminals are non- 

empty. 
 There does not exist any element which is common to 

both sets of terminals and non-terminals. 
 Each element in the sets of terminals and non-ter- 

minals is an element of the set of symbols.  
 Each element in the set of symbols is an element of 

the sets of terminals or non-terminals. 
 The domain of production relation is a subset of the 

non-terminals. 
 Each element in the range of production relation is a 

subset of set of symbols. 
 There exists at least one production rule which con- 

tains start variable on the left hand side of it. 

4.2. Derivation from Production Rules 

In this section, process of derivations is described to be 
used for parsing analysis of words and languages using 
right most derivations by the production rules of the 
given grammar. In the formal procedure, the substitution 
are performed recursively to derive a string of terminal 
and non-terminal. Formal definition is given by the sche- 
ma Right Derivations. The schema consist of three compo- 
nents gram, single and multiple representing grammar, 
single derivation and multiple derivations based on the 
production rules. First, a process of generating a word is 
described and then extended to generate the whole lan-
guage. If s1 and s2 are two strings, we say s1 yields s2 if 
∃ a∈N and b, s3, s4∈ seq X such that 1 3 4s s a s

 
 

and 2 3 4s s b s
 

 where s4 is a sequence of terminals. 
It is noted that a is an element in set of variables, the 
ranges of sequences b, s3 are subsets of symbols and (a, 
b) is a production rule. 
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4.3. Words Parsing Analysis 

Now we describe bottom-up parsing analysis of a se-
quence of tokens generated from the lexical analyzer 
using the schema LRW1. The schema consists of three 
components that is gram, word? and multiple. The defi-
nitions and types of gram and multiple are same as de-
fined above. The variable word? is an input string to be 
generated by the parser using bottom-up approach based 
on the productions rules. A sequence of derivations using 
right most derivations is used as defined above. In the 
specification, it is described that word? can be generated 
if there exists a sequence of derivations consisting of 
order pairs (w(i), w(i + 1)) where w(i) produces w(i + 1). 
As we are describing LR(1), the input is read from left to 
right where production are used from the right side of the 
derivation procedure. 

 

 
 
Now we check the ambiguity of the word generated 

using the schema LRW1A. The schema consists of same 
three components gram, word? and multiple as in case of 
derivation of the word. In the schema, it is stated that 
word is ambiguously generated if there exists two deriva-
tions or parsing trees for the same word. 

 

 

In the schema given below, it is verified that the given 
word of the language is generated unambiguously. In the 
schema, it is stated that word is unambiguously generated 
if there exists two derivations or parsing trees for the 
same word then both the parsing trees must be same. 

 

 

4.4. Language Parsing Analysis  

Finally, verification of a language generated from a con- 
text-free grammar is done using right most derivation. 
The verification procedure of a word is defined above 
which is extended now to the whole language. For this 
purpose, the schema LRL1 given below is defined which 
consists of three components that is gram, language? and 
multiple. The variable language? is an input language to 
be generated by the parser using bottom-up approach. A 
sequence of derivations using right most derivations is 
used as in case of derivation of a word. In the specifica-
tion, it is described that language? is generated if for any 
word in the language there exists a sequence of deriva-
tions consisting of order pairs (s(i), s(i + 1)) where s(i) 
produces s(i + 1). 
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In next, we check the ambiguity of the language using 
the schema LRL1A. The schema consists of same three 
components gram, language? and multiple as in case of 
derivation of the language. In the schema, it is stated that 
language is ambiguously generated if there a word in the 
language such that there exists two derivations or parsing 
trees for the word. 

 

 
 
In the schema given below, it is verified that the given 

language is generated unambiguously. In the schema, it 
is stated that language is unambiguous if for any word if 
there exists two derivations or parsing trees for the same 
word then both the parsing trees must be same. Grammar 
used, input language to be generated and derivation rules 
are defined in first part of the schema and language deri-
vation process is described in the second part of the 
schema. This complete our formal model for construction 
of LR(1). 

 

 

5. Model Analysis 

In this section, formal analysis is done for the specifi- 
cation. Although computer tools are rigorously used for 
the formal specification but, on the hand, there does not 
exist any real computer tool which may assure about 
complete correctness of a formal model. Therefore, even 
the specification is well-written using any of the formal 
specification languages it may contain potential bugs or 
errors. That is an art of writing a formal specification 
never guarantee that the system is correct, complete and 
consistent. But if the specification is checked and ana- 
lyzed with a computer tool it certainly increases the con- 
fidence over the system to be developed by identifying the 
errors, if exists, in the syntax and semantics of the formal 
specification.  

The Z/Eves is one of the powerful tools which is used 
for analyzing the specification written for construction of 
LR(1). A snapshot of the tool for analyzing the formal 
specification using Z/Eves tool is presented in Figure 1. 
The first column on the left of the figure shows status of 
the syntax checking and the second column represents 
the proof correctness of the specification. The symbol 
“Y” stands that the specification is correct syntactically 
and proof is also correct while the symbol “N” shows 
that errors exist which can be listed with the tool support. 
All the schemas are checked to prove that specification is 
correct in syntax and has a correct proof. Some proofs 
were conducted by reduction and rewriting techniques 
available in the tool. 

Summary of the results of the formal specification is 
presented in Table 1. In the first column of the table, 
name of schema is given for which the specification is 
described. These schemas are analyzed by using the mo- 
del exploration techniques provided in the Z/Eves tool. 
The symbol “Y” in column 2 indicates that all the sche- 
mas are well-written and proved automatically. Simi- 
larly, domain checking, reduction and proof by reduction 
are represented in columns 3, 4 and 5, respectively. The 
character “Y*” annotated with “*” describes that the sche- 
mas are proved by performing reduction on the predi- 
 

Table 1. Results of model analysis. 

Schema Name 
Syntax Type 

Check 
Domain 
Check 

Reduction Proof

Grammer Y Y Y Y 

Right Derivations Y Y Y Y 

LRW1 Y Y Y* Y 

LRW1A Y Y Y Y 

LRW1U Y Y Y Y 

LRL1 Y Y Y Y 

LRL1A Y Y Y* Y 

LRL1U Y Y Y* Y 
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Figure 1. Snapshot of the model analysis. 
 
cates to make the specification more meaningful. 

6. Conclusions and Future Work 

Design, construction and verification of a correct com- 
piler is more important than verification of the source 
programs to be compiled. Verification of a compiler assures 
guarantee that the executable code generated from the 
source code behaves exactly as described in the source 
program. Parsing analysis is an important part of com- 
piler construction. Bottom-up parsing is suitable for auto- 
matic parser generation and handles a larger class of gra- 
mmars. In this paper, formal procedure of LR(1) parser is 
proposed and verified. Identification and analysis of am- 
biguities is provided which is a real challenge in parsers 
development. Regular expressions and context-free gra- 
mmars are widely used in construction of the compiler. 
Regular expressions are not much powerful and are used 
to identify tokens from the source program. The design 
and construction of a complier can be benefited by link- 
ing context-free grammar to Z specification. This is be- 
cause Z enhances reliability and correctness being ab- 
stract in nature and having computer tool support. In this 
research, formal specification helped us to make it possi- 
ble describing unambiguous and easy to understand the 
resultant formal model. The specification is verified and 
validated using Z/Eves tool. 

An extensive survey of existing work was performed 
before initiating this research. Some of the interesting 

works [31-39] were found but our approach is different 
because of abstract and conceptual level integration of 
CFG and Z. In the benefits of using Z, every object is 
assigned a unique type providing a useful programming 
practice. Several type checking tools exist to support the 
formal specification. The Z/Eves is a powerful tool to 
prove and analyze the specification. The rich mathemati- 
cal notations made it possible to reason about behavior of 
a system more effectively. Formalization of some other 
concepts, useful in compiler verification, are in progress 
and will appear soon in our future work. 
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