
J. Software Engineering & Applications, 2010, 3, 998-1004
doi:10.4236/jsea.2010.310117 Published Online October 2010 (http://www.SciRP.org/journal/jsea)

Copyright © 2010 SciRes. JSEA

A New Approach to Software Development Fusion
Process Model

Rupinder Kaur, Jyotsna Sengupta

Department of Computer Science; Punjabi University, Patiala, India.
Email: rupadeo@gmail.com

Received August 12th, 2010; revised August 25th, 2010; accepted September 3rd, 2010.

ABSTRACT

There are several software process models that have been proposed and are based on task involved in developing and
maintaining software product. The large number of software projects not meeting their expectation in terms of func-
tionality, cost, delivery schedule and effective project management appears to be lacking. In this paper, we present a
new software fusion process model, which depicts the essential phases of a software project from initiate stage until the
product is retired. Fusion is component based software process model, where each component implements a problem
solving model. This approach reduces the risk associated with cost and time, as these risks will be limited to a compo-
nent only and ensure the overall quality of software system by considering the changing requirements of customer, risk
assessment, identification, evaluation and composition of relative concerns at each phase of development process.

Keywords: Process Model, Fusion Process Model, Component Driven Development Approach, 3C-Model

1. Introduction

The importance of software process model for develop-
ment of software product is well known, which include
various steps that guide the team with common goals and
strategies. Several software life cycle models or process
models have appeared till now. All these models share
certain characteristics. They identify stakeholder goal,
specify key activities to be followed according to a cer-
tain sequence, work within time constraints and are based
on what has been learned from past experiences.

The evolution of software process models has played a
significant role in how models have diversified over time.
Software development process and general solutions for
organizing the software process belong to the standard
themes of software engineering and have challenged
theoreticians and practitioners for a long time. The
causes of the software crisis were linked to the overall
complexity of the software process and the relative im-
maturity of software engineering as a profession. The
crisis manifested itself in several ways: projects running
over-budge; projects running over-time; software was
very inefficient; software was of low quality; software
often did not meet requirements; projects were unman-
ageable and code difficult to maintain and software was
never delivered.

The overall success in the development of software is
still not achieved because each software development
process or model consider only one or few concerns and
specify a phase wise abstraction for the development, but
no definite approach or model is specified for the phases
of software process model. In current software engineer-
ing practices, ever changing requirements during the de-
velopment process for large software development is still
not managed by software process models. The solution
space analysis concept of software engineering is very
effective, but this concept is not completely integrated to
software development yet. Alternative management, a
technique which is used in mature engineering disci-
plines is not explicitly followed in software engineering
discipline. The software development models till date
follow fixed or iterative design and development ap-
proach. There is no scope for dynamic testing in software
development process.

To make the software development effective and reli-
able, a new approach is required. Fusion process model is
based on component driven development approach,
which is different from component base software devel-
opment. In Fusion process model, each component im-
plements a problem solving model. It includes the ex-
plicit processes for technically analyzing the problem,
solution space analysis, alternative management, dy-

A New Approach to Software Development Fusion Process Model 999

namic design specification and development and scope
for dynamic testing. In this paper, we present the new
software process model which will address all the con-
cerns and consider each phase of software development
as software development process and provide an effec-
tive model for software development phases.

The main contributions of this paper are: a proposal of
fusion based process model that will manage the con-
cerns in software development and an integration of
3C-Model [1] in fusion process model for different
phases that include the concept of Context (environment),
Capture (Problem Solving concept for various develop-
ment phases) and Control (based on environment and
development constraints, quality criteria, mathematical
and optimization techniques).

In Section 2, we discuss existing software develop-
ment approaches with their shortcomings. Then we give
a brief idea of problem solving model named 3C-Model
in Section 3. Next, we present the fusion process model
for effective and reliable software development in Sec-
tion 4. Finally, we conclude and discuss future work in
Section 5.

2. Related Approaches

Royce [2] proposed the first and most influential ap-
proach which is referred to as the waterfall model and
has become the base for other models. In this approach,
the whole process of software development is divided
into separate process phases. Humphrey and Kellner [3]
criticize the model by discussing the problems which are
faced after implementing the model. These have linear
structure and rigid design, rather than a dynamic prob-
lem-solving process, which would help in implementing
the learning that result from user feedback and involve-
ment. There was a change in software development ap-
proach with incremental and iterative models, also called
phased development models. Graham [4] contrasted in-
cremental development unfavorably with the fixed char-
acter of the waterfall model and suggested this approach
to be for small systems only.

Boehm [5] proposed an approach which consists of a
series of Waterfall-like cycles. Each cycle addresses the
development of the software product at a further level of
detail. Several papers indicate that for the development
of software system, the identification of concerns, objec-
tive and alternatives is vital [6,7], and [8]. Later Boehm
and Prasanta Bose [9] extended the spiral model to a
variant called the Win-Win Spiral Model, also called
win-win stakeholder approach to converge on a system’s
next level objectives, constrains and alternatives. It de-
termines three milestones: life-cycle objectives, life-cycle
architecture, and initial operational capability, which
served as basis for software development process. This

model has been formally specified and analyzed for con-
sistency but only little is known about the correctness
and usefulness of assumptions made during this process.
The process and outcome of negotiations are not well
defined [10].

Harlan Mills [11] proposed clean room approach, a
quality control driven philosophy which is intended to
improve the manageability and predictability of devel-
opment process. This approach does not provide life cy-
cle model, it provides specification for the software de-
velopment. This approach does not provide life cycle
model, it provides specification for the software devel-
opment.

Alan Cline [12] paper work shows Joint Application
Development (JAD) technique, which is an attempt to
build collaboration process model. It is a technique for
engaging a group or team of software developers, testers,
customers, and prospective end-users in requirement
specification and development of prototype. This is suit-
able for open source software development projects that
rely on group email discussions among globally distrib-
uted users and developers [13]. J.Neighbors [14] laid
stress on reusable software components guided by an
application domain analysis, which is an alternative ap-
proach to developing software. Anton Jansen and Jan
Bosch [15] research shows new perspective on software
architecture that views software architecture as a compo-
sition of a set of explicit design decisions. This makes
design decisions an explicit part of software architecture,
which has become accepted concept in research and in-
dustry. The reuse model follows the component based
approach, but this approach is not guided by domain
analysis. It does not provide complete life cycle for soft-
ware development because it considers only those sys-
tems which can be built using existing components only.

Rich Hilliard [16] gives an overview of the contribu-
tions of IEEE 1471 to the discipline of software archi-
tecture representation which fits in the theory of phased
development model for different phases of software de-
velopment model. The research done by Jonathan Lee
[17] de-scribes the software engineering as problem
solving process. Where the software process model ap-
proaches divide the development process into various
phases/activities or according to functionality. But these
models still don’t follow the technique of technically
analyzing the problem, where the technical problems are
identified and divided into sub-problems that are first
independently solved and later integrated in the overall
solution. The client problems may be ill-defined and in-
clude many vague requirements, but the main focus is on
precise formulation of objectives, quality criteria and the
constraints for given requirement or problem. In techni-
cal analysis part, we can easily put this specification on

Copyright © 2010 SciRes. JSEA

A New Approach to Software Development Fusion Process Model 1000

each small unit of problem.
Providing a solution for a given problem is not simple,

it involves the accumulation and use of huge amount of
knowledge. The solution space analysis approach is still
not integrated into software process models. It aims to
identify the right solution domains for the given prob-
lems and extract the relevant knowledge from these do-
mains to come up with a feasible solution. To provide
quality software, it is necessary to identify the important
knowledge sources for a given problem. Not all the solu-
tions identified for a given problem are desirable. In the
alternative management process, different alternative
solutions are searched and evaluated against explicit
quality criteria [17,18]. The high risk in software devel-
opment led to the inclusion of managerial, financial and
psychological factors in models [19,20], and [21]. Shaw
and Garlan [22] identify seven levels of design specifica-
tion capability which supports the concept of components,
composition, validation, alternatives and finally automa-
tion. In the component based development, cost, time and
reliability risk for an organization developing software
system will shrink to component level that can be man-
aged effectively at any stage.

Thus, a number of software process models have been
studied. Most of the existing techniques manage one or
more concerns of development process. From the insight
gained from this study, contemporary software process
models is needed, which handles various issues like re-
quirement changes, software reuse, flexible design, user
involvement and tight control over quality, cost and
schedule can be overcome.

3. 3C Model

The 3C Model helps in generalizing the software devel-
opment process in which a problem specification is
transformed to a solution by decomposing the problem
into sub-problems that are independently solved and in-
tegrated into an overall solution. This consists of multiple
cycles; each cycle in 3C-Model corresponds to a trans-
formation from one state to another, consisting of a
problem specification state and a design state. The prob-
lem specification state defines the set of problems that
still needs to be solved. The design state represents the
tentative design solution that has been lastly defined.
Initially, the design state is empty and the problem speci-
fication state includes the initial requirements. After each
state transformation, a sub-problem is solved. In addition
a new sub-problem may be added to the problem speci-
fication state. Each transformation process involves an
evaluation step whereby it is evaluated whether the de-
sign solutions so far (design state) are consistent with the
initial requirements and if there are any additional re-
quirements identified during the evaluation. In particular,

3C-Process includes an explicit phase for searching de-
sign alternatives in the corresponding solution space and
selecting these alternatives based on explicit quality cri-
teria.

4. Fusion Process Model

Fusion is component driven software process model,
where each phase implements a problem solving model.
These phases address what is to be built, how it will be
built, building it and making it high quality. The problem
solving model includes the explicit processes for techni-
cally analyzing the problem, solution space analysis, al-
ternative analysis, dynamic design and development and
scope for dynamic testing. With the problem analysis
process, technical problems are identified and structured
into loosely coupled sub-problems that are first inde-
pendently solved and later integrated in the overall solu-
tion. In the solution space analysis process, requirements
are specified using any representation and this should be
refined along the software development process until the
final software is delivered. In the alternative analysis
process, different alternative solutions are searched and
evaluated against explicit quality criteria. Dynamic de-
sign and development is component base approach,
which provides scope for dynamic changes during the
development life cycle. As fusion process follows the
component design approach, it provides scope for dy-
namic testing (component base testing).

3C-Model assist fusion process model in generalizing
the process of solving the problems in each phase. It im-
plements component driven development approach,
which provides a dynamic nature to complete software
development. This makes the software development
scope wider and provides firmer control over software
development process. Because of the component driven
approach, the risk associated with cost and time will be
limited to component only and ensure the overall quality
of software system, reduce the development cost and
time by considering the changing requirements of cus-
tomer, risk assessment, identification, evaluation and
composition of relative concerns at each phase of devel-
opment process. There are five fundamental phases in
fusion process model and one fusion process controller to
control and co-ordinate the overall development process,
as shown in Figure 1.

4.1. Project Preparation

The project preparation phase provides the initial plan-
ning and preparation for software development project.
Although each project has its own unique objectives,
scope, and priorities, this phase assists in identifying and
planning the primary focus areas that need to be consid-
ered. These include technical as well as project management

Copyright © 2010 SciRes. JSEA

A New Approach to Software Development Fusion Process Model

Copyright © 2010 SciRes. JSEA

1001

Project
Preparation

Fusion Process Controller

Software
Blueprint

Realization Testing

Go Live and
Support

Figure 1. Fusion process model.

issues. Addressing these issues early in development will
ensures that the project will proceed efficiently and es-
tablish a firm foundation for a successful development.
While developing a software project, requirements defi-
nition is often considered as a one-time activity. In fact it
starts with initiation of the project and is on-going activ-
ity. In feasibility analysis, requirements definition plays
an important role. Every project has a feasibility analysis,
regardless of the methodology used. It is essential to in-
clude important requirements definitions in feasibility
analysis. When done poorly, as so often happens, the
project is almost certainly destined to fail. Feasibility
analysis is often referred as “project initiation” whether
or not to do a project. Essentially software project team
identifies what they expect the project to produce and
whether it seems worthwhile to do so. If a project exists,
team has made decision about it.

Extracting requirements of a desired software product
is the first task in creating it. This process is called re-
quirements elicitation. While customers probably believe
they know what the software should do, it may require
skill and experience in software engineering to recognize
incomplete, ambiguous or contradictory requirements.
Requirement analysis process provides an understanding
of the client perspective of the software system. After
requirements elicitation, client requirements are mapped
to technical problems in the technical problem analysis
process. The problem analysis process consists of the
following steps:
 Generalize the Requirements: whereby the requi-

rements are abstracted and generalized.
 Identify the Sub-Problems: whereby technical pro-

blems are identified from the generalized require-
ments.

 Specify the Sub-Problems: whereby the overall
technical problem is decomposed into sub-problems.

 Prioritize the Sub-Problems: whereby the identified
technical problems are prioritized before they are
processed.

Problem reduction is a strategic approach to manage

complexity. A widely known method for solving large
and complex problems is to split them into simpler prob-
lems and then iteratively apply this process. The process
is put into action until the sub-problems are reduced to a
level of complexity at which they are easily solved or at
least exhibit an irreducible level of difficulty. This para-
digm for solving problems is called problem reduction.
In this, a problem in a given domain is decomposed into
a structured set of sub-problems in the same domain.
Each sub-problem is evaluated for suitability to be fur-
ther decomposed until each sub-problem is determined
solvable. This problem reduction paradigm has been
successfully applied to problems in a variety of applica-
tion domains and in many phases of the process in which
a top-down decision making strategy is applied.

The problem reduction can be expensive if not handled
properly. Often, the same process must be done repeat-
edly for a similar type of problem with only minor dif-
ferences. As a result, problem reduction may cost even
more over time as problems become more complex. An
important approach for handling the side effects of prob-
lem reduction is to build reusable sub-problems and solu-
tions, instead of continually reinventing a related system
reductive hierarchy. Such reusable sub-problems and
solutions can be stored in a components library and re-
trieved as required. Complete solutions can then be ob-
tained by using and reassembling appropriate sub-solution
components.

4.2. Software Design

Architecture is established in the design phase. This
phase starts with the inputs delivered by the initial phase
and maps the requirements into architecture. The archi-
tecture defines the components, their interfaces and be-
haviors. The deliverable design document is the archi-
tecture. The design document describes a plan to imple-
ment the requirements. This phase represents the "how''
phase. Details on computer programming languages and
environments, machines, packages, application architec-
ture, distributed architecture layering, memory size, plat-

A New Approach to Software Development Fusion Process Model 1002

form, algorithms, data structures, global type definitions,
interfaces, and many other engineering details are estab-
lished. The design may include the usage of existing
components.

The Solution Domain Analysis process applied in
software design phase aims to provide a solution domain
model that will be utilized to extract the architecture
de-sign solution. It consists of the following activities:
 Identify and prioritize the solution domains for

each sub-problem
 Identify and prioritize knowledge sources for each

solution domain.
 Extract solution domain concepts from solution

domain knowledge.
 Structure the solution domain concepts.
 Refine the solution domain concepts.

4.2.1. Identify and Prioritize the Solution Domains
To the overall problem and each sub-problem, search for
the solution domains are prepared that provide the solu-
tion abstractions to solve the technical problem. The so-
lution domains for the overall problem are more general
than the solution domains for the sub-problems. In addi-
tion, each sub-problem may be recursively structured
into sub-problems requiring more concrete solution do-
mains.

An obstacle in the search for solution domains is pos-
sibly the large space of solution domains which leads to a
time-consuming search process. To support this process,
categorizations of the solution domain knowledge into
smaller sub-domains had been executed. There are dif-
ferent categorization possibilities. The solution domain
knowledge can be categorized into application, mathe-
matical and computer science domain knowledge etc.
The application domain knowledge refers to the solution
domain knowledge that defines the nature of the applica-
tion, such as reservation applications, banking applica-
tions, control systems etc. Mathematical solution domain
knowledge refers to mathematical knowledge such as
logic, quantification, calculation and optimization tech-
niques, etc. Computer science domain refers to knowl-
edge of the computer science solution abstractions, such
as programming languages, operating systems, databases,
analysis and design methods etc.

4.2.2. Identify and Prioritize Knowledge Sources
Each identified solution domain covers a wide range of
solution domain knowledge sources. These knowledge
sources may not all be suitable and vary in quality. For
distinguishing and validating the solution domain
knowledge sources we basically consider the quality
factors of objectivity and relevancy. The objectivity
quality factor refers to the solution domain knowledge
sources itself, and defines the general acceptance of the

knowledge source. The relevancy factor refers to the
relevancy of the solution domain knowledge for solving
the identified technical problem.

4.2.3. Extract Solution Domain Concepts from
Solution Domain Knowledge

Once the solution domains have been identified and pri-
oritized, the knowledge acquisition from the solution
domain sources can be initiated. The solution domain
knowledge may include a lot of knowledge that is cov-
ered by books, research papers, case studies, reference
manuals, existing prototypes/systems etc. Due to the
large size of the solution domain knowledge, the knowl-
edge acquisition process can be a labor-intensive activity,
so a systematic approach for knowledge acquisition is
required.

In this approach, we make a distinction between the
knowledge elicitation and concept formation process.
Knowledge elicitation focuses on extracting the knowl-
edge and verifying the correctness and consistency of the
extracted data. Hereby, the irrelevant data is disregarded
and the relevant data is provided as input for the concept
formation process. Knowledge elicitation techniques are
eminent and its role in the knowledge acquisition process
is reasonably well-understood. The concept formation
process is mapping the extracted knowledge with techni-
cal problems. The concept formation process utilizes the
knowledge and get abstract to form concept. One of the
basic abstraction techniques in forming concepts is by
identifying the variations and commonalities of extract-
ing information from the knowledge sources.

4.2.4. Structure the Solution Domain Concept
The identified solution domain concepts are structured
using parent-child relationship. Here all the attributes and
operations associated with the concept are defined.

4.2.5. Refinement of Solution Domain Concepts
After identifying the top-level conceptual architecture,
the focus is on each sub-problem and follows the same
process. The refinement may be necessary if the archi-
tectural concepts have a complex structure themselves
and this structure is of importance for the eventual sys-
tem.

The ordering of the refinement process is determined
by the ordering of the problems with respect to their pre-
viously determined priorities. Architectural concepts that
represent problems with higher priorities are handled first
and in the similar manner the refinement of the architec-
tural concepts is done.

4.3. Realization

The purpose of realization phase is to develop software
system for requirements based on the software design;

Copyright © 2010 SciRes. JSEA

A New Approach to Software Development Fusion Process Model 1003

the team builds the components either from scratch or by
composition. Given the architecture document from the
design phase and the requirement document from the
analysis phase, the team builds exactly what has been
requested, though there is still room for innovation and
flexibility.

4.3.1. Alternative Design Space Analysis
The alternative space is define as a set of possible design
solutions that can be derived from a given conceptual
software architecture. The alternative design space
analysis aims to depict this space and consists of the two
sub-processes: define the alternatives for each concept
and describe the constraints. Let us now explain these
sub-processes in more detail.

4.3.1.1. Define the Alternatives for each Concept
In this approach the various architecture design alterna-
tives are derived from well-established concepts in the
solution domain that have been leveraged to the identi-
fied technical problems.

4.3.1.2. Describe the Constraints
The total set of alternatives per concept may be too large
and/or not relevant for solving the identified problems.
Therefore, to define the boundaries of the architecture it
is necessary to identify the relevant alternatives and omit
the irrelevant ones.

4.4. Testing

Quality of software product is very important while de-
veloping it. Many companies have not learned that qual-
ity is important and deliver more claimed functionality
but at a lower quality level. It is much easier to explain to
a customer why there is a missing feature than to explain
to a customer why the product lacks quality. A customer
satisfied with the quality of a product will remain loyal
and wait for new functionality in the next version. Qual-
ity is a distinguishing attribute of a system indicating the
degree of excellence.

In many software engineering methodologies, the test-
ing phase is a separate phase which is performed by a
different team after the implementation is complete.
There is merit in this approach; it is hard to see one’s
own mistakes, and a fresh eye can discover obvious er-
rors much faster than the person who has read and
re-read the material many times. Unfortunately, delegat-
ing testing to another team leads to a slack attitude re-
garding quality of the implementation team.

Alternatively, another approach is to delegate testing
in the whole organization. If the teams are to be known
as craftsmen, then the teams should be responsible for
establishing high quality across all phases. Sometimes,
an attitude change must take place to guarantee quality.

The testing technique is from the perspective of the
system provider. Because it is nearly impossible to du-
plicate every possible customer's environment and be-
cause systems are released with yet-to-be-discovered
errors, the customer plays an important, though reluctant,
role in testing.

4.5. Go Live and Support

The purpose of the Go Live and Support phase is to cut
over to live productive operation and to continuously
support and improve live operations. There are two dis-
tinct periods of this phase:

4.5.1. Project End
During the time when the system is first live, all issues
and problems are resolved, transition to the production
support team is finalized, knowledge transfer is com-
pleted, and the project is signed off.

4.5.2. Continuous Improvement
Now that the project is over, the production support team
monitors the system and resolves live business process
issues. Proper change management procedures are estab-
lished, and ongoing end-user training is conducted. Plans
are made to continuously review and improve business
processes.

4.6. Fusion Process Controller

The controller part is not a phase in process model, but it
is integral part of fusion process model. The controller
part helps to achieve the component driven approach by
listing the details of components which are added due to
requirement changes or because of new requirements. By
implementing Fusion Process Controller the current
software development process will not be affected by
changes required due to new requirements or modifica-
tions. The affected components can be taken care sepa-
rately till these components matches with the current
development process.

5. Conclusions

We have presented a Fusion Process Model for software
development process and discussed the concept of
3C-Model for each phase of development process model.
In this approach transformation of a problem specifica-
tion to a solution is made by decomposing the problem
into sub-problems that are independently solved and in-
tegrated into an overall solution. This process consist of
multiple cycles, were each cycle transform from problem
specification state to design state. After each state
trans-formation, a sub-problem is solved and a new
sub-problem possibly be added to the problem specifica-
tion state. Every transformation process engages an

Copyright © 2010 SciRes. JSEA

A New Approach to Software Development Fusion Process Model

Copyright © 2010 SciRes. JSEA

1004

evaluation step, evaluation of design state of the initial
requirements is done and verifies if additional require-
ments identified during this step. In particular, this proc-
ess includes an explicit phase for searching design alter-
natives in the corresponding solution space and selecting
these alternatives based on explicit quality criteria. Our
work has shown that how this approach helps in control-
ling the overall development process by implementing
component based approach. Since it is component driven
approach, the threat tied to cost and time will be re-
stricted to component only, ensuring the overall quality
of software product, considering the changing require-
ments of customer, risk assessment, identification,
evaluation and composition of relative concerns at each
phase of development process.

REFERENCES

[1] R. Kaur and J. Sengupta, “Development and Analysis of
3C-Model for Software Development Lifecycle,” IEEE
2nd International Conference on Computer Engineering
and Technology (ICCET 2010), 16-18 April 2010,
Chengdu, China, pp. 688-691.

[2] W. W. Royce, “Managing the Development of Large
Software System,” Proceedings 9th International Con-
ference on Software Engineering, IEEE Computer Society,
USA, 1987, pp. 328-338.

[3] W. S. Humphrey and M. I. Kellner, “Software Process
Modeling: Principles of Entity Process Models,” Techni-
cal Report, ACM Press, New York, February 1989, pp.
331-342.

[4] D. Graham, “Incremental Development and Delivery for
Large Software System,” IEEE Computers, Vol. 25, No.
11, 1992, pp. 1-9.

[5] B. Boehm, “Software Engineering Economics,” IEEE
Transaction on Software Engineering, Vol. 10, No. 1,
1984, pp. 4-21.

[6] B. Boehm, “Anchoring the Software Process,” IEEE
Transaction on Software Engineering, Vol. 13, No. 4,
1996, pp. 79-82.

[7] B. Boehm, “A Sprial Model of Software Development
and Enhancement,” IEEE Computer, Vol. 21, No. 5, 1988,
pp. 61-72.

[8] B. Boehm and D. Port, “Escaping the Software Tar Pit:
Model Clashes and How to Avoid Them,” Software En-
gineering Note, Vol. 24, No. 1, 1999, pp. 36-48.

[9] B. Boehm and P. Bose, “A Collaborative Spiral Software
Process Model Based on Theory W. Processing of ICSP,”
IEEE Press, New York, 1994.

[10] A. Egyed and B. Boehm, “Analysis of System Require-
ments Negotiation Behavior Patterns,” 7th Annual Inter-
national Symposium Engineering, USA, 1997, pp. 269-
276.

[11] F. P. Deek, J. A. M. McHugh and O. M. Eljabiri, “Strate-
gic Software Engineering: An Interdisciplinary Approach,”
Auerbach Publications, USA, 2005, pp. 31-35.

[12] A. Cline, “Joint Application Development (JAD),” 2010.
http://www.carolla.com/ wp-jad.htm

[13] W. Scacchi, “Process Models in Software Engineering,”
Institute for Software Research, University of California,
Irvine, October 2001.

[14] J. Neighbors, “The Draco Approach to Constructing
Software from Reusable Components,” IEEE Transaction
on Software Engineering, Vol. 10, No. 5, 1984, pp. 564-
574.

[15] A. Jansen and J. Bosch, “Software Architecture as a Set
of Architecture Design Decision,” IEEE Computer Soci-
ety, 2005, pp. 109-120.

[16] R. Hilliard, “IEEE Std. 1471 and Beyond,” January 2001,
pp. 1-3.

[17] J. Lee, “Software Engineering with Computational Intel-
ligence,” Springer Publication, New York, 2003, pp. 183-
191,

[18] X. Ferre and S. Vegas, “An Evaluation of Domain Analy-
sis Methods,” 4th CASE/IFIP8 International Workshop in
Evaluation of Modeling in System Analysis and Design,
1999, pp. 2-6.

[19] A. Hamid and Madnick, “Lesson Learned from Modeling
the Dynamics of Software Development,” Communica-
tion ACM, Vol. 32, No. 12, 1989, pp. 14-26.

[20] J. Ropponen and Lyytinen, “Components of Software
Development Risk: How to Address Them?” A Project
Manager Survey, IEEE Transaction on Software Engi-
neering, Vol. 26, No. 2, 2000, pp. 98-112.

[21] B. Boehm, “Software Engineering Economics,” IEEE
Transaction on Software Engineering, Vol. 10, No. 1, 1984,
pp. 4-21.

[22] N. Medvidovic and R. M. Taylor, “A Classification and
Comparison Framework from Software Architecture De-
scription Languages,” IEEE Transactions on Software
Engineering, Vol. 26, No. 1, 2000, pp. 70-93.

