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ABSTRACT 

The importance of investigating particle horizons in order to interpret a cosmological solution of Einstein’s field equa- 
tions has been described. We have presented the formula and studied the particle horizons in some of the cosmological 
models presented in our earlier papers. It is well known that the Friedman-Robertson-Walker (F-R-W) models, the en- 
ergy density of the free gravitational field denoted by ε, equivalently denoted by MacCallum parameter ξ, vanishes but 
the particle horizons exist and thus the former has no bearing on the latter. However, we have shown in our models pre- 
sented herein that ε is related with particle horizons. Further, it is shown that as ε grows, the segment of the correspond- 
ing particle horizon decreases and thus the radius of the corresponding visible universe decreases. 
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1. Introduction 

Cosmology deals with the large scale structure of the 
universe, which by definition contains everything, viz., 
both observable and non observable. To understand the 
physical nature of the universe as a whole, attempts were 
made during 19th century within the frame work of the 
Newtonian theory of gravitation. But, these efforts did 
not fructify since Newtonian gravitation assumed instan- 
taneous propagation of gravitational interaction for which 
there had not been any experimental justification. 

The progress of modern cosmology has been guided 
by both theoretical and observational advances. The sub- 
ject really took off in 1917 with the first cosmological 
solution given by Albert Einstein based on his general 
theory of relativity or theory of gravitation. Since then a 
wide range of cosmological models have been constructed, 
studied and analyzed with varying objectives. 

The Friedman-Robertson-Walker (F-R-W) cosmologi- 
cal models, derived based on the twin assumptions of 
spatial isotropy and homogeneity provides a satisfactory 
description of the observable universe for considerable 
part of its history. However, the existence of inhomoge-
neities in the form of galaxies and clusters as well as the 
anisotropy in the cosmic background radiation could not 
be explained with the help of these models. 

Cosmological models with inhomogeneous density have 
been studied [1-3]. It has been shown [4-7], that the en- 
ergy density of the free gravitational field ε is related to  

both anisotropy and in homogeneity. 
A lot of isotropic and homogeneous cosmological 

models have appeared in literature but a few models with 
the characteristics of anisotropy and in homogeneity. An 
attempt has been made to fill the gap by construction of a 
wide range of anisotropic and inhomogeneous cosmo- 
logical models [8-12]. 

However, in order to interpret a cosmological solution 
of Einstein’s field equations, one should investigate some 
special aspects like horizons [13,14]. It has been studied 
event horizons in cosmology [15]. In the present paper 
we will describe mathematically and provide graphical 
representations of particle horizons which exist in some 
of the models presented in our papers [8-12]. 

The Eigen value of the conformal Weyl tensor in Pet- 
rov’s classification [16] is denoted by ε and is known as 
“the energy density of the free gravitational field” as it 
always coupled with the material energy density ρ. 

In Section 2, following [17,18], we have defined parti- 
cle horizons and list some properties of the horizons. 

In Section 3, we have introduced the most general 
spherically symmetric space-time metric filled with ani- 
sotropic fluid. We have given the solutions of Einstein 
field equations, and expression for the energy density of 
the free gravitational field represented by ε. 

In Section 4, we presented the equations of kinemati- 
cal quantities, MacCallum quantity ξ, and Raychaudhuri’s 
equation for the spherically symmetric models. 

In Section 5, we have given the formula for particle 
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horizons of the most general spherically symmetric met- 
ric. We have investigated the existence of particle hori- 
zons in some of the models discussed in our earlier pa- 
pers and derived formulae for particle horizons in these 
models. The diagrammatic representations of the particle 
horizons studied here have been provided in Figures 1-4. 
In Section 6, we presented direct comparison between the 
Event and Particle horizons and graphical representation 
is provided in Figure 5. In all the figures the radial coor- 
dinate r is taken along the horizontal axis while the time 
coordinate t is taken along the vertical axis. The paper 
ends with concluding remarks in Section 7. 

2. Particle Horizons 

1) Event horizon 
Consider an observer and a photon on its way to the 

observer along a null geodesic. It can happen that the  
 

 

Figure 1. Diagrammatic representation of the particle hori-
zon described by (31) of the space-time metric described by 
(29). 

 

 

Figure 2. Diagrammatic representation of the particle hori-
zon described by (33) of the space-time metric described by 
(32). 

 

Figure 3. Diagram showing the particle horizons described 
by (38) of the space-time metric described by (36) corre-
sponding to   1 8,1 5  and 1 2 . 
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Figure 4. Diagram showing that the particle horizon of the 
space-time metric described by (36) is made up of curved 
segments corresponding to various   values. 

 
space-time is expanding at such a rate that the photon 
never gets to the observer. As Eddington has put it, “light 
is then like a runner on an expanding track, with the win- 
ning post (observer) reseeding from him forever” [18]. 

In such cases there will be two classes of photons on 
every null geodesic through the observer: those which 
reach the observer at a finite time and those who do not. 
They are separated by the aggregate of photons (light 
front) that reach exactly at . The light front is 
called observer’s event horizon. The existence and mo- 
tion of an event horizon depend on the form of expansion 
parameter. The event horizons in cosmology have been 
studied by [15]. 

t  
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Figure 5. Diagram showing the direct comparison between 
Event and Particle horizons of the space-time metric (36) as 
described in the Section 6. Here we have selected   1 5 . 

 
2) Particle horizon 
Suppose that very first photons (light front) emitted by 

the observer at a “big-bang” event are still around. As 
this light front sweeps outwards, towards more and more 
galaxies, the observer at the big-bang and these galaxies 
see each other for the very first time (cosmic instant). 
Hence, at any cosmic instant this light front, called the 
observer’s particle horizon, divides all galaxies into two 
classes relative to the observer: those already in observer’s 
view and all others. 

3) Some properties of horizons 
a) Every galaxy, within A’s event horizon, except A, 

eventually possess out of it. For if B is such a galaxy, 
then A’s horizon photon in the direction of AB is within 
B’s event horizon, and will therefore reach B at a finite 
cosmic time. That is, when B passes out of A’s event 
horizon. 

b) Every galaxy B within A’s event horizon remains 
visible forever at A. For, the event horizon itself brings a 
last view of B. As B approaches A’s event horizon in 
models with infinite expansion, its history, as seen at A, 
gets infinitely dilated, and its light infinitely red-shifted. 
In collapsing models B’s light gets infinitely blue-shifted 
as B approaches the event horizon. 

c) As galaxies are overtaken by A’s particle horizon, 
they come into view at A with infinite red-shift in big- 
bang models, and infinite bleu-shift in models with unlim- 
ited past expansion. 

d) If a model possesses no event horizon, every event 
at every galaxy is seen on every galaxy. For, an invisible 
event implies the existence of event horizon. 

e) If a model possesses no particle horizon, every ob-
server - if necessary by traveling from his original galaxy 
- can be present at any event at any galaxy. For, in prin-

ciple, his only travel restriction is his forward light cone 
at creation; but that would be a particle horizon if all 
galaxies ware not always within it. 

f) If an event horizon exists, two arbitrary events are in 
general not both knowable to one observer, even if he 
travels. For, consider two diametrically opposite events 
outside an event horizon. Their forward light cones can’t 
intersect. But to now either event means being in its for-
ward light cone. 

g) The event and particle horizons, if exist, must cross 
each other within the life time of the model. For, the par- 
ticle horizon was and the event horizon will be, at the 
fundamental particles associated with them. 

h) When a model, in which both event and particle ho- 
rizons exist, is run backward in time (i.e. time reversed), 
the event horizon becomes the particle horizon and vice- 
versa. 

3. Spherically Symmetric Space-Time Metric 

The most general spherically space-time line element can 
be considered as 

 2 2 2 2 2 2e sinds dr R d d dt        2e    (1) 

where  ,  and R   are functions of r  and  only. 
We assume that the material source of the gravitational 
field, filled in the metric, is an anisotropic fluid with the 
energy momentum tensor 

t

   b b b
a a a rT p u u p g p p b

a             (2) 

where 

  0,0,0,exp 2 , 1a a
au u u          (3) 

  exp 2 ,0,0,0 , 1a a
a              (4) 

and r  and p p  represent respectively the radial and 
transverse components of fluid pressure where as   
denotes the proper density of the fluid. The Einstein field 
equations with the cosmological constant  included is 
given by 



 8 1 2b b b
a a aT R Rg gb

a               (5) 

After using (1) to (3) we get the following: 

 
   

1 2
1

2 2

8 8 e

e 2 1

rT p R R R R

R R R R R R













                 

        
   


 (6) 

 

   

2 3
2 3

2

2 2

8 8 8

8 e 2

e 2 1

T T p

R R R R R R

R R R R R R R





  

 







           

                

         
    

 

(7) 
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(8) 
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

 

(9) 

  is the Eigen value of the conformal Weyl tensor in 
Petrov’s classification [16]. Here and what follows a 
prime and a over head dot denote respectively a differen-
tiation with respect to  and . As we shall see later 
since the Eigen value 

r t
  is always coupled with the ma- 

terial energy density  , the former was interpreted [4- 
6], as the “energy density of the free gravitational field” 
and its presence is related with both anisotropy and in-
homogeneity. The necessary and sufficient condition for 
conformal flatness of the space-time (1) is 0  . 

Using the directional derivatives  
 exp 2r D r     and   exp 2tD t      

along the radial and transverse directions respectively, 
 and U  are defined as Γ

 Γ exp 2rD R R              (10) 

   exp 2a a
tU u R x D R R            (11) 

We now directly write down the equations which gov-
ern the evolution of the system as below [19]: 

 2tD U R                   (12) 

 Γ 2t rD UD                  (13) 

   2 2
tD nR nR U R               (14) 

     
 

21 2 Γ 4 3

2 4

t

r

D U U R

p p R  

    

        
     (15) 

   
   

3

3

4 3 8

8 4 3

t r

r t

D p p

p D R

         
          

R     (16) 

   
   

3

3

4 3 8

8 4 3

r r

r

D p p

D R

 



         
         

R 
 (17) 

   
      2

2

8 ln ex

r

r r r r

p D

D p p p D R

 









          

where n denotes the baryon number density and we have 
written    1

R R r
     . 

We may mention here that the energy density of the 
free gravitational field which is coupled always to the 
material energy density as well as the cosmological con- 
stant plays a significant role in describing truly relativis- 
tic situations. We have taken, for simplicity, the coupling 
constant as unity. However, in order to raise the contri- 
bution of   substantially relative to ,  we could have 
chosen the coupling constant to desired levels. 

4. Kinematics of Spherically Symmetric 
Models 

Spherically symmetric solutions can be classified accord-
ing to their kinematical properties. The assumption of 
spherical symmetry implies that rotation 0abW   and 
hence the fluid velocity field must be hyper surface or-
thogonal. From (1) and (3) we get the expressions for the 
remaining kinematical quantities, viz. acceleration au , 
components of the shear tensor 


b
a , shear invariant 

 defined by  2 3 2 b a
a b    and expansion   of 

the time-like congruence , as below: au

  exp 2 2au                  (19) 

 

       

1 2 3
1 2 31 2

1 3 exp 2 2 R R

  

 

   

       
 

    (20) 

     exp 2 2 R R         
          (21) 

  3 expR R     2             (22) 

In view of these expression, the anisotropy in the 
4-dimensional space-time, denoted by  , and defined by 
[13] as 

1 223 2b a
a b                (23) 

takes the form 

   
   

2

2 2

R R

R R

 


  
  

 

 
          (24) 

and similarly the Raychaudhuri equation [20] 

  2
, ;1 3a a ab ab a b
a a ab ab abu u w w R         u u  (25) 

using (3) can be rewritten as 

     2 21 3 2 3 4 2rp p              (26) 

p 2 
 

(18) 

The quantity   that described the anisotropy of the 
4-dimensional space-time as defined by [13] can also be 
written as [19] 

    1 2 1 2 R R                (27) 
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where the upper and lower signs respectively correspond 
to expanding and contracting models. It has been sug- 
gested that a physically meaningful cosmological model 
should evolve in such a way that   starts from 0 at “big 
bang” and ends up with 1 in the “black hole”, that is “big 
crunch”. 

5. Formula for Horizons 

With the coordinates   and   suppressed in the space- 
time metric described by (1), the equation of motion, 

 relation, of a photon emitted at r t  ,r t  towards the 
origin galaxy at  is given by  ,r t 1 1

1

1

2e d e d .2t

r t
r t  

r
             (28) 

In the space-time model, described by [21] 

   2 2 2 2 2 2 2( ) sin 4ds dr r f t d d r dt       2  (29) 

The equation of motion (28) takes the form 

   1

1
1 d 1 2 d

r t

r t
r r t              (30) 

In (29), a particle horizon exists, since the condition 
for which  

 
0

1 2 d
t

t    

is satisfied. Thus, the equation of the horizon is given by 

    1 1

0
1 0 10

1 d 1 2 d exp 2
r t

r
r r t r r t         (31) 

and thus the particle  1 1,P r t  comes out of particle ho- 
rizon at  1 0 .r r1  If the observer 2logt   0 ,O r   and 
the particle  1,P r t  where , see each other then 1t t

1t t   . 
We have given the diagrammatic representation of this 

particle horizon in Figure 1. 
We now consider the space-time model described by [21] 

    2 2 2 2 2 2 2sinds k r dr r t L t d d r dt        2 2  

(32) 

where  and . The equation of par- 
ticle horizon of (32) is given by 

0, 0k L  0 t L 

   0 11 1k r r   1t



          (33) 

where 1  is the time when the particle comes out of 
the particle horizon. If the observer 

t t
 0 ,O r   and the 

particle  1,P r t  where 1 , see each other then 

1

t t
t t   . We have given the graphical representation of 

this particle horizon in Figure 2. 
We now consider the space-time model described by [21] 

   12 2 2 2 2 2 2

2 2

3ds a r dr r G t d d

r dt

in which a particle horizon exists and its equation is 
given by 

   12 2
1 0 0 11 1 1 1 etr r r r             

    (35) 

where 0 0r   is a constant and the particle comes out of 
the particle horizon at t1. If the observer  0 ,O r   and 
the particle  1,P r t  where , see each other then 1t t

1t t   . 
We now consider a more general metric described by 

[21] 

 2 2 2 2 2 2 2sinnds t dr t d d dt       2    (36) 

With the constant  satisfying n  1 2 1n   , in 
which a particle horizon exists and its equation is given by 

 1 1nr t n                 (37) 

If the observer  ,O o t  and the particle  1,P r t  
where 1 , see each other at t t  , then . 
It is clear that in the space-time metric (36),  is related 
to 

1 1
n

1
1

n nt t    n

  by    1 2 1n       . Thus, the equation of 
particle horizon (37), in terms of  , takes the form 

   3 11 3r t                  (38) 

It appears, from (38), that the evaluation period of the 
particle horizon is divided into three parts respectively: 
initial, intermediate and final epochs. As   increases 
from the order of zero to the order of 1, the following 
properties of particle horizons may be observed: 

1) In the initial epochs, the particle horizons with in-
creasing values of   start at nearer distances and run 
away from the observer with faster rates. 

2) In the intermediate epochs, the farther horizons are 
over taken by their preceding ones’ in a systematic man- 
ner. That is, in the process the nearest horizon over takes 
all others and becomes the farthest to the observer, while 
the farthest horizon allows all others to take over it and 
becomes the nearest and so on. 

3) In the final epochs, with the reversed length scales, 
i.e. larger the distance of horizon from the observer higher 
the corresponding value of  , the particle horizons ex- 
panded with slower rates. 

We have given diagrammatic representation of the 
particle horizon described by (38) for    1 8 , 1 5   
and  1 2  in Figure 3, in which the above drawn con- 
clusions are clearly illustrated. 

2sin  


       


 

(34) 

4) Small segments of the horizons of   s’ are ar‐ 
ranged to form a continuous curve and this curve will 
remain as the true particle horizon of the observer. These 
segments with   growing from its minimum to maxi‐ 
mum are arranged in a sequence from the farthest to the 
nearest. 

We have given a diagram in Figure 4 which demon-
strates the property 5). 
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