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ABSTRACT 

We introduce a formal definition of a non local functional and show that the non local exchange-correlation potential 
functional, derived within Density-Functional Theory, is non local in the space of electronic densities. A previously 
developed non local exchange-correlation potential term, is introduced to approach the exact density-functional poten-
tial. With this approach, the electronic structure of the graphene surface and the tyrosine amino acid are calculated. 
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1. Introduction 

Functional architectures at the nanoscale are natural can- 
didates to overcome the limitations encountered by the 
conventional road map of micro technologies. The effi- 
cient realization of nanoscale devices demands the deve- 
lopment of theoretical methods with enough precision to 
predict properties in a regime where physical interfaces 
play a key role. However, it is precisely the description 
of interfaces that is the main obstacle to rely in current 
theoretical methods. This is due to limitations in model- 
ing and numerically assess the required quantum defini- 
tion of electronic states. On the one hand, reduced mod- 
els suffer from the inability to include actual many body 
potentials while retaining numerical efficiency. On the 
other hand, ab-initio approaches, while exactly introduc- 
ing many body interactions, suffer from the lack of effi- 
ciency in terms of computational resources. Consensually 
[1], an efficient, elegant, and exact alternative involves 
ab-initio calculations by means of Density-Functional 
Theory (DFT). 

While in principle, DFT can yield exact electron-elec- 
tron interactions, its effectiveness relies in a combination 
of the Hohenberg-Kohn (HK) theorems [2] and the 
Kohn-Sham (KS) scheme [3]. The HK theorems reduce  

any property of the many-body interacting system to a 
functional of the ground state electronic density and then, 
the KS scheme replaces the original many-body problem 
by an auxiliary independent-particle problem, whereby 
all many-body interactions are mapped in an effective 
single-particle potential, namely, the exchange-correla- 
tion (xc) potential, xc  [4]. This xc potential, which 
contains all the information regarding electron-electron 
interactions, is implicitly defined as a functional deriva- 
tive of the xc energy, Exc, in the space of electronic den- 
sities,  

   
 

xc
xc

E n r
v n r

n r



                (1) 

However, in most general cases, an algebraic form for 
 xcE n r   is unknown. Thus, the definition of 
 xcn n r  is by far the most important task for an ef-   

fective DFT. 
Initially, the manageability of DFT arises from the in- 

troduction of the Local-Density Approximation (LDA) to 

xc  [3]. LDA, and further extensions beyond it within 
local exchange models, such as generalized gradient ap- 
proximations (GGA) [5] and Meta-GGA [6], work fairly 
well for homogeneous and well-behaved electronic den- 
sities [7]. While this is probably the case of bulk systems,  
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it is no longer the expected behaviour for confined sys- 
tems, such as nanostructures and interfaces, [8], therefore, 
failures within DFT can be attributed to the inability of 
local xc potentials, to retain all many body effects when 
the many body interacting wave function representation 
is mapped to a mean-field density-based representation 
[9]. Recent attempts to overcome such difficulties and to 
manage DFT are framed within the context of the con- 
trolled addition of the non local Fock exchange to current 
local xc potentials [10]. To some extent, such hybrid po- 
tentials correct the electronic structure, even when such 
improvements are not handled systematically [11,12]. 

Therefore, the purpose of this work is twofold. First, 
we provide a means to understand the role that non local- 
ity plays in DFT by introducing a formal definition of a 
non local functional which, as far as we know, is not 
presently available in the literature. The use of our defi- 
nition provides a rigorous frame to assess the failure of 
DFT when describing non homogeneous electron sys- 
tems. Secondly, we use a method developed previously 
by some of us to devise hybrid functionals in a system- 
atic manner [13]. In this way, we analyze the role that 
non locality plays in the electronic characterization of 
two benchmark systems, graphene and tyrosine. The cho- 
ice of these two systems responds to the emergence of 
these materials as platforms for effective molecular elec- 
tronics [14], and thus pay particular attention to graphene 
interfaced with bio-systems [15,16]. 

2. Definition of Non Local Functional by Its 
Opposite  

A fundamental issue to address when dealing with a 
mean field theory is the definition of effective potentials. 
DFT is a mean field theory within which the selection of 
the effective xc  potential is controversial [9,17], with 
continuous efforts towards improvement in accuracy [11, 
12,18-20]. It is our point of view that all such efforts suf- 
fer from the lack of a rigorous and explicit definition of 
one of the analytic properties that a xc  functional must 
fulfill, namely the non locality in the position space [9]. 
Thus, in this section we introduce a definition for a non 
local functional. This definition should be sufficient to 
connect DFT with other effective theories and gain in- 
sights in the physical implications that the inclusion of 
non local effects has on mean field theories. 

Two complementary definitions are given for a local 
functional as follows: 

1) A local functional from F to :  nC R

A functional  n: F C R
nU R

  is local if for any 
open set  and fields   and F  , so that  

   U U U U
                  (2) 

This means that    is determined by the values 
of   in an arbitrarily set . U

:
2) A local functional from F to R: 

F RA functional    is local if it is given by the 
integral,  

    d
nR

x x    

 : n

            (3) 

of a local functional 

F C R               (4) 

This means that the functionals which do not fulfill 
either of these two conditions in the fields where they are 
defined are called non local functionals. These two defi- 
nitions should contribute to elucidate controversies con- 
cerning the inclusion of non local effects in current ex- 
change-correlation potentials. 

3. Non Locality in the Exchange-Correlation 
Potential  

In the fundamentals of DFT by Hohenberg and Kohn [2], 
the analytical expression for the xc energy functional is 
determined for two particular cases, the electron gas with 
almost constant density and the electron gas with slowly 
varying density. By using the first of these two cases, we 
will show the non local character of the most general 
exchange-correlation functional. 

The gas with almost constant density is defined in ac- 
cordance with the conditions that follow, 

   0n r n n r                 (5a) 

with  
 

0

1
n r

n


                  (5b) 

and 

 d 0n r r                  (5c) 

where n r  is the electronic density as a function of the 
position. HK proposed a formal expansion for Exc pro- 
vided such conditions above are met [2]. It is written as,  

        
       
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

In order to capture the essential physics of the problem 
in question, and to avoid tedious mathematical treatments, 
we reduce all the expressions above to their one dimen- 
sional (1D) form. Then, by doing the functional deriva- 
tive we obtain an enlightening expression for the xc po- 
tential. It is then written as,  

     
     
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Noticeably, the spatial integrals of the electronic den- 
sity products are, by themselves, non local mathematical 
operations in the space in which they are defined, see 
definition of non locality above. Thus, for the most gen- 
eral case, this analytical expression for xc  is non local 
in the x-space provided that  ñ x  is different from 
zero. 

4. Non Local xc Potentials for Interfaces 

The choice of the xc functional describing the most gen- 
eral physical system must fulfill the following conditions: 
1) it has to be non local in the space of electronic densi- 
ties [9]; 2) it should correct self-interaction errors in ex- 
change functionals [10]; 3) it should contain a fraction of 
the Fock potential to approach exact exchange [13]; and 
4) it must agree with the adiabatic connection theorem 
[21]. With these conditions in mind, and as an improve- 
ment to the first hybrid approaches introduced by Becke 
[22], we propose the following analytical equation to 
evaluate numerically xc ,  

  Fock 1xc xv v    local local
x cv v 

Fockv
local

      (8) 

Here x  is the Fock-like potential contribution, 
which accounts for non local effects, the ,x c  contribu- 
tions are given by any of the available exchange (x) or 
correlation (c) local functionals. Finally, α is a single 
fitting parameter to be determined by exact rules. 

v



HOMO LUMO

To estimate α, we follow an exact methodology within 
mean-field Green’s function schemes [23,24]. The value 
is chosen so that HOMO-LUMO  matches the charge gap, 
GAP. This quantities are defined as 

HOMO-LUMO              (9) 

and 

     01 1E N  0 02GAP E N E N     (10) 

respectively, where N represents the number of electrons, 
E0 is the total energy for the selected ground states in the 
Kohn-Sham system of independent electrons with single 
particle energies denoted as HOMO  and LUMO , for the 
Highest Occupied Molecular Orbital (HOMO) and Low- 
est Unoccupied Molecular Orbital (LUMO) respectively 
[4]. The choice of the finite region in which to search for 
α is constrained by two conditions: 1) it must contain the 
zone which confines the electron and 2) the HOMO and 
LUMO orbitals must be well localized in to the cluster 
model. 

Finally, we should remark that from the reasoning pre- 
sented here we could not derive an explicit mathematical 
relation between the non local corrections to xc  re- 
quired by seminal DFT [2], and our adjustable hybrid 
approach defined by Equation (8). However, we note that 
both xc potentials are non local functionals of the elec- 
tronic density. It is this common property that justifies an 

algebraic connection between both equations. Moreover, 
the fundamental physical relation between both correc- 
tions is now clear: in both cases non local corrections are 
included beside the causal effects, when non ideal elec- 
tron gases are described in terms of the electronic den- 
sity. 

5. Numerical Results and Discussion  

In this section the influence of the gradual inclusions of 
non local effects in xc  upon the electronic structure of 
two confined systems, tyrosine and graphene, is discussed. 
To do this, we analyze the evolution of the O-LUMO , 
when the non local Fock contribution to 

HOM
 xc   varies 

[see Equation (8)].  
The code GAUSSIAN09 is used for numerical DFT 

calculations [25]. The local DFT functional introduced to 
define xc  in the Equation (8) is PW91 [26], which is 
used either to account for local exchange and local cor-
relation effects. 

In regard to the other two inputs required to manage 
DFT approaches, i.e., 1) finite cluster models definition 
and 2) the selection of basis sets, the following reasoning 
was followed. First, the atomic structure of the amino 
acid reported in the pdb data base is selected [27], and a 
finite cluster model for the ideal semi-infinite graphene is 
chosen. To this end, we calculate the position of the 
ionization potential 0 0   1IP E N E N   when the 
size of graphene cluster models is increased [see Figure 
1].  

Graphene is known to have an IP close to 5 eV [28]. 
Thus, this reference value was used to estimate the level 
of certainty of our finite model approach to the semi- 
infinite graphene system [29]. Using these results, see 
Figure 1, we select a 10 × 10 unit cells cluster to model 
graphene1. Second, the basis sets are selected such that 
they are 3 - 21 g for all the atoms in the amino acid and 
graphene systems. Higher order basis sets were in- tro-
duced to prove the robustness of our results for all the 
calculations in this work2. The convergence criterium 
was set to the 10 percent for the single particle energy le- 
vels as well as for ground state energies calculated with 
fully local xc  potentials. 

Figures 2 and 3 show HOMO-LUMO  and GAP energies 
calculated for graphene and tyrosine respectively, using a  

1Bigger cluster sizes will certainly increase the accuracy of the calcula-
tions but will also increase the computational time by orders of magni-
tude. e.g. Using 3 - 21 g basis sets [25], and going from a cluster with 1 
carbon atom [0 unit cells] to clusters with 240 carbon atoms [10 × 10 
unit cells], the time consumption is increased by 3 orders of magnitude. 
In addition, improvements to the accuracy of self-consistent energies do 
not affect the main message of this work. 
2The electronic structure has been optimized using localized-atomic-
orbitals-basis sets for all the atoms in the structure. The basis selected 
where sto-3 g, 3 - 21 g, 6 - 31 g and cc-pvtz.  
http://www.emsl.pnl.gov/forms/basisform.html 
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Figure 1. Ground state energy calculations of the ionization 
potentials, IP, as a function of the number of unit cells used 
in graphene. Numerical results are represented by filled 
dots and the solid line is a guide to the eye. 
 

 

Figure 2. Evolution of ΔHOMO-LUMO gap for a 10 × 10 unit 
cell model of graphene [see inset], when non local Fock ex-
change is included in the ab-initio approach to xc . The 

dots represent numerical calculations for the ΔHOMO-LUMO 
gap when the non local Fock exchange contribution varies 
in the ab-initio approach to xc . These points are interpo- 

lated with a thin solid line as a guide of the eye. The hori- 
zontal solid line represents the GAP value calculated using 
ground state energies and a local approach to xc . As ex- 

plained in the main text, the intersection between both con-
tinuous lines, when ΔHOMO-LUMO = GAP, determines the 
proportion of non local exchange required to improve mod-
els to xc . 

 
wide range of xc

 

Figure 3. Evolution of ΔHOMO-LUMO gap for a tyrosine ami-
noacid [see inset] when non local Fock exchange is included 
in the ab-initio approach to xc . The dots represent nu- 

merical calculations for the ΔHOMO-LUMO gap when the non 
local Fock exchange contribution varies in the ab-initio ap- 
proach to xc . These points are interpolated with a thin 

solid line as a guide for the eye. The horizontal solid line 
represents the GAP value calculated using ground state 
energies and a local approach to xc . As explained in the 

main text, the intersection between both continuous lines, 
when ΔHOMO-LUMO = GAP, determines the proportion of non 
local exchange required to improve models to xc . 

 
By adjusting this percentage, with the aid of the method 
previously developed [13], we conclude that the best 
approach to the electronic structure of the graphene rib- 
bon is ~28% Fock-like, and that the best approach to the 
electronic structure of the amino acid should contain 
~58% of Fock exchange contribution. As expected, the 
value of α decreases as we move to the infinite systems, 
i.e. as we move from a graphene ribbon to the semi infi- 
nite graphene model, where local (~0% Fock-like) ap- 
proaches are expected to perform better. By contrast, the 
non local exchange is more important to describe elec- 
tronic density regions were the confinement is more 
stronger, e.g. a 3D confinement as occurring in an iso- 
lated molecule exemplified by the tyrosine amino acid. 

6. Conclusion 

In this paper, a formal definition for a non local function- 
al has been introduced. This definition should open new 
doors to DFT approaches, while distinguishing whether 

xc  proposals actually fulfill the requirement of non 
locality in the space of electronic densities, as dictated by 
the original DFT theory [1,9]. In conjunction with previ- 
ously developed non local hybrid approach to xc

  functionals, while a clear indication 
on the amount of non local effects included is made. 
Here, it is initially shown that the inclusion of non local 
Fock exchange has a strong influence on the charge gap 
for both systems, which rapidly increases with the per- 
centage of Fock-like exchange in the hybrid functional.  

  [13], 
we show how including non local effects in xc  affects 
the electronic structure calculations on two benchmark 
systems: graphene and tyrosine. It is shown that the pro- 
portion of non-local Fock exchange required to repro- 
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duce correctly the gap energy increases with increasing 
the degree of confinement in the system. The discrepan- 
cies between our non local corrected calculations and the 
local calculation results, suggest that care should be 
taken when forthcoming local density-functional appro- 
aches in favour of those results obtained by means of 
hybrid density-functional approaches. However, in light 
of the results discussed here, it is still difficult to assess 
to what extent current hybrids xc  potentials can de- 
scribe the electronic states in a more general frame of 
non ideal electron gases, e.g. nanostructures and inter- 
faces, where the amount of non local corrections is ex- 
pected to vary. Therefore, further developments of hybrid 
functionals should also include the spatial dependence of 
non local contributions while exactly approaching the xc 
potentials. 
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