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ABSTRACT 

Existing Intrusion Detection Systems (IDS) examine all the network features to detect intrusion or misuse patterns. In 
feature-based intrusion detection, some selected features may found to be redundant, useless or less important than the 
rest. This paper proposes a category-based selection of effective parameters for intrusion detection using Principal 
Components Analysis (PCA). In this paper, 32 basic features from TCP/IP header, and 116 derived features from TCP 
dump are selected in a network traffic dataset. Attacks are categorized in four groups, Denial of Service (DoS), Remote 
to User attack (R2L), Remote to User attack (U2R) and Probing attack. TCP dump from DARPA 1998 dataset is used 
in the experiments as the selected dataset. PCA method is used to determine an optimal feature set to make the detection 
process faster. Experimental results show that feature reduction can improve detection rate for the category-based de-
tection approach while maintaining the detection accuracy within an acceptable range. In this paper KNN classification 
method is used for the classification of the attacks. Experimental results show that feature reduction will significantly 
speed up the train and the testing periods for identification of the intrusion attempts. 
 
Keywords: Intrusion Detection; Principal Components Analysis; Data Dimension Reduction; Feature Selection;  

Classification 

1. Introduction 

Intrusion Detection Systems (IDS) is designed to com- 
plement other security measures based on attack preven- 
tion (firewalls, antivirus, etc.). Amparo Alonso-Betanzos 
et al. [1] say that “The aim of the IDS is to inform the 
system administrator of any suspicious activities and to 
recommend specific actions to prevent or stop the intru- 
sion”. Intrusion can be defined as an attempt to gain un- 
authorized access to network resources [2]. IDS is neces- 
sary for effective computer system protection. There are 
two approaches for intrusion detection, i.e. signature- 
based and anomaly-based intrusion detection. In signa- 
ture-based or misuse detection method, patterns of well 
known attacks are used to identify intrusions [3]. In ano- 
maly-based intrusion detection, network traffic is moni- 
tored and compared versus any deviation from the estab- 
lished normal usage patterns to determine whether the 
current state of the network is anomalous. An anomalous 
traffic can be flagged as intrusion attempt. Misuse detec- 
tion uses well defined patterns known as signatures of the 
attacks. Anomaly-based detection builds a normal profile 
and anomalous traffic is detected when the deviation 
from the normal model reaches a preset threshold [4]. 

Signature-based IDSs typically require human input to 

create attack signatures or to determine effective models 
for the normal behavior [4]. Feature selection ranking 
can be used in anomaly-based and signature-based intru- 
sion detection systems. Feature selection is an important 
issue in intrusion detection. The reason for it is due to the 
large number of features that should be monitored for the 
intrusion detection purpose. Elimination of useless or 
less relevant features will maintain accuracy of the detec- 
tion while speeding up its calculations. Therefore, any 
reduction in the number of features used for the detection 
will significantly improve the overall performance of the 
IDS. In cases where there are no useless features, con- 
centrating on the most important ones is expected to im- 
prove the execution speed of an IDS. This increase in the 
detection speed will not affect accuracy of the detection 
in a significant way. 

Incorrect selection of the features may not only reduce 
the speed of the operation but may also reduce detection 
accuracy [5]. 

This paper reports a work aimed on improving the in- 
trusion detection time using a category-based intrusion 
detection model. In Figure 1, network traffic in divided 
into six groups, normal, DoS, R2L, U2R, Probing and 
Undetermined Anomalous Behavior (UAB). The main 
goal in a Category-Based Intrusion Detection (CBID) is 
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Figure 1. Category-based separation of the network traffic. 
 

to reduce the amount of data that is less important with 
regard to the intrusion detection and to eliminate them. 

This approach has the benefit of reducing memory re- 
quirements for storage, reducing data transfer and pro- 
cessing time, and improving the detection rate [6]. IDS 
has to examine a very large audit data in a short period of 
time. Therefore, any reduction in the volume of data may 
save the processing time [7].  

Considering certain attack categorizes, some features 
in the traffic data are more relevant than the rest for in- 
trusion detection.  

Feature reduction can be performed in several ways 
[7-10]. In this paper, the category-based approach is used 
to find the relevance between features extracted from the 
network traffic. This paper also proposes a method based 
on TCP/IP header parameters and derived features se- 
lected from TCP dump network traffic dataset. In the 
proposed approach, Principal Components Analysis (PCA) 
is used as a dimension reduction technique. KNN classi-
fication method is used the detection of the intrusion at-
tempts and results are reported. 

2. Related Works 

In a reported work, Chakraborty [11] reports that the exis- 
tence of irrelevant and redundant features generally af-
fects the performance of machine learning part of the 
work. Chakraborty Proves that proper selection of the 
feature set results in better classification performance. A. 
H. Sung et al. [8] have demonstrated that the elimina- 
tion of these unimportant and irrelevant features did not 
significantly reduced performance of the IDS. 

Chebrolu et al. [7], report that an important advantage 
for combining redundant and complementary classifiers 
is to increase robustness, accuracy and better overall 
generalization. Chebrolu et al. [7] have also identified 
important input features in building IDS that are compu- 
tationally efficient and effective. In their reported work, 
they have investigated performance of three feature se- 
lection algorithms, i.e. Bayesian networks (BN), Classi- 
fication and Regression Trees (CART) and an ensemble 
of BN and CART. 

Sung and Mukkamala [8], have explored SVM and 
Neural Networks to identify and categorize features with 
respect to their importance to detect specific kinds of 
attacks such as probing, DoS, Remote to Local (R2L), 
and User to Root (U2R). They have also demonstrated  

that elimination of these less important and irrelevant 
features did not reduce the performance of IDS signifi-
cantly. Mukkamala et al. [12] have demonstrated that use 
of ensemble of classifiers gave the best accuracy for each 
category of attack patterns. In designing a classifier, their 
first step was to carefully construct different connectional 
models to achieve best generalization performance for 
the classifiers. Sung and Mukkamala [13] have analyzed 
data from a large network traffic since it causes a pro- 
hibitively high overhead and often becomes a major 
problem for the IDS. 

Chebrolu et al. [7] proposed CART-BN approach, 
where CART performed best for Normal, Probe and U2R 
and the ensemble approach worked best for R2L and 
DoS. Meanwhile, A. Abraham et al. [14] proved that en- 
semble of Decision Tree was suitable for Normal, LGP 
for Probe, DoS and R2L and Fuzzy classifier was good 
for R2L attacks. A. Abraham et al. [15] demonstrated the 
ability of their proposed Ensemble structure in modeling 
light-weight distributed IDS. 

3. Data Reduction and Feature Selection  
Using PCA 

Principal Components Analysis (PCA) is a predominant 
linear dimensionality reduction technique, and it has 
been widely applied on datasets in many different scien- 
tific domains [16]. PCA allows us to compute a linear 
transformation that maps data from a high dimensional 
space to a lower dimensional space. The first principal 
components have the highest contribution to the variance 
in the original dataset. Therefore, the rest can be disre- 
garded with minimal loss of the information value during 
the dimension reduction process. Another method is to 
use their weights and transform data in to a new space 
with lower dimensions. The transformation works in the 
following way [17]: 
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Given a set of observations x1, x2, ···, xM are N × 1 
vectors, where each observation is represented by a vec- 
tor of length N. Thus, the dataset is presented by matrix 
Equation (1). 

The mean value for each column is defined by the ex- 
pected value. This is explained in Equation (2). 

1

1 M

i
i

x
M 

 x                  (2) 

Once the mean value is subtracted from the data yields 
expression Equation (3). 
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i ix x                   (3)   

C that is correlation compute from matrix  
 1 2 MA     (N × M Matrix), Equation (4): 
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Sampled N × N covariance matrix characterizes how 
data is scattered [18]. 

The eigenvalues of C: λ1 > λ2 > ··· > λN and the eigen- 
vectors of C: u1, u2, ···, uN have to be calculated. Since C 
is symmetric, u1, u2, ···, uN form a basis (i.e. any vector x 
or actually  x x  can, can be written as a linear com- 
bination of the eigenvectors) Equation (5). 
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During the dimensionality reduction, only the terms 
corresponding to the K largest eigenvalues are mentioned 
in Equation (6) [19]. 
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The representation of x̂ x
 Tb

 into the basis u1, u2, ···, 
uK is thus . 1 2 K

The linear transformation RN ⇒ RK by PCA that per- 
forms the dimensionality reduction is presented in Equa- 
tion (7). 

b b

   T

1 1

2 2

T

T

T
K K

b u

b u
x x U x x 

2

0 0 0

0 0 0

0 0 . 0

0 0 0 n



b u

  
  
      
  
    

 
     (7) 

The new variables (i.e. bi’s) are uncorrelated. The co- 
variance matrix for the bi’s is presented in Equation (8). 
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The covariance matrix represents only second order 
statistics among the vector values. 

Let n to be the dimensionality of the data. The covari- 
ance matrix is used to calculate UTCU that is a diagonal 
matrix. UTCU is sorted and rearranged in the form of 

1 2 n    

   

 so that the data exhibits maximum 
variance in y1, the next largest variance in y2 and so on, 
with minimum variance in yn [20,21]. 

4. K-Nearest Neighbor Algorithm (KNN) 

The K-nearest neighbor (KNN) decision rule has been a 
ubiquitous classification tool with good scalability. Ex- 

perience has shown that the optimal choice of K is de- 
pendent on the data. This makes it difficult to tune the 
parameters for different applications. 

KNN classification algorithm tries to find the K near- 
est neighbors of x0 and uses a majority vote to determine 
the class label of x0. Without any prior knowledge, the 
KNN classifier usually applies Euclidean distances as the 
distance metric [22]. 

KNN is an example of instance-based learning, in 
which the training data set is stored, so that, a classifica- 
tion for a new unclassified record may be found simply 
by comparing it to the most similar records in the train- 
ing set. 

The most common distance function is Euclidean dis- 
tance, which represents the usual manner in which hu- 
mans think of distance in the real world (8): 

2

Euclidean , i i
i

d x y x y           (8) 

where x = x1, x2, ···, xm, and y = y1, y2, ···, ym represent 
the m attribute values of two records [23,24]. 

5. Three Way Handshake 

The three-way handshake in Transmission Control Pro- 
tocol (also called the three message handshake) is a 
method used to establish and tear down network connec- 
tions. This handshaking technique is referred to as the 
3-way handshake or as “SYN-SYN-ACK” (or more ac- 
curately SYN, SYN-ACK, ACK). The TCP handshaking 
mechanism is designed so that two computers attempting 
to communicate can negotiate the parameters of the net- 
work connection before beginning communication. This 
process is also designed so that both ends can initiate and 
negotiate separate connections at the same time. Below is 
a (very) simplified description of the TCP 3-way hand- 
shake process (Figure 2). 
 Source sends a TCP Synchronize packet to destina- 

tion; 
 Destination receives source’s SYN; 
 Destination sends a Synchronize Acknowledgement 

packet; 
 

 

Figure 2. Three-way handshake. 
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7.1. Denial of Service (DoS) Attacks 

 amount of re- 

 

ceives destination’s SYN-ACK; 
 Source sends an Acknowledgement packet
 Destination receives an Acknowledgement p
 TCP connection is established. 

Synchronization and Acknowledgem
entified by a bit inside the TCP header of the segment. 

TCP knows whether the network connection is opened, 
synchronized or established by using the Synchronization 
and Acknowledgement messages when establishing a 
network connection. 

When the communi
other 3-way communication is performed to tear down 

the TCP connection. This setup and teardown of a TCP 
connection is part of the reason why TCP qualifies to be 
a reliable protocol [25]. 

6. The Dataset Used in This Work 

The DARPA’98 dataset was used for the train
in the reported work. The dataset provides around 4 giga- 
bytes of compressed TCP dump data [26] for 7 weeks of 
the network traffic [27]. This dataset can be processed 
into about 5 millions of connection records each about 
100 bytes in size. Dataset contains payload of the packets 
transmitted between hosts inside and outside a simulated 
military base. BSM1 audit data from one UNIX Solaris 
host for some network sessions are also provided. DARPA 
1998 TCP dump dataset [28] was preprocessed and label- 
ed using two class labels, e.g., normal and attack. 

7. Pre-Processing 

In this work 32 basic f
header protocols. These features are derived from TCP, 
IP, UDP and ICMP packet headers without inspecting the 
payload. The possible candidates for this feature category 
includes timestamp, source port, source IP, destination 
port, destination IP, flag, to name a few. In another data- 
set 116 derived features are selected from TCP dump net- 
work traffic dataset [28]. This dataset is intended to pro- 
vide a wide variety of features characterizing flows. This 
includes simple statistics about packet length and in- 
ter-packet timings, and information derived from the 
transport protocol (TCP) such as SYN and ACK counts. 
This information is extracted using all the packets trans- 
mitted in both directions as well as on each direction 
individually (server → client and client → server). 

Many packet statistics are derived directly by cou
ckets, and packet header-sizes. A significant number of 

features (such as estimates of round-trip time, size of 
TCP segments, and the total number of retransmissions) 
are derived from the TCP headers. TCP trace [29] was 
used for this information. 

Each object within data

P packets between client and server.  
All of the features that are extracted i
splayed in Appendix 1, Table A.1. Wire-shark, Edit-

cap and TCP trace softwares are used to analyze and 
minimize TCP dump files and extract features [30,31]. 

The dataset contains 13 different types of attacks th
e broadly categorized into five groups such as DoS, 

U2R, R2L, Probing and anomalous behavior. Goal is 
categorize different intrusion methods into a number of 
categories. This approach aims to summarize the intru- 
sion method into a few similar approaches. Following the 
proposed approach, system will be able to deal with 
variations of the different attacks within each category. 
Considering the DARPA’98 dataset, there are five main 
categories of attacks proposed in this paper. The pro- 
posed attack categories are listed and described in the 
following sections. 

Denial of service attacks consume a large
sources thus preventing legitimate users from receiving 
service with some minimum performance or they may 
prevent a computer from complying with a legitimate 
requests by consuming its resources [32,33]. Apache2, 
Back, Land, Mail bomb, SYN Flood, Ping of death, 
Process table, Smurf, Teardrop, Udpstorm and Neptune 
attacks are some examples of the Dos attack. In this work 
Syn flood attack is used for the experiments. Therefore, 
Syn flood scenario will be explained in this section: Syn 
flood is a DoS attack in which every TCP/IP implement- 
tation is vulnerable to it in some degree. Each half-open 
TCP connection made to a machine will cause the “tcpd” 
server to add a record to the data structure that stores 
information describing all pending connections (Figure 
3). This data structure has a size limit and it may over-
flow by intentionally creating too many partially-open 
connections. The half-open connections data structure on 
the victim server system will eventually fill up. Once the 
data structure is full, unless the table is emptied, the sys-
tem will not be able to accept any new incoming con- 

 

 

Figure 3. Attacking a victim machine with half-open con
nections. 

- 
1Basic Security Monitoring (BSM). 
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, so that, half-open connections will even-
tually expire and the victim server system will recover. 
However, the attacker system can simply continue send-
ing IP-spoofed packets requesting new connections faster 
than the rate victim system can drop the pending connec-
tions. Christopher [35] believes that “Typical SYN flood-
ing attacks can vary several parameters: the number of 
SYN packets per source address sent in a batch, the delay 
between successive batches, and the mode of source ad-
dress allocation”. 

7.2. User to Roo

In this attack, an attacker starts with a
user account on the system and will end in gaining root 
access on that system. Regular programming mistakes 
and environment assumption give an attacker opportunity 
to exploit the vulnerabilities that may lead to a root ac-
cess. An example of this type of attacks include buffer 
overflow, Eject, Ffbconfig, Fdformat, Loadmodule, Perl, 
Ps, Xterm, perlmagic and ffb attacks [36]. 

7.3. Remote to User Attacks (R2L) 

In this attack, an attacker sends packet
over a network and exploits the machine’s vulnerability 
to gain local access as a user illegally. There are different 
types of R2U attacks; the most common attack in this 
class is carried out using social engineering. Examples 
for these types of attacks are Dictionary, Ftp_write, Guest, 
Imap, Named, Phf, Sendmail, Xlock, Xsnoop, guessing 
password and Dict attacks [36]. 

7.4. Probing Attacks 

Probing is a class of att
network to gather information for the purpose of finding 
known vulnerabilities. An attacker with a map of ma-
chines and services that are available on a network can 
manipulate the information and look for exploits. There 
are different types of probing, some of them abuse the 
computer’s legitimate features; others use social engi-
neering techniques. This class of attacks is the most 
common because it requires very little technical expertise. 
Examples are Ipsweep, Mscan, Nmap, Saint, Satan, ping- 
sweep and Portsweep attacks [6]. 

7.5. Undetermined Anomalou

There are anomalous user behaviors, such as “a
becomes (i.e. behaves like) a system administrator”. For 
example, when your computer was automatically black-
listed (blocked) by the network due to the number of 
abnormal activities originating from your connection, it 

is possible that your computer is infected with a worm 
and/or virus. 

8. Misuse D

Training data from the D
files” that identify the tim
destination host and port, and the name of each attack 
[37-40]. This information is used to select intrusion data 
for the purpose of pattern mining and feature construc-
tion, and to label each connection record with “normal” 
or “attack” label types. The final labeled training data is 
used for training the classifiers. Due to the large volume 
of audit data, connection records are stored in several 
data files. Table 1 shows 43418 basic feature samples 
and 20095 derived feature samples that include records 
from both attack and normal state categories that are se-
lected for the analysis. These data are extracted from the 
fifth day of the sixth week. Sequences of normal connec-
tion records are randomly extracted to create the normal 
dataset. 

Dictionary table is used to convert text data into nu-
meric da

9. Experim

Experiments were a
attacked or normal s
basic features, 9459 normal connections and 33,959 at-
tacks are included in the categorized attack and were 
randomly selected to create a dataset. As for the derived 
features, 10,413 normal connections and 9682 are in-
cluded in the categorized attack and were randomly se-
lected to create another dataset. With these dataset that 
included derived features, all experiments repeated again 
and selected some derived feature in attacks categorized. 

Classes of the relevant features with their associated 
information value are reported in Tables 2 and 3. In 

ese tables, all attack categories are compared versus the 
normal state. As it is reported in this paper, some dif- 
ferent features were selected from attacks categories and 

 
Table 1. Number of records that are used for the cal- 
culations in different categories. 

Category Number of basic Records Number of derived records

DoS 19,440 8789 

U2R 513 16 

R2L 3798 867 

Prob 1  

A y

N 1  

20,

0,137 10 

nomal 71 0 

ormal 9459 0,413

SUM 43,418 095 
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T ist of the most effective basic featu etecting 
a list of  

Relevant features in descending ation 

able 2. L
 attacks.

res for d

Class name 
order value 

Total inform

DoS 28,19,5,1,16 99.75% 

U2R 

R2L 

12,13,25,28,5 

27,25 

98.13% 

7.69%9  

P  29,26,2 1,10 
Non-d

A
26, 9 99.

robing 5,28,12,13,5,27, 98.01% 
eterministic 
nomaly 

28, 10,125,2,3, 29% 

Normal 27,25 98.84% 

 
most effective deriv

 

Figure 4. A comparison between the information value of 
different features in different states of the network operation 
(basic features). 

Tab t of the ed feat  de- 
tect ss of attacks. 

Total information 

le 3. Lis ures for
ing a cla

Class name Relevant features in descending order 
value 

DoS 2 99.36% 

U2R 79,97,101,10,86,59,47 94.5% 

88.5% R2L 36,3,

2,8

77 

P  
2,3,35,37,38,61,6 7,89,90,103,104, 

N  105,99 03,89 

robing
102,86,47,10.83 

96.24% 

ormal ,23,107,1 99.22% 

 
no ate. A co een the fea por- 
tance in differen nd the no te is 
presented in Figures 4 and . The Scree graph for the 

h attack has a different consequence and effect on 
ementioned features are 
against a normal or a 

.84% of the total information value. Therefore, 
it 

t shows that component number 28 i.e. 
Sy

rmal st mparison betw ture im
t attack categories a rmal sta

 5
calculated PCA coefficients is depicted in Figures 6 and 
7. 

10. Experimental Results 

Eac
computer network features. Afor
used to compare each session 
known attack behavior. Table 2 for basic and Table 3 for 
derived features show relevant features in descending 
order for different attack categories. As reported in Table 
2, one single feature (number 27) in normal behavior 
have 98.22% information value, this is maximum infor- 
mation. 

Value in the normal dataset. Once the component 
number 25 is included, their total information value will 
rise to 98

can be said that the component number 25 does not 
have a significant effect in detecting the normal state. 
Comparing information value of the component number 
25 versus threshold value for the normal state and R2L 
attack, normal state and R2L attack can be separated. In 
the derived features, six features i.e. features: 105, 99, 23, 
107, 103 and 89 have 99.22% information value for the 
normal behavior. 

As the three-way handshaking was explained in Sec- 
tion 5, intruder may use Syn Flag for the intrusion. The 
experimental resul

n Flag (Appendix 1, Table A.1) have the highest  

 

 

Figure 5. A comparison between the information value of 
different features in different states of the network operation 
(derived features). 

 

 

Figure 6. Comparison between Scree graphs for the different 
calculated PCA coefficients (basic features). 

 

t the effective 
features presented in Table , a relation between the be-

information value for the detection of a DoS attack. Once 
DoS attack scenarios are compared agains

2
haviors of their parameters can be extracted. 
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at is a kind 
of

In TCP scan attack, hackers use TCP scans to identify 
active devices, TCP port status and their TCP-based ap- 
plication-layer protocols. In TCP FIN scan, th

Fin flag has the highest information value. Hence, it is 
the most important component in the probing scenario 
attack and for the detection purpose. Comparing results 
of this experiment with TCP FIN scan scenario, intrusion 
attempt by probing attack can be detected. In Table 2, 
result of the probing attack scenario shows that the first 
four components are TCP flags with 70.97% of informa- 
tion value. 

 TCP scan attack, hackers scan the network to identify 
TCP port numbers that are listening. The TCP packets 
used in this scan have only their TCP FIN flag set. Re- 
sults from the experiments in Table 2, for probing at- 
tacks, show that the 29th component in Table A.1 i.e.  

 

 

Figure 7. Comparison between Scree graphs for the different 
calculated PCA coefficients (derived features). 

 
om implementing KNN classification. 

DOS R2L U2R PROB ANOM 

KNN classification method was implemented to show 
the performance of the proposed measures and to prove 
that feature reduction will speed up the training and the 
test processes for the attack identification system consi- 
derably. Table 4 shows the confusion matrix for apply-
ing the KNN classification method. In Table 5, the clas-
sification time for the experiments using all the features 
are compared with when only effective features are used. 
True positive and false positive for six classes reported. 
Once the detection time for the two different feature sets 
are compared, the result shows that using effective fea- 
tures, the detection time is reduced without any decline 
in the detection accuracy. Hence, detection time can be 
reduced using effective features extracted by means of 
the PCA. In a different experiment, all the attacks in Ta- 
ble 6 are categorized in an attack class and normal con- 
nections are categorized as the second category and the 
KNN classification method was applied. Process time in 
this experiment decreased as well, while the accuracy 
showed a small change. 

Table 4. Confusion matrix resulted fr

 NOR 
NOR 8429 21 8 27 22 6 
DOS 0 17,510 0 0 0 0 
R2L 10 

9  
ANOM 

11 
0 

438 
53 

2 
3342 

0 
12 

0 
0 U  

PROB 
2R 11 

40 38 0 5 040 0 
1 0 0 2 5 55 

 
Table 5. Compa sific n time all the features ve  when fecti features are used. 

Class name C lass 2 Class ss 4 Class 5 Class 6 

ring clas atio  for r ssu  only ef ve 

lass 1 C  3 Cla  

Record type Normal DoS U2R R2L Prob Anomaly 

Number of record 9459 19,440 513 3798 10,137 71 

TP FP TP FP TP FP TP FP TP FP TP FP 

rocess time 
(second) 

P

Result 

KNN with 
99. 100 0 95.0 6 97.7 2 99.0 .91 87 1 

 classification 
all feature 

01 0.98  1 4. 7 2. 9 0 .30 13.1 200.98 

KNN cl ith 
9  9  9 9 9 1  135.98 

assificati
ctive feat

on w
effe ure 

8.35 0.84 9.78 0.2 2.03 6.9 4.98 9.0 7.04 0.44 85.2 4.21

 
T  between classification time needed when all features are used or once only the effective features are 
use

Class name Class 1 Class 2 

able 6. A comparison
d. 

Record type Normal Attack 
Number of record 9459 33,959 

Process time (second) 

Result TP FP T  P FP

KNN classification with all feature 99 9 99. 7.01 0.9 82 0.1 185.32 

KNN classification with effective feature 94.05 4.3 99.36 0.58 125.22 
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11. Conclusions 

A feature selection m omp
nent Analysis (PC pl

esults with a similar accuracy 
f features. The proposed approac

tri

s to detect intrusions. Using the results derived
ction and comparing it versus both
d feature sets, one can analyze the 

elia, M. C.-F. Félix, A. S.
Classification of Computer In-

trusions Using Functional Networks—A Comparative 
Study,” Procee osium on Artifi

[3] K. Ilgun, R. A. Kemmerer and P. A. Porras, “State Tra

sition is: A Rule-Based Intrusion Detection Ap- 
proach,” IEEE Transaction on Software Engineering, Vol. 
21, No. 3, 1995, pp. 181- :10.1109/32.372146ethod based on Principal C o- 

A) for CBID is proposed and im e- 
mented to provide r
with a smaller set o

but 
h 

improved the detection speed. Feature selection reduced 
the total number of features in the dataset (32 basic fea- 
tures and 116 derived features). Due to the smaller search 
space, this reduction means that less data is needed for 
training the classifier. Paper reports a new CBID ap- 
proach that can produce better and more accurate results 
in identifying the category of the attacks instead of the 
precise type of the attack. This result also indicates that 
there are analytical solutions for the feature selection that 
are not based on the trial and error. The possibility and 
feasibility of detecting intrusions based on characteriza- 
tion of different types of attacks such as DoS, probes, 
U2R and R2L attacks is an important goal in the reported 
work. Results of this investigation seem to be promising.  

Results indicate that normal state of the network and 
category of the attacks can be identified using a small 
number of a carefully selected network features. On the 
other hand, it is proven that certain features have no con- 

bution to intrusion detection. Experimental results show 
that dimension reduction and identification of effective 
network features for category-based selection can reduce 
the process time in an intrusion detection system while 
maintaining the detection accuracy within an acceptable 
range. 

12. Future Work 

Plan for the future work is to use different classification 
method  

 from the intrusion dete
the full and the reduce
differences in their accuracy and speed. Also merging 
KDD Cup 99 features with 116 newly derived features to 
generate one single dataset and repeat all the experiment 
for the new dataset and to compare the result with the 
result reported in this paper. 
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Table A.1. List of basic features from the TCP/IP protocol with their descriptions in this work. 

No. Feature Description 

1 Protocol Type of protocol 

2 Frame_lenght Length of frame  

3 Capture_lenght Length of capture 

4 Frame_

Coloring_rule_ Coloring rule name  

rotocol 

P 

ce 

 

et_IP set IP 

 

 number  

 the connection) 

_flag nection) 

 of the connection) 

(status flag of the connection) 

n) 

 = echo request and 0 = echo reply)  

e 

a 

Basic feature

IS_marked Frame is marked 

5 

6 

name 

pe Ethernet_ty

Ver_IP 

Type of ethernet p

IP version  7 

8 Header_lenght_I

Differentiated_S

IP header length 

9  

IP_Total_Lenght 

Differentiated servi

10 IP total length 

11 Identification_IP Identification IP 

12 MF_Flag_IP More fragment flag 

13 DF_Flag_IP 

Fragmentation_offs

Don’t fragment flag 

Fragmentation off14 

15 Time_to_live_IP Time to live IP  

16 Protocol_no Protocol number 

17 Src_port Source port  

18 Dst_port Destination port 

19 Stream_index Stream index number 

20 Sequence_number Sequence number 

21 Ack_number Acknowledgment

22 Cwr_flag Cwr flag(status flag of

23 Ecn_echo Ecn echo flag (status flag of the con

Urgent flag (statu24 Urgent_flag 

Ack_flag 

s flag

Acknowledgment flag 25 

26 Psh_flag Push flag (status flag of the connectio

27 Rst_flag Reset flag (status flag of the connection) 

Syn flag (status flag of the connection) 28 Syn_flag 

29 Fin_flag Finish flag (status flag of the connection) 

30 ICMP_Type Specifies the format of the ICMP message such as: (8

Further qualifies the ICMP message  31 ICMP_cod

32 ICMP_dat ICMP data 

 
A c and derived features. 

N

ppendix 1. Description of the basi

Description Feature o. 

The num f data sent excluding retransmitted bytes and any bytes 
sent doin

un nt_b_a 1
ber of unique bytes sent the total bytes o

obing (server to client) g window pr
ique_byte_se8 

The count of all the packets with at least a byte of TCP data payload (client to server) actual_data_pkts_a_b 19 

The cou client) actual_data_pkts_b_a 20 

The total bytes of data seen. Note that this incl  retransmissions/ window probe packets if 
actual _a_b 

udes bytes from retransmissions/ window probe packets if any 
actual_data_byte_b_a 22 

rexm_data_pkts_b_a 24 

 found in the retransmitted packets (client to server) 

pically sent by a sender when 
 opened up now (client to server)

e typically sent by a sender when 
en now (server to client) 

zwnd_pr

Derived 
feature

The total bytes of data sent in the window probe packets (server to client) zwnd_probe_byte_b_a 30 

nt of all the packets with at least a byte of TCP data payload (server to 

udes bytes from
any (client to server) 

The total bytes of data seen Note that this incl

_data_byte21 

(server to client) 

The count of all the packets found to be retransmissions (client to server) rexmt_data_pkts_a_b 23 

The count of all the packets found to be retransmissions (server to client) 

The total bytes of datarexmt_data_bytes_a_b 25 

The total bytes of data found in the retransmitted packets (server to client) 

The count of all th

rexmt_data_bytes_b_a 26 

e window probe packets seen (window probe packets are ty
the receiver last advertised a zero receive window to see if the window has

zwnd_probe_pkts_a_b 27 

The count of all the window probe packets seen (window probe packets ar
the receiver last advertised a zero receive window to see if the window is op

obe_pkts_b_a 28 

The total bytes of data sent in the window probe packets (client to server) zwnd_probe_byte_a_b 29 
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Continue

outoforder_pkts_a_b 31 

d 

The count of all the packets that were seen to arrive out of order (client to server) 

The count of all the packets that were seen to arrive out of order (server to client) outoforder_pkts_b_a 32 

The count of all the packets seen with the Push bit set in the TCP header  (client to server) 

 (server to client) 

The count of all the packets seen with the SYN bits set in the TCP header respectively (client to server) _pkts_sent_a_b 

ly (client to server) 

ely (server to client) 

er to client) 

) 

U  

Ur  

e connection

ion 

erver to client) 

ent size observed during the life time of the connection (server to client) min_segm_size_b_a 48 

ytes field divided by the actual data packets reported (client to server) 

ue reported 

ver) 

 

 

ini b 

ini _a 

initial_window_packets_a_b 61 

initial window as explained in above (server to client)initial_window_pa

r) 

 

pushed_data_pkts_a_b33 

The count of all the packets seen with the Push bit set in the TCP header pushed_data_pkts_b_a34 

SYN35 

The count of all the packets seen with the FIN bits set in the TCP header respectiveFIN_Pkts_sent_a_b 36 

The count of all the packets seen with the SYN bits set in the TCP header respectivSYN_Pkts_sent_b_a 37 

The count of all the packets seen with the FIN bits set in the TCP header respectively (servFIN_pkts_sent_b_a 38 

The total number of packets with the URG bit turned on in the TCP header (client to serverUrgent_data_pkts_a_b 39 

The total number of packets with the URG bit turned on in the TCP header (server to client) Urgent_data_pkts_b_a 40 

The total bytes of Urgent data sent this field is calculated by summing the urgent pointer offset values 
found in packets having the URG bit set in the TCP header (client to server) 

rgent_data_bytes_a_b41 

The total bytes of Urgent data sent this field is calculated by summing the urgent pointer offset values 
found in packets having the URG bit set in the TCP header (server to client) 

gent_data_bytes_b_a42 

The Maximum Segment Size (MSS) requested as a TCP option in the SYN packet opening th
(client to server) 

mss_requested_a_b 43 

The Maximum Segment Size (MSS) requested as a TCP option in the SYN packet opening the connect
(server to client) 

mss_requested_b_a 44 

The maximum segment size observed during the life time of the connection (client to server) 

The maximum segment size observed during the life time of the connection (s

max_segm_size_a_b 

max_segm_size_b_a 

45 

46 

The minimum segment size observed during the life time of the connection (client to server) 

The minimum segm

min_segm_size_a_b 47 

The average segment size observed during the lifetime of the connection calculated as the value reported 
in the actual data b

avg_segm_size_a_b 49 

The average segment size observed during the lifetime of the connection calculated as the val
in the actual data bytes field divided by the actual data packets reported (server to client) 

avg_segm_size_b_a 50 

The maximum window advertisement seen if the connection is using window scaling (client to sermax_win_adv_a_b 51 

The maximum window advertisement seen if the connection is using window scaling (server to client)max_win_adv_b_a 52 

The minimum window advertisement seen this is the minimum window scaled advertisement seen if both 
sides negotiated window scaling (client to server) 

min_win_adv_a_b 53 

The minimum window advertisement seen. This is the minimum window scaled advertisement seen if 
both sides negotiated window scaling (server to client) 

min_win_adv_b_a 54 

The number of times a zero receive window was advertised (client to server) zero_win_adv_a_b 55 

The number of times a zero receive window was advertised (server to client) zero_win_adv_b_a 56 

The average window advertisement seen, calculated as the sum of all window advertisements divided by 
the total number of packets seen (client to server) 

avg_win_adv_a_b 57 

The average window advertisement seen, calculated as the sum of all window advertisements divided by
the total number of packets seen (server to client) 

avg_win_adv_b_a 58 

The total number of byte sent in the initial window the number of bytes seen in the initial flight of data 
before receiving the first ack packet from the other endpoint (client to server) 

tial_window_byte_a_59 

The total number of bytes sent in the initial window the number of bytes seen in the initial flight of data 
before receiving the first ack packet from the other endpoint (server to client) 

tial_window_byte_b60 

The total number of segments (packets) sent in the initial window as explained in above (client to server)

The total number of segments (packets) sent in the ckets_b_a 62 

The theoretical stream length, this is calculated as the difference between the sequence numbers of the 
SYN and FIN packets giving the length of the data stream seen (client to serve

ttl_stream_length_a_b 63 

The theoretical stream length, this is calculated as the difference between the sequence numbers of the 
SYN and FIN packets giving the length of the data stream seen (server to client) 

ttl_stream_length_b_a 64 
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C

missed_data_a_b 65 

ontinued 

The missed data, calculated as the difference between the ttl stream length and unique bytes sent. 
If the connection was not complete, this calculation is invalid and an “NA” (Not Available) is printed 
(client to server) 

The missed data, calculated as the difference between the ttl stream length and unique bytes sent. If the 
to 

The truncated data, calculated as the total bytes of data truncated during packet capture. For example, 
with Tcpdump, the sample option can be set to 64 (with -s option) so that just the headers of the packet 

h 

t to server) 

truncated_data_a_b 67 

ng there are no options) are captured, truncating most of the packet data. In an Ethernet with 
tes 

truncated_data_b_a 68 

t  

truncated_packets_b_a 70 

 
data_xmit_time_a_b 71 

 maximum time between consecutive packets seen in the direction 
idletime_max_a_b 73 

ackets seen in the  

me (the time difference between the cap-throughtput_a_b 75 

t and last packets in the direction) (server to client) 

osing 
n RTT sample is found only if an ack packet is received from the other end 

ce space were retransmitted after the 

 the 

RTT_samples_a_b 77 

RTT_samples_b_a 78 

RTT_min_a_b 79 

RTT_max_a_b 81 

RTT_max_b_a 82 

culated straightforwardly as the sum of all the RTT values found 
mber of RTT samples (client to server) 

RTT_avg_a_b 83 

rwardly as the sum of all the RTT values found 
r to client) 

to server) 

to client) 

nd-Shake (connection opening), assuming that the 
RTT

 

onnection opening), assuming that the 
SYN packets of the connection were captured (server to client) 

RTT_from_3WHS_b_a 88 

connection was not complete, this calculation is invalid and an “NA” (Not Available) is printed (server 
client) 

missed_data_b_a 66 

(assuming there are no options) are captured, truncating most of the packet data. In an Ethernet wit
maximum segment size of 1500 bytes, this would add up to total truncated data of 1500, 64 = 1436 bytes 
for a packet (clien

The truncated data, calculated as the total bytes of data truncated during packet capture. For example, 
with Tcpdump, the sample option can be set to 64 (with -s option) so that just the headers of the packet 
(assumi
maximum segment size of 1500 bytes, this would add up to total truncated data of 1500, 64 = 1436 by
for a packet (server to client) 

The total number of packets truncated as explained above (client to server) 

The total number of packets truncated as explained above (server to client) 

runcated_packets_a_b69 

Total data transmit time, calculated as the difference between the times of capture of the first and last 
packets carrying non-zero TCP data payload (client to server) 

Total data transmit time, calculated as the difference between the times of capture of the first and last  
packets carrying non-zero TCP data payload (server to client) 

Maximum idle time, calculated as the

data_xmit_time_b_a 72 

(client to server) 

Maximum idle time, calculated as the maximum time between consecutive p
direction (server to client) 

idletime_max_b_a 74 

The average throughput calculated as the unique bytes sent divided by the elapsed time i.e., the value  
reported in the unique bytes sent field divided by the elapsed ti
ture of the first and last packets in the direction) (client to server) 

The average throughput calculated as the unique bytes sent divided by the elapsed time i.e., the value  
reported in the unique bytes sent field divided by the elapsed time (the time difference between the  
capture of the firs

throughtput_b_a 76 

The total number of Round-Trip Time (RTT) samples found. TCP trace is pretty smart about cho
only valid RTT samples. A
point for a previously transmitted packet such that the acknowledgment value is 1 greater than the last 
sequence number of the packet. Further, it is required that the packet being acknowledged was not  
retransmitted, and that no packets that came before it in the sequen
packet was transmitted. Note: The former condition invalidates RTT samples due to the retransmission 
ambiguity problem, and the latter condition invalidates RTT samples since it could be the case that the 
ack packet could be cumulatively acknowledging the retransmitted packet, and not necessarily acking
packet in question (client to server) 

(server to client) 

The minimum RTT sample seen (client to server) 

The minimum RTT sample seen (server to client) 

The maximum RTT sample seen (client to server) 

The maximum RTT sample seen (server to client) 

The average value of RTT found, cal

RTT_min_b_a 80 

divided by the total nu

The average value of RTT found, calculated straightfo
divided by the total number of RTT samples (serve

RTT_avg_b_a 84 

The standard deviation of the RTT samples (client RTT_stdv_a_b 85 

The standard deviation of the RTT samples (server RTT_stdv_b_a 86 

The RTT value calculated from the TCP 3-Way Ha
SYN packets of the connection were captured (client to server) 

The RTT value calculated from the TCP 3-Way Hand-Shake (c

_from_3WHS_a_b 87 
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Continued 

 RTT samples of full-size segments. 
t size seen in the connection (client to RTT a_b 

The total number of full-size RTT samples, calculated from the
Full-size segments are defined to be the segments of the larges
server) 

_full_sz_smpls_89 

The total number of full-size RTT samples, calculated from the RTT samples of full-size segments. 
Full-size segments are defined to be the segments of the largest size seen in the connection (server to 
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