
Journal of Information Security, 2012, 3, 259-271
http://dx.doi.org/10.4236/jis.2012.34033 Published Online October 2012 (http://www.SciRP.org/journal/jis)

Category-Based Intrusion Detection Using PCA

Gholam Reza Zargar1, Tania Baghaie2
1GIS Department, Khuzestan Electrical Power Distributed Company, Ahvaz, Iran

2Training Center of Applied Science and Technology, Tehran Municipality Information and Communication Technology
Organization, Tehran, Iran

Email: zargar@vu.iust.ac.ir, baghaie@vu.iust.ac.ir

Received June 16, 2011; revised August 22, 2012; accepted September 5, 2012

ABSTRACT

Existing Intrusion Detection Systems (IDS) examine all the network features to detect intrusion or misuse patterns. In
feature-based intrusion detection, some selected features may found to be redundant, useless or less important than the
rest. This paper proposes a category-based selection of effective parameters for intrusion detection using Principal
Components Analysis (PCA). In this paper, 32 basic features from TCP/IP header, and 116 derived features from TCP
dump are selected in a network traffic dataset. Attacks are categorized in four groups, Denial of Service (DoS), Remote
to User attack (R2L), Remote to User attack (U2R) and Probing attack. TCP dump from DARPA 1998 dataset is used
in the experiments as the selected dataset. PCA method is used to determine an optimal feature set to make the detection
process faster. Experimental results show that feature reduction can improve detection rate for the category-based de-
tection approach while maintaining the detection accuracy within an acceptable range. In this paper KNN classification
method is used for the classification of the attacks. Experimental results show that feature reduction will significantly
speed up the train and the testing periods for identification of the intrusion attempts.

Keywords: Intrusion Detection; Principal Components Analysis; Data Dimension Reduction; Feature Selection;

Classification

1. Introduction

Intrusion Detection Systems (IDS) is designed to com-
plement other security measures based on attack preven-
tion (firewalls, antivirus, etc.). Amparo Alonso-Betanzos
et al. [1] say that “The aim of the IDS is to inform the
system administrator of any suspicious activities and to
recommend specific actions to prevent or stop the intru-
sion”. Intrusion can be defined as an attempt to gain un-
authorized access to network resources [2]. IDS is neces-
sary for effective computer system protection. There are
two approaches for intrusion detection, i.e. signature-
based and anomaly-based intrusion detection. In signa-
ture-based or misuse detection method, patterns of well
known attacks are used to identify intrusions [3]. In ano-
maly-based intrusion detection, network traffic is moni-
tored and compared versus any deviation from the estab-
lished normal usage patterns to determine whether the
current state of the network is anomalous. An anomalous
traffic can be flagged as intrusion attempt. Misuse detec-
tion uses well defined patterns known as signatures of the
attacks. Anomaly-based detection builds a normal profile
and anomalous traffic is detected when the deviation
from the normal model reaches a preset threshold [4].

Signature-based IDSs typically require human input to

create attack signatures or to determine effective models
for the normal behavior [4]. Feature selection ranking
can be used in anomaly-based and signature-based intru-
sion detection systems. Feature selection is an important
issue in intrusion detection. The reason for it is due to the
large number of features that should be monitored for the
intrusion detection purpose. Elimination of useless or
less relevant features will maintain accuracy of the detec-
tion while speeding up its calculations. Therefore, any
reduction in the number of features used for the detection
will significantly improve the overall performance of the
IDS. In cases where there are no useless features, con-
centrating on the most important ones is expected to im-
prove the execution speed of an IDS. This increase in the
detection speed will not affect accuracy of the detection
in a significant way.

Incorrect selection of the features may not only reduce
the speed of the operation but may also reduce detection
accuracy [5].

This paper reports a work aimed on improving the in-
trusion detection time using a category-based intrusion
detection model. In Figure 1, network traffic in divided
into six groups, normal, DoS, R2L, U2R, Probing and
Undetermined Anomalous Behavior (UAB). The main
goal in a Category-Based Intrusion Detection (CBID) is

Copyright © 2012 SciRes. JIS

G. R. ZARGAR, T. BAGHAIE 260

Figure 1. Category-based separation of the network traffic.

to reduce the amount of data that is less important with
regard to the intrusion detection and to eliminate them.

This approach has the benefit of reducing memory re-
quirements for storage, reducing data transfer and pro-
cessing time, and improving the detection rate [6]. IDS
has to examine a very large audit data in a short period of
time. Therefore, any reduction in the volume of data may
save the processing time [7].

Considering certain attack categorizes, some features
in the traffic data are more relevant than the rest for in-
trusion detection.

Feature reduction can be performed in several ways
[7-10]. In this paper, the category-based approach is used
to find the relevance between features extracted from the
network traffic. This paper also proposes a method based
on TCP/IP header parameters and derived features se-
lected from TCP dump network traffic dataset. In the
proposed approach, Principal Components Analysis (PCA)
is used as a dimension reduction technique. KNN classi-
fication method is used the detection of the intrusion at-
tempts and results are reported.

2. Related Works

In a reported work, Chakraborty [11] reports that the exis-
tence of irrelevant and redundant features generally af-
fects the performance of machine learning part of the
work. Chakraborty Proves that proper selection of the
feature set results in better classification performance. A.
H. Sung et al. [8] have demonstrated that the elimina-
tion of these unimportant and irrelevant features did not
significantly reduced performance of the IDS.

Chebrolu et al. [7], report that an important advantage
for combining redundant and complementary classifiers
is to increase robustness, accuracy and better overall
generalization. Chebrolu et al. [7] have also identified
important input features in building IDS that are compu-
tationally efficient and effective. In their reported work,
they have investigated performance of three feature se-
lection algorithms, i.e. Bayesian networks (BN), Classi-
fication and Regression Trees (CART) and an ensemble
of BN and CART.

Sung and Mukkamala [8], have explored SVM and
Neural Networks to identify and categorize features with
respect to their importance to detect specific kinds of
attacks such as probing, DoS, Remote to Local (R2L),
and User to Root (U2R). They have also demonstrated

that elimination of these less important and irrelevant
features did not reduce the performance of IDS signifi-
cantly. Mukkamala et al. [12] have demonstrated that use
of ensemble of classifiers gave the best accuracy for each
category of attack patterns. In designing a classifier, their
first step was to carefully construct different connectional
models to achieve best generalization performance for
the classifiers. Sung and Mukkamala [13] have analyzed
data from a large network traffic since it causes a pro-
hibitively high overhead and often becomes a major
problem for the IDS.

Chebrolu et al. [7] proposed CART-BN approach,
where CART performed best for Normal, Probe and U2R
and the ensemble approach worked best for R2L and
DoS. Meanwhile, A. Abraham et al. [14] proved that en-
semble of Decision Tree was suitable for Normal, LGP
for Probe, DoS and R2L and Fuzzy classifier was good
for R2L attacks. A. Abraham et al. [15] demonstrated the
ability of their proposed Ensemble structure in modeling
light-weight distributed IDS.

3. Data Reduction and Feature Selection
Using PCA

Principal Components Analysis (PCA) is a predominant
linear dimensionality reduction technique, and it has
been widely applied on datasets in many different scien-
tific domains [16]. PCA allows us to compute a linear
transformation that maps data from a high dimensional
space to a lower dimensional space. The first principal
components have the highest contribution to the variance
in the original dataset. Therefore, the rest can be disre-
garded with minimal loss of the information value during
the dimension reduction process. Another method is to
use their weights and transform data in to a new space
with lower dimensions. The transformation works in the
following way [17]:

 

11 12 1

21 22 2
 1 2

1 2

, , ,

N

N
M N M

M M MN

x x x

x x x
x x x

x x x



 
 
  
 
 
  









X (1)

Given a set of observations x1, x2, ···, xM are N × 1
vectors, where each observation is represented by a vec-
tor of length N. Thus, the dataset is presented by matrix
Equation (1).

The mean value for each column is defined by the ex-
pected value. This is explained in Equation (2).

1

1 M

i
i

x
M 

 x (2)

Once the mean value is subtracted from the data yields
expression Equation (3).

Copyright © 2012 SciRes. JIS

G. R. ZARGAR, T. BAGHAIE 261

i ix x (3)   

C that is correlation compute from matrix
 1 2 MA    (N × M Matrix), Equation (4):

 1 2

1 M

M
n 1

T T
n nA C

M
  



   AA   (4)

Sampled N × N covariance matrix characterizes how
data is scattered [18].

The eigenvalues of C: λ1 > λ2 > ··· > λN and the eigen-
vectors of C: u1, u2, ···, uN have to be calculated. Since C
is symmetric, u1, u2, ···, uN form a basis (i.e. any vector x
or actually  x x can, can be written as a linear com-
bination of the eigenvectors) Equation (5).

1 1 2 2
1

N

N N i i
i

x x b u b u     b u b u


  (5)

During the dimensionality reduction, only the terms
corresponding to the K largest eigenvalues are mentioned
in Equation (6) [19].

1

ˆ
K

i i
i

wherex x b u


   K N (6)

The representation of x̂ x
 Tb

 into the basis u1, u2, ···,
uK is thus . 1 2 K

The linear transformation RN ⇒ RK by PCA that per-
forms the dimensionality reduction is presented in Equa-
tion (7).

b b

   T

1 1

2 2

T

T

T
K K

b u

b u
x x U x x 

2

0 0 0

0 0 0

0 0 . 0

0 0 0 n



b u

  
  
      
  
    

 
 (7)

The new variables (i.e. bi’s) are uncorrelated. The co-
variance matrix for the bi’s is presented in Equation (8).

1

TU CU





 
 
 
 
 
 

 (8)

The covariance matrix represents only second order
statistics among the vector values.

Let n to be the dimensionality of the data. The covari-
ance matrix is used to calculate UTCU that is a diagonal
matrix. UTCU is sorted and rearranged in the form of

1 2 n    

   

 so that the data exhibits maximum
variance in y1, the next largest variance in y2 and so on,
with minimum variance in yn [20,21].

4. K-Nearest Neighbor Algorithm (KNN)

The K-nearest neighbor (KNN) decision rule has been a
ubiquitous classification tool with good scalability. Ex-

perience has shown that the optimal choice of K is de-
pendent on the data. This makes it difficult to tune the
parameters for different applications.

KNN classification algorithm tries to find the K near-
est neighbors of x0 and uses a majority vote to determine
the class label of x0. Without any prior knowledge, the
KNN classifier usually applies Euclidean distances as the
distance metric [22].

KNN is an example of instance-based learning, in
which the training data set is stored, so that, a classifica-
tion for a new unclassified record may be found simply
by comparing it to the most similar records in the train-
ing set.

The most common distance function is Euclidean dis-
tance, which represents the usual manner in which hu-
mans think of distance in the real world (8):

2

Euclidean , i i
i

d x y x y  (8)

where x = x1, x2, ···, xm, and y = y1, y2, ···, ym represent
the m attribute values of two records [23,24].

5. Three Way Handshake

The three-way handshake in Transmission Control Pro-
tocol (also called the three message handshake) is a
method used to establish and tear down network connec-
tions. This handshaking technique is referred to as the
3-way handshake or as “SYN-SYN-ACK” (or more ac-
curately SYN, SYN-ACK, ACK). The TCP handshaking
mechanism is designed so that two computers attempting
to communicate can negotiate the parameters of the net-
work connection before beginning communication. This
process is also designed so that both ends can initiate and
negotiate separate connections at the same time. Below is
a (very) simplified description of the TCP 3-way hand-
shake process (Figure 2).
 Source sends a TCP Synchronize packet to destina-

tion;
 Destination receives source’s SYN;
 Destination sends a Synchronize Acknowledgement

packet;

Figure 2. Three-way handshake.

Copyright © 2012 SciRes. JIS

G. R. ZARGAR, T. BAGHAIE 262

 Source re
;

acket;

ent messages are
id

cation between two computers ends,
an

ing dataset

eatures are extracted from TCP/IP

nting
pa

set represents a single flow of

TC
n this work are

di

at
ar

7.1. Denial of Service (DoS) Attacks

 amount of re-

ceives destination’s SYN-ACK;
 Source sends an Acknowledgement packet
 Destination receives an Acknowledgement p
 TCP connection is established.

Synchronization and Acknowledgem
entified by a bit inside the TCP header of the segment.

TCP knows whether the network connection is opened,
synchronized or established by using the Synchronization
and Acknowledgement messages when establishing a
network connection.

When the communi
other 3-way communication is performed to tear down

the TCP connection. This setup and teardown of a TCP
connection is part of the reason why TCP qualifies to be
a reliable protocol [25].

6. The Dataset Used in This Work

The DARPA’98 dataset was used for the train
in the reported work. The dataset provides around 4 giga-
bytes of compressed TCP dump data [26] for 7 weeks of
the network traffic [27]. This dataset can be processed
into about 5 millions of connection records each about
100 bytes in size. Dataset contains payload of the packets
transmitted between hosts inside and outside a simulated
military base. BSM1 audit data from one UNIX Solaris
host for some network sessions are also provided. DARPA
1998 TCP dump dataset [28] was preprocessed and label-
ed using two class labels, e.g., normal and attack.

7. Pre-Processing

In this work 32 basic f
header protocols. These features are derived from TCP,
IP, UDP and ICMP packet headers without inspecting the
payload. The possible candidates for this feature category
includes timestamp, source port, source IP, destination
port, destination IP, flag, to name a few. In another data-
set 116 derived features are selected from TCP dump net-
work traffic dataset [28]. This dataset is intended to pro-
vide a wide variety of features characterizing flows. This
includes simple statistics about packet length and in-
ter-packet timings, and information derived from the
transport protocol (TCP) such as SYN and ACK counts.
This information is extracted using all the packets trans-
mitted in both directions as well as on each direction
individually (server → client and client → server).

Many packet statistics are derived directly by cou
ckets, and packet header-sizes. A significant number of

features (such as estimates of round-trip time, size of
TCP segments, and the total number of retransmissions)
are derived from the TCP headers. TCP trace [29] was
used for this information.

Each object within data

P packets between client and server.
All of the features that are extracted i
splayed in Appendix 1, Table A.1. Wire-shark, Edit-

cap and TCP trace softwares are used to analyze and
minimize TCP dump files and extract features [30,31].

The dataset contains 13 different types of attacks th
e broadly categorized into five groups such as DoS,

U2R, R2L, Probing and anomalous behavior. Goal is
categorize different intrusion methods into a number of
categories. This approach aims to summarize the intru-
sion method into a few similar approaches. Following the
proposed approach, system will be able to deal with
variations of the different attacks within each category.
Considering the DARPA’98 dataset, there are five main
categories of attacks proposed in this paper. The pro-
posed attack categories are listed and described in the
following sections.

Denial of service attacks consume a large
sources thus preventing legitimate users from receiving
service with some minimum performance or they may
prevent a computer from complying with a legitimate
requests by consuming its resources [32,33]. Apache2,
Back, Land, Mail bomb, SYN Flood, Ping of death,
Process table, Smurf, Teardrop, Udpstorm and Neptune
attacks are some examples of the Dos attack. In this work
Syn flood attack is used for the experiments. Therefore,
Syn flood scenario will be explained in this section: Syn
flood is a DoS attack in which every TCP/IP implement-
tation is vulnerable to it in some degree. Each half-open
TCP connection made to a machine will cause the “tcpd”
server to add a record to the data structure that stores
information describing all pending connections (Figure
3). This data structure has a size limit and it may over-
flow by intentionally creating too many partially-open
connections. The half-open connections data structure on
the victim server system will eventually fill up. Once the
data structure is full, unless the table is emptied, the sys-
tem will not be able to accept any new incoming con-

Figure 3. Attacking a victim machine with half-open con
nections.

-
1Basic Security Monitoring (BSM).

Copyright © 2012 SciRes. JIS

G. R. ZARGAR, T. BAGHAIE 263

nections [34].
Normally, th

ing connection
ere is a time-out associated with a pend-

t Attacks (U2R)

ccessing a normal

s to a machine

acks where an attacker scans a

s Behavior

 manager

etection

ARPA dataset includes “list
estamp, source host and port,

ta.

ents

imed on generating a categorized
tate dataset. In the experiments for

th

, so that, half-open connections will even-
tually expire and the victim server system will recover.
However, the attacker system can simply continue send-
ing IP-spoofed packets requesting new connections faster
than the rate victim system can drop the pending connec-
tions. Christopher [35] believes that “Typical SYN flood-
ing attacks can vary several parameters: the number of
SYN packets per source address sent in a batch, the delay
between successive batches, and the mode of source ad-
dress allocation”.

7.2. User to Roo

In this attack, an attacker starts with a
user account on the system and will end in gaining root
access on that system. Regular programming mistakes
and environment assumption give an attacker opportunity
to exploit the vulnerabilities that may lead to a root ac-
cess. An example of this type of attacks include buffer
overflow, Eject, Ffbconfig, Fdformat, Loadmodule, Perl,
Ps, Xterm, perlmagic and ffb attacks [36].

7.3. Remote to User Attacks (R2L)

In this attack, an attacker sends packet
over a network and exploits the machine’s vulnerability
to gain local access as a user illegally. There are different
types of R2U attacks; the most common attack in this
class is carried out using social engineering. Examples
for these types of attacks are Dictionary, Ftp_write, Guest,
Imap, Named, Phf, Sendmail, Xlock, Xsnoop, guessing
password and Dict attacks [36].

7.4. Probing Attacks

Probing is a class of att
network to gather information for the purpose of finding
known vulnerabilities. An attacker with a map of ma-
chines and services that are available on a network can
manipulate the information and look for exploits. There
are different types of probing, some of them abuse the
computer’s legitimate features; others use social engi-
neering techniques. This class of attacks is the most
common because it requires very little technical expertise.
Examples are Ipsweep, Mscan, Nmap, Saint, Satan, ping-
sweep and Portsweep attacks [6].

7.5. Undetermined Anomalou

There are anomalous user behaviors, such as “a
becomes (i.e. behaves like) a system administrator”. For
example, when your computer was automatically black-
listed (blocked) by the network due to the number of
abnormal activities originating from your connection, it

is possible that your computer is infected with a worm
and/or virus.

8. Misuse D

Training data from the D
files” that identify the tim
destination host and port, and the name of each attack
[37-40]. This information is used to select intrusion data
for the purpose of pattern mining and feature construc-
tion, and to label each connection record with “normal”
or “attack” label types. The final labeled training data is
used for training the classifiers. Due to the large volume
of audit data, connection records are stored in several
data files. Table 1 shows 43418 basic feature samples
and 20095 derived feature samples that include records
from both attack and normal state categories that are se-
lected for the analysis. These data are extracted from the
fifth day of the sixth week. Sequences of normal connec-
tion records are randomly extracted to create the normal
dataset.

Dictionary table is used to convert text data into nu-
meric da

9. Experim

Experiments were a
attacked or normal s
basic features, 9459 normal connections and 33,959 at-
tacks are included in the categorized attack and were
randomly selected to create a dataset. As for the derived
features, 10,413 normal connections and 9682 are in-
cluded in the categorized attack and were randomly se-
lected to create another dataset. With these dataset that
included derived features, all experiments repeated again
and selected some derived feature in attacks categorized.

Classes of the relevant features with their associated
information value are reported in Tables 2 and 3. In

ese tables, all attack categories are compared versus the
normal state. As it is reported in this paper, some dif-
ferent features were selected from attacks categories and

Table 1. Number of records that are used for the cal-
culations in different categories.

Category Number of basic Records Number of derived records

DoS 19,440 8789

U2R 513 16

R2L 3798 867

Prob 1

A y

N 1

20,

0,137 10

nomal 71 0

ormal 9459 0,413

SUM 43,418 095

Copyright © 2012 SciRes. JIS

G. R. ZARGAR, T. BAGHAIE 264

T ist of the most effective basic featu etecting
a list of

Relevant features in descending ation

able 2. L
 attacks.

res for d

Class name
order value

Total inform

DoS 28,19,5,1,16 99.75%

U2R

R2L

12,13,25,28,5

27,25

98.13%

7.69%9

P 29,26,2 1,10
Non-d

A
26, 9 99.

robing 5,28,12,13,5,27, 98.01%
eterministic
nomaly

28, 10,125,2,3, 29%

Normal 27,25 98.84%

most effective deriv

Figure 4. A comparison between the information value of
different features in different states of the network operation
(basic features).

Tab t of the ed feat de-
tect ss of attacks.

Total information

le 3. Lis ures for
ing a cla

Class name Relevant features in descending order
value

DoS 2 99.36%

U2R 79,97,101,10,86,59,47 94.5%

88.5% R2L 36,3,

2,8

77

P
2,3,35,37,38,61,6 7,89,90,103,104,

N 105,99 03,89

robing
102,86,47,10.83

96.24%

ormal ,23,107,1 99.22%

no ate. A co een the fea por-
tance in differen nd the no te is
presented in Figures 4 and . The Scree graph for the

h attack has a different consequence and effect on
ementioned features are
against a normal or a

.84% of the total information value. Therefore,
it

t shows that component number 28 i.e.
Sy

rmal st mparison betw ture im
t attack categories a rmal sta

 5
calculated PCA coefficients is depicted in Figures 6 and
7.

10. Experimental Results

Eac
computer network features. Afor
used to compare each session
known attack behavior. Table 2 for basic and Table 3 for
derived features show relevant features in descending
order for different attack categories. As reported in Table
2, one single feature (number 27) in normal behavior
have 98.22% information value, this is maximum infor-
mation.

Value in the normal dataset. Once the component
number 25 is included, their total information value will
rise to 98

can be said that the component number 25 does not
have a significant effect in detecting the normal state.
Comparing information value of the component number
25 versus threshold value for the normal state and R2L
attack, normal state and R2L attack can be separated. In
the derived features, six features i.e. features: 105, 99, 23,
107, 103 and 89 have 99.22% information value for the
normal behavior.

As the three-way handshaking was explained in Sec-
tion 5, intruder may use Syn Flag for the intrusion. The
experimental resul

n Flag (Appendix 1, Table A.1) have the highest

Figure 5. A comparison between the information value of
different features in different states of the network operation
(derived features).

Figure 6. Comparison between Scree graphs for the different
calculated PCA coefficients (basic features).

t the effective
features presented in Table , a relation between the be-

information value for the detection of a DoS attack. Once
DoS attack scenarios are compared agains

2
haviors of their parameters can be extracted.

Copyright © 2012 SciRes. JIS

G. R. ZARGAR, T. BAGHAIE

Copyright © 2012 SciRes. JIS

265

at is a kind
of

In TCP scan attack, hackers use TCP scans to identify
active devices, TCP port status and their TCP-based ap-
plication-layer protocols. In TCP FIN scan, th

Fin flag has the highest information value. Hence, it is
the most important component in the probing scenario
attack and for the detection purpose. Comparing results
of this experiment with TCP FIN scan scenario, intrusion
attempt by probing attack can be detected. In Table 2,
result of the probing attack scenario shows that the first
four components are TCP flags with 70.97% of informa-
tion value.

 TCP scan attack, hackers scan the network to identify
TCP port numbers that are listening. The TCP packets
used in this scan have only their TCP FIN flag set. Re-
sults from the experiments in Table 2, for probing at-
tacks, show that the 29th component in Table A.1 i.e.

Figure 7. Comparison between Scree graphs for the different
calculated PCA coefficients (derived features).

om implementing KNN classification.

DOS R2L U2R PROB ANOM

KNN classification method was implemented to show
the performance of the proposed measures and to prove
that feature reduction will speed up the training and the
test processes for the attack identification system consi-
derably. Table 4 shows the confusion matrix for apply-
ing the KNN classification method. In Table 5, the clas-
sification time for the experiments using all the features
are compared with when only effective features are used.
True positive and false positive for six classes reported.
Once the detection time for the two different feature sets
are compared, the result shows that using effective fea-
tures, the detection time is reduced without any decline
in the detection accuracy. Hence, detection time can be
reduced using effective features extracted by means of
the PCA. In a different experiment, all the attacks in Ta-
ble 6 are categorized in an attack class and normal con-
nections are categorized as the second category and the
KNN classification method was applied. Process time in
this experiment decreased as well, while the accuracy
showed a small change.

Table 4. Confusion matrix resulted fr

 NOR
NOR 8429 21 8 27 22 6
DOS 0 17,510 0 0 0 0
R2L 10

9
ANOM

11
0

438
53

2
3342

0
12

0
0 U

PROB
2R 11

40 38 0 5 040 0
1 0 0 2 5 55

Table 5. Compa sific n time all the features ve when fecti features are used.

Class name C lass 2 Class ss 4 Class 5 Class 6

ring clas atio for r ssu only ef ve

lass 1 C 3 Cla

Record type Normal DoS U2R R2L Prob Anomaly

Number of record 9459 19,440 513 3798 10,137 71

TP FP TP FP TP FP TP FP TP FP TP FP

rocess time
(second)

P

Result

KNN with
99. 100 0 95.0 6 97.7 2 99.0 .91 87 1

 classification
all feature

01 0.98 1 4. 7 2. 9 0 .30 13.1 200.98

KNN cl ith
9 9 9 9 9 1 135.98

assificati
ctive feat

on w
effe ure

8.35 0.84 9.78 0.2 2.03 6.9 4.98 9.0 7.04 0.44 85.2 4.21

T between classification time needed when all features are used or once only the effective features are
use

Class name Class 1 Class 2

able 6. A comparison
d.

Record type Normal Attack
Number of record 9459 33,959

Process time (second)

Result TP FP T P FP

KNN classification with all feature 99 9 99. 7.01 0.9 82 0.1 185.32

KNN classification with effective feature 94.05 4.3 99.36 0.58 125.22

G. R. ZARGAR, T. BAGHAIE 266

11. Conclusions

A feature selection m omp
nent Analysis (PC pl

esults with a similar accuracy
f features. The proposed approac

tri

s to detect intrusions. Using the results derived
ction and comparing it versus both
d feature sets, one can analyze the

elia, M. C.-F. Félix, A. S.
Classification of Computer In-

trusions Using Functional Networks—A Comparative
Study,” Procee osium on Artifi

[3] K. Ilgun, R. A. Kemmerer and P. A. Porras, “State Tra

sition is: A Rule-Based Intrusion Detection Ap-
proach,” IEEE Transaction on Software Engineering, Vol.
21, No. 3, 1995, pp. 181- :10.1109/32.372146ethod based on Principal C o-

A) for CBID is proposed and im e-
mented to provide r
with a smaller set o

but
h

improved the detection speed. Feature selection reduced
the total number of features in the dataset (32 basic fea-
tures and 116 derived features). Due to the smaller search
space, this reduction means that less data is needed for
training the classifier. Paper reports a new CBID ap-
proach that can produce better and more accurate results
in identifying the category of the attacks instead of the
precise type of the attack. This result also indicates that
there are analytical solutions for the feature selection that
are not based on the trial and error. The possibility and
feasibility of detecting intrusions based on characteriza-
tion of different types of attacks such as DoS, probes,
U2R and R2L attacks is an important goal in the reported
work. Results of this investigation seem to be promising.

Results indicate that normal state of the network and
category of the attacks can be identified using a small
number of a carefully selected network features. On the
other hand, it is proven that certain features have no con-

bution to intrusion detection. Experimental results show
that dimension reduction and identification of effective
network features for category-based selection can reduce
the process time in an intrusion detection system while
maintaining the detection accuracy within an acceptable
range.

12. Future Work

Plan for the future work is to use different classification
method

 from the intrusion dete
the full and the reduce
differences in their accuracy and speed. Also merging
KDD Cup 99 features with 116 newly derived features to
generate one single dataset and repeat all the experiment
for the new dataset and to compare the result with the
result reported in this paper.

REFERENCES
[1] A.-B. Amparo, S.-M. No

Juan and P.-S. Beatriz, “
-R.

dings of European Symp cial
Neural Networks (ESANN), Bruges, 25-27 April 2007, pp.
579- 584.

[2] R. Heady, G. Luger, A. Maccabe and M. Servilla, “The
Architecture of a Network Level Intrusion Detection Sys-
tem,” Technical Report, University of New Mexico, Al-
buquerque, 1990.

n-

Analys

199. doi

[4 I. and A. Elissee Introduction to Variable

Using Feature Selection of Soft Com-

ed-

] Guyon ff, “An
and Feature Selection,” Journal of Machine Learning Re-
search, Vol. 3, 2003, pp. 1157-1182.

[5] T. S. Chou, K. K. Yen and J. Luo, “Network Intrusion
Detection Design
puting Paradigms,” International Journal of Computa-
tional Intelligence, Vol. 4, No. 3, 2008, pp. 196-208.

[6] G. Zargar and P. Kabiri, “Identification of Effective Net-
work Feature for Probing Attack Detection,” Proce
ings of 1st International Conference on Network Digital
Technologies, July 2009, pp. 405-410.
doi:10.1109/NDT.2009.5272124

[7] S. Chebrolu, A. Abraham and J. Thomas, “Feature De-
duction and Ensemble Design of Intrusion Detection
Systems,” Computers and Security, Elsevier Science, Vol.
24, No. 4, 2005, pp. 295-307.

[8] A. H. Sung and S. Mukkamala, “Identifying Important
Features for Intrusion Detection Using Support Vector
Machines and Neural Networks,” Proceedings of Inter-
national Symposium on Applications and the Internet
(SAINT), 2003, pp. 209-216.

[9] R. Agrawal, J. Gehrke, D. Gunopulos and P. Raghavan,
“Automatic Subspace Clustering of High Dimensional
Data for Data Mining applications,” Proceedings of Acm-
sigmod International Conference on Management of Data,
Seattle, 1998, pp. 94-105.

[10] M. F. Abdollah, A. H. Yaacob, S. Sahib, I. Mohamad and
M. F. Iskandar, “Revealing the Influence of Feature Se-
lection for Fast Attack Detection,” International Journal
of Computer Science and Network Security, Vol. 8, No. 8,
2008, pp. 107-115.

[11] B. Chakraborty, “Feature Subset Selection by Neuro-Rough
Hybridization,” Lecture Notes in Computer Science (LNCS),
Springer, Hiedelberg, 2005.

[12] S. Mukkamala, A. H. Sung and A. Abraham, “Modeling

ction Problems,” Lecture Notes in

 Systems,” Springer, Hiedel-

. 3, 2007, pp.

1890.1401903

Intrusion Detection Systems Using Linear Genetic Pro-
gramming Approach,” Lecture Notes in Computer Sci-
ence (LNCS), Springer, Hiedelberg, 2004.

[13] A. H. Sung, and S. Mukkamala, “The Feature Selection
and Intrusion Dete
Computer Science (LNCS), Springer, Hieldelberg, 2004.

[14] A. Abraham and R. Jain, “Soft Computing Models for
Network Intrusion Detection
berg, 2004.

[15] A. Abraham, C. Grosan and C. M. Vide, “Evolutionary
Design of Intrusion Detection Programs,” International
Journal of Network Security, Vol. 4, No
328-339.

[16] C. Boutsidis, M. W. Mahoney and P. Drineas, “Unsu-
pervised Feature Selection for Principal Components
Analysis,” Proceedings of the 14th ACM Sigkdd Interna-
tional Conference on Knowledge Discovery and Data
Mining, Las Vegas, 2008, pp. 61-69.
doi:10.1145/140

[17] W. Wang and R. Battiti, “Identifying Intrusions in Com-

Copyright © 2012 SciRes. JIS

G. R. ZARGAR, T. BAGHAIE 267

puter Networks Based on Principal Component Analy-
sis,” 2009.
http://eprints.biblio.unitn.it/archive/00000917/

[18] R. D. Jain and J. Mao, “Statistical Pattern Recognition: A
Review,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. 22, No. 1, 2000, pp. 4-37.
doi:10.1109/34.824819

[19] M. Turk and A. Pentland, “Eigenfaces
Journal of Cognitive Neuroscie

 for Recognition,
nce, Vol. 3, No. 1, 1991

”
,

pp. 71-86. doi:10.1162/jocn.1991.3.1.71

[20] K. Ohba and K. Ikeuchi, “Detectability, Uniqueness, and
Reliability of Eigen Windows for Stable Veri
Partially Occluded Objects,” IEEE Transaction

fication of
s o

n Pat-

tern Analysis and Machine Intelligence, Vol. 19, No. 9,
1997, pp. 1043-1048. doi:10.1109/34.615453

[21] H. Murase and S. Nayar, “Visual Learning and Reco
tion of 3D Objects from

gni-
Appearance,” International Jour-

 Classification,”

n-pages/editcap.html

on Detection,” Interna-
ournal of Computer Science and Network Security

Networks, Bruges, 2007, pp. 579-584.

[34] A. Hassanzadeh and B. Sadeghian, “Intrusion Detection
with Data Correlation Relation Graph,” 3rd International
Conference on Availability, Reliability and Security
(ARES 08), 2008, pp. 982-989.

nal of Computer Vision, Vol. 14, 1995, pp. 5-24.

[22] Y. Song, J. Huang, D. Zhou, H. Y. Zha and C. L. Giles,
“IKNN: Informative K-Nearest Neighbor
Springer Verlag, Hieldelberg, 2007.

[23] D. Hand, H. Mannila and P. Smyth, “Principles of Data
Mining,” MIT Press, Cambridge, 2001.

[24] D. T. Larose, “Discovering Knowledge in Data: An In-
troduction to Data Mining,” John Wiley and Sons Ltd.,
Chichester, 2005.

[25] 2009. http://support.microsoft.com/kb/172983

[26] 2009. http://www.Tcpdump.org
MIT Lincoln Laboratory, 2009.
http://www.ll.mit.edu/IST/ideval/

[27] MIT Lincoln Laboratory, Information Systems Techno-
logy Group, “The 1998 Intrusion Detection Off-Line Eva-
luation Plan,” 1998.
http://www.11.mit.edu/IST/ideval/docs/1998/id98-eval-1
1.txt

[28] 2009. http://www.wireshark.org

[29] 2009. http://www.Tcptrace.org

[30] 2009.
http://www.wireshark.org/docs/ma

[31] G. R. Zargar and P. Kabiri, “Category-Based Selection of

Effective Parameters for Intrusi
tional J
(IJCSNS), Vol. 9, No. 9, 2009.

[32] A. S. Vasilios and P. Fotini, “Application of Anomaly
Detection Algorithms for Detecting SYN Flooding At-
tacks,” Proceedings of IEEE Globecom, 2004, pp. 2050-
2054.

[33] A.-B. Amparo, S.-M. Noelia, M. C.-F. Félix, A. S.-R.
Juan and P.-S. Beatriz, “Classification of Computer Intru-
sions Using Functional Networks—A Comparative Study,”
Proceedings—European Symposium on Artificial Neural

doi:10.1109/ARES.2008.119

[35] L. Christopher, I. Schuba, V. Krsul et al., “Analysis of a
Denial of Service Attack on TCP,” Proceedings of the
IEEE Symposium on Security and Privacy, 1997, pp.
208-223.

[36] N. B. Anuar, H. Sallehudin, A. Gani and O. Zakaria,
“Identifying False Alarm for Network Intrusion Detection
System Using Hybrid Data Mining and Decision Tree,”
Malaysian Journal of Computer Science, Vol. 21, No. 2,
2008, pp. 110-115.

[37] W. Lee, “A Data Mining Framework for Constructing
Feature and Model for Intrusion Detection System,” Ph.D.
Thesis, University of Columbia, New York, 1999.

[38] W. Lee, S. J. Stolfo and K. W. Mok, “A Data Mining
Framework for Building Intrusion Detection Models,”
IEEE Symposium on Security and Privacy, 1999, pp.
120-132.

[39] G. R. Zargar and P. Kabiri, “Selection of Effective Net-
work Parameters in Attacks for Intrusion Detection,”
Lecture Notes in Computer Science (LNCS), Springer,
Berlin, 2010.

[40] G. R. Zargar and P. Kabiri, “Identification of Effective
Optimal Network Feature Set for Probing Attack Detec-
tion Using PCA Method,” International Journal of Web
Application (IJWA), Vol. 2, No. 3, 2010.

Copyright © 2012 SciRes. JIS

http://dx.doi.org/10.1145/1401890.1401903
http://dx.doi.org/10.1145/1401890.1401903
http://dx.doi.org/10.1145/1401890.1401903
http://dx.doi.org/10.1109/34.824819
http://dx.doi.org/10.1109/34.824819
http://dx.doi.org/10.1109/34.824819
http://dx.doi.org/10.1109/ARES.2008.119

G. R. ZARGAR, T. BAGHAIE 268

Table A.1. List of basic features from the TCP/IP protocol with their descriptions in this work.

No. Feature Description

1 Protocol Type of protocol

2 Frame_lenght Length of frame

3 Capture_lenght Length of capture

4 Frame_

Coloring_rule_ Coloring rule name

rotocol

P

ce

et_IP set IP

 number

 the connection)

_flag nection)

 of the connection)

(status flag of the connection)

n)

 = echo request and 0 = echo reply)

e

a

Basic feature

IS_marked Frame is marked

5

6

name

pe Ethernet_ty

Ver_IP

Type of ethernet p

IP version 7

8 Header_lenght_I

Differentiated_S

IP header length

9

IP_Total_Lenght

Differentiated servi

10 IP total length

11 Identification_IP Identification IP

12 MF_Flag_IP More fragment flag

13 DF_Flag_IP

Fragmentation_offs

Don’t fragment flag

Fragmentation off14

15 Time_to_live_IP Time to live IP

16 Protocol_no Protocol number

17 Src_port Source port

18 Dst_port Destination port

19 Stream_index Stream index number

20 Sequence_number Sequence number

21 Ack_number Acknowledgment

22 Cwr_flag Cwr flag(status flag of

23 Ecn_echo Ecn echo flag (status flag of the con

Urgent flag (statu24 Urgent_flag

Ack_flag

s flag

Acknowledgment flag 25

26 Psh_flag Push flag (status flag of the connectio

27 Rst_flag Reset flag (status flag of the connection)

Syn flag (status flag of the connection) 28 Syn_flag

29 Fin_flag Finish flag (status flag of the connection)

30 ICMP_Type Specifies the format of the ICMP message such as: (8

Further qualifies the ICMP message 31 ICMP_cod

32 ICMP_dat ICMP data

A c and derived features.

N

ppendix 1. Description of the basi

Description Feature o.

The num f data sent excluding retransmitted bytes and any bytes
sent doin

un nt_b_a 1
ber of unique bytes sent the total bytes o

obing (server to client) g window pr
ique_byte_se8

The count of all the packets with at least a byte of TCP data payload (client to server) actual_data_pkts_a_b 19

The cou client) actual_data_pkts_b_a 20

The total bytes of data seen. Note that this incl retransmissions/ window probe packets if
actual _a_b

udes bytes from retransmissions/ window probe packets if any
actual_data_byte_b_a 22

rexm_data_pkts_b_a 24

 found in the retransmitted packets (client to server)

pically sent by a sender when
 opened up now (client to server)

e typically sent by a sender when
en now (server to client)

zwnd_pr

Derived
feature

The total bytes of data sent in the window probe packets (server to client) zwnd_probe_byte_b_a 30

nt of all the packets with at least a byte of TCP data payload (server to

udes bytes from
any (client to server)

The total bytes of data seen Note that this incl

_data_byte21

(server to client)

The count of all the packets found to be retransmissions (client to server) rexmt_data_pkts_a_b 23

The count of all the packets found to be retransmissions (server to client)

The total bytes of datarexmt_data_bytes_a_b 25

The total bytes of data found in the retransmitted packets (server to client)

The count of all th

rexmt_data_bytes_b_a 26

e window probe packets seen (window probe packets are ty
the receiver last advertised a zero receive window to see if the window has

zwnd_probe_pkts_a_b 27

The count of all the window probe packets seen (window probe packets ar
the receiver last advertised a zero receive window to see if the window is op

obe_pkts_b_a 28

The total bytes of data sent in the window probe packets (client to server) zwnd_probe_byte_a_b 29

Copyright © 2012 SciRes. JIS

G. R. ZARGAR, T. BAGHAIE 269

Continue

outoforder_pkts_a_b 31

d

The count of all the packets that were seen to arrive out of order (client to server)

The count of all the packets that were seen to arrive out of order (server to client) outoforder_pkts_b_a 32

The count of all the packets seen with the Push bit set in the TCP header (client to server)

 (server to client)

The count of all the packets seen with the SYN bits set in the TCP header respectively (client to server) _pkts_sent_a_b

ly (client to server)

ely (server to client)

er to client)

)

U

Ur

e connection

ion

erver to client)

ent size observed during the life time of the connection (server to client) min_segm_size_b_a 48

ytes field divided by the actual data packets reported (client to server)

ue reported

ver)

ini b

ini _a

initial_window_packets_a_b 61

initial window as explained in above (server to client)initial_window_pa

r)

pushed_data_pkts_a_b33

The count of all the packets seen with the Push bit set in the TCP header pushed_data_pkts_b_a34

SYN35

The count of all the packets seen with the FIN bits set in the TCP header respectiveFIN_Pkts_sent_a_b 36

The count of all the packets seen with the SYN bits set in the TCP header respectivSYN_Pkts_sent_b_a 37

The count of all the packets seen with the FIN bits set in the TCP header respectively (servFIN_pkts_sent_b_a 38

The total number of packets with the URG bit turned on in the TCP header (client to serverUrgent_data_pkts_a_b 39

The total number of packets with the URG bit turned on in the TCP header (server to client) Urgent_data_pkts_b_a 40

The total bytes of Urgent data sent this field is calculated by summing the urgent pointer offset values
found in packets having the URG bit set in the TCP header (client to server)

rgent_data_bytes_a_b41

The total bytes of Urgent data sent this field is calculated by summing the urgent pointer offset values
found in packets having the URG bit set in the TCP header (server to client)

gent_data_bytes_b_a42

The Maximum Segment Size (MSS) requested as a TCP option in the SYN packet opening th
(client to server)

mss_requested_a_b 43

The Maximum Segment Size (MSS) requested as a TCP option in the SYN packet opening the connect
(server to client)

mss_requested_b_a 44

The maximum segment size observed during the life time of the connection (client to server)

The maximum segment size observed during the life time of the connection (s

max_segm_size_a_b

max_segm_size_b_a

45

46

The minimum segment size observed during the life time of the connection (client to server)

The minimum segm

min_segm_size_a_b 47

The average segment size observed during the lifetime of the connection calculated as the value reported
in the actual data b

avg_segm_size_a_b 49

The average segment size observed during the lifetime of the connection calculated as the val
in the actual data bytes field divided by the actual data packets reported (server to client)

avg_segm_size_b_a 50

The maximum window advertisement seen if the connection is using window scaling (client to sermax_win_adv_a_b 51

The maximum window advertisement seen if the connection is using window scaling (server to client)max_win_adv_b_a 52

The minimum window advertisement seen this is the minimum window scaled advertisement seen if both
sides negotiated window scaling (client to server)

min_win_adv_a_b 53

The minimum window advertisement seen. This is the minimum window scaled advertisement seen if
both sides negotiated window scaling (server to client)

min_win_adv_b_a 54

The number of times a zero receive window was advertised (client to server) zero_win_adv_a_b 55

The number of times a zero receive window was advertised (server to client) zero_win_adv_b_a 56

The average window advertisement seen, calculated as the sum of all window advertisements divided by
the total number of packets seen (client to server)

avg_win_adv_a_b 57

The average window advertisement seen, calculated as the sum of all window advertisements divided by
the total number of packets seen (server to client)

avg_win_adv_b_a 58

The total number of byte sent in the initial window the number of bytes seen in the initial flight of data
before receiving the first ack packet from the other endpoint (client to server)

tial_window_byte_a_59

The total number of bytes sent in the initial window the number of bytes seen in the initial flight of data
before receiving the first ack packet from the other endpoint (server to client)

tial_window_byte_b60

The total number of segments (packets) sent in the initial window as explained in above (client to server)

The total number of segments (packets) sent in the ckets_b_a 62

The theoretical stream length, this is calculated as the difference between the sequence numbers of the
SYN and FIN packets giving the length of the data stream seen (client to serve

ttl_stream_length_a_b 63

The theoretical stream length, this is calculated as the difference between the sequence numbers of the
SYN and FIN packets giving the length of the data stream seen (server to client)

ttl_stream_length_b_a 64

Copyright © 2012 SciRes. JIS

G. R. ZARGAR, T. BAGHAIE 270

C

missed_data_a_b 65

ontinued

The missed data, calculated as the difference between the ttl stream length and unique bytes sent.
If the connection was not complete, this calculation is invalid and an “NA” (Not Available) is printed
(client to server)

The missed data, calculated as the difference between the ttl stream length and unique bytes sent. If the
to

The truncated data, calculated as the total bytes of data truncated during packet capture. For example,
with Tcpdump, the sample option can be set to 64 (with -s option) so that just the headers of the packet

h

t to server)

truncated_data_a_b 67

ng there are no options) are captured, truncating most of the packet data. In an Ethernet with
tes

truncated_data_b_a 68

t

truncated_packets_b_a 70

data_xmit_time_a_b 71

 maximum time between consecutive packets seen in the direction
idletime_max_a_b 73

ackets seen in the

me (the time difference between the cap-throughtput_a_b 75

t and last packets in the direction) (server to client)

osing
n RTT sample is found only if an ack packet is received from the other end

ce space were retransmitted after the

 the

RTT_samples_a_b 77

RTT_samples_b_a 78

RTT_min_a_b 79

RTT_max_a_b 81

RTT_max_b_a 82

culated straightforwardly as the sum of all the RTT values found
mber of RTT samples (client to server)

RTT_avg_a_b 83

rwardly as the sum of all the RTT values found
r to client)

to server)

to client)

nd-Shake (connection opening), assuming that the
RTT

onnection opening), assuming that the
SYN packets of the connection were captured (server to client)

RTT_from_3WHS_b_a 88

connection was not complete, this calculation is invalid and an “NA” (Not Available) is printed (server
client)

missed_data_b_a 66

(assuming there are no options) are captured, truncating most of the packet data. In an Ethernet wit
maximum segment size of 1500 bytes, this would add up to total truncated data of 1500, 64 = 1436 bytes
for a packet (clien

The truncated data, calculated as the total bytes of data truncated during packet capture. For example,
with Tcpdump, the sample option can be set to 64 (with -s option) so that just the headers of the packet
(assumi
maximum segment size of 1500 bytes, this would add up to total truncated data of 1500, 64 = 1436 by
for a packet (server to client)

The total number of packets truncated as explained above (client to server)

The total number of packets truncated as explained above (server to client)

runcated_packets_a_b69

Total data transmit time, calculated as the difference between the times of capture of the first and last
packets carrying non-zero TCP data payload (client to server)

Total data transmit time, calculated as the difference between the times of capture of the first and last
packets carrying non-zero TCP data payload (server to client)

Maximum idle time, calculated as the

data_xmit_time_b_a 72

(client to server)

Maximum idle time, calculated as the maximum time between consecutive p
direction (server to client)

idletime_max_b_a 74

The average throughput calculated as the unique bytes sent divided by the elapsed time i.e., the value
reported in the unique bytes sent field divided by the elapsed ti
ture of the first and last packets in the direction) (client to server)

The average throughput calculated as the unique bytes sent divided by the elapsed time i.e., the value
reported in the unique bytes sent field divided by the elapsed time (the time difference between the
capture of the firs

throughtput_b_a 76

The total number of Round-Trip Time (RTT) samples found. TCP trace is pretty smart about cho
only valid RTT samples. A
point for a previously transmitted packet such that the acknowledgment value is 1 greater than the last
sequence number of the packet. Further, it is required that the packet being acknowledged was not
retransmitted, and that no packets that came before it in the sequen
packet was transmitted. Note: The former condition invalidates RTT samples due to the retransmission
ambiguity problem, and the latter condition invalidates RTT samples since it could be the case that the
ack packet could be cumulatively acknowledging the retransmitted packet, and not necessarily acking
packet in question (client to server)

(server to client)

The minimum RTT sample seen (client to server)

The minimum RTT sample seen (server to client)

The maximum RTT sample seen (client to server)

The maximum RTT sample seen (server to client)

The average value of RTT found, cal

RTT_min_b_a 80

divided by the total nu

The average value of RTT found, calculated straightfo
divided by the total number of RTT samples (serve

RTT_avg_b_a 84

The standard deviation of the RTT samples (client RTT_stdv_a_b 85

The standard deviation of the RTT samples (server RTT_stdv_b_a 86

The RTT value calculated from the TCP 3-Way Ha
SYN packets of the connection were captured (client to server)

The RTT value calculated from the TCP 3-Way Hand-Shake (c

_from_3WHS_a_b 87

Copyright © 2012 SciRes. JIS

G. R. ZARGAR, T. BAGHAIE

Copyright © 2012 SciRes. JIS

271

Continued

 RTT samples of full-size segments.
t size seen in the connection (client to RTT a_b

The total number of full-size RTT samples, calculated from the
Full-size segments are defined to be the segments of the larges
server)

_full_sz_smpls_89

The total number of full-size RTT samples, calculated from the RTT samples of full-size segments.
Full-size segments are defined to be the segments of the largest size seen in the connection (server to
client)

RTT_full_sz_smpls_b_a 90

The minimum full-size RTT sample (client to server) RTT_full_sz_min_a_b 91

The minimum full-size RTT sample (server to client) _full_sz_min_b_a

RTT_full_sz_max_a_b 93

rage full-size RTT sample (client to server) RTT_full_sz_avg_a_b 95

dard deviation of full-size RTT samples (client to server) RTT_full_sz_stdev_a_b 97

r to client)

re detected and a retransmission occurred. More
 packet acknowledges a packet sent
an the packet’s last sequence number), and at least

was retransmitted later. In other words, the ack
event and are recovering from it (client to server)

 were detected and a retransmission occurred. More
ck packet acknowledges a packet sent

et’s last sequence number), and at least
itted later. In other words, the ack

e recovering from it (server to client)

segs_cum_acked_a_b 101

segs_cum_acked_b_a 102

duplicate_acks_a_b 103

y triple_dupacks_a_b 105

ate acknowledgments received (three duplicate acknowledgments
st-recovery

ifetime of the connection

ifetime of the connection
max_retrans_b_a 108

min_retr_time_a_b 109

ions

max_retr_time_a_b 111

is-

 of the retransmission time samples obtained from all the retransmissions (client to
sdv_retr_time_a_b 115

 of the retransmission time samples obtained from all the retransmissions (server to

RTT92

The maximum full-size RTT sample (client to server)

The maximum full-size RTT sample (server to client)

The ave

RTT_full_sz_max_b_a 94

The average full-size RTT sample (server to client)

The stan

RTT_full_sz_avg_b_a 96

The standard deviation of full-size RTT samples (serveRTT_full_sz_stdev_b_a 98

The total number of ack packets received after losses we
precisely, a post-loss ack is found to occur when an ack
(acknowledgment value in the ack packet is 1 greater th
one packet occurring before the packet acknowledged,
packet is received after we observed a (perceived) loss
The total number of ack packets received after losses

post_loss_acks_a_b 99

precisely, a post-loss ack is found to occur when an a
(acknowledgment value in the ack packet is 1 greater than the pack
one packet occurring before the packet acknowledged, was retransm
packet is received after we observed a (perceived) loss event and ar

post_loss_acks_b_a 100

The count of the number of segments that were cumulatively acknowledged and not directly
acknowledged (client to server)

The count of the number of segments that were cumulatively acknowledged and not directly
acknowledged (server to client)

The total number of duplicate acknowledgments received (client to server)

The total number of duplicate acknowledgments received (server to client)

The total number of triple duplicate acknowledgments received (three duplicate acknowledgments
acknowledging the same segment), a condition commonly used to trigger the fast-retransmit/fast-recover

duplicate_acks_b_a 104

phase of TCP (client to server)

The total number of triple duplic
acknowledging the same segment), a condition commonly used to trigger the fast-retransmit/fa
phase of TCP (server to client)

triple_dupacks_b_a 106

The maximum number of retransmissions seen for any segment during the l
(client to server)

The maximum number of retransmissions seen for any segment during the l

max_retrans_a_b 107

(server to client)

The minimum time seen between any two (re)transmissions of a segment amongst all the retransmissions
seen (client to server)

The minimum time seen between any two (re)transmissions of a segment amongst all the retransmiss
seen (server to client)

min_retr_time_b_a 110

The maximum time seen between any two (re)transmissions of a segment (client to server)

The maximum time seen between any two (re)transmissions of a segment (server to client) max_retr_time_b_a 112

The average time seen between any two (re)transmissions of a segment calculated from all the retransm
sions (client to server)

avg_retr_time_a_b 113

The average time seen between any two (re)transmissions of a segment calculated from all the retransmis-
sions (server to client)
The standard deviation

avg_retr_time_b_a 114

server)

The standard deviation
client)

sdv_retr_time_b_a 116

