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ABSTRACT 

This work clarifies the relation between Maxwell, Dirac and Majorana neutrino equations presenting an original way to 
derive the Dirac and neutrino equation from the chiral electrodynamics leading, perhaps, to novel conception in the 
mass generation by electromagnetic fields. In the present article, it is shown that Maxwell equations can be written in 
the same form as the two components Dirac and neutrino equations, that is the vector representation of electromagnetic 
theory can be factorized into a pair of two-component spinor field equations. We propose a simple approach with the 
electric field E  parallel to the magnetic field H . Our analysis is based on the chiral or Weyl form of the Maxwell 
equations in a chiral vacuum. This theory is a new quantum mechanics (QM) interpretation for Dirac and neutrino 
equation. The below research proves that the QM of particles represents the electrodynamics of the curvilinear closed 
chiral waves. Electromagnetic properties of neutrinos are discussed. 
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1. Introduction 

Maxwell’s equations can be formulated in a number of 
diferent spinor representations: a) as a single four-com- 
ponent spinor equation whose transformation properties 
are almost identical with those of the Dirac equation; b) 
as a pair of uncoupled two-component spinor equations, 
in two different representations. One of these is similar to 
the Weyl equation for the neutrino field and the other to 
the two-component spinor form of the Dirac equation; c) 
as a single equation in which the field variables are 2 × 2 
matrices. In terms of new field variables corresponding 
to chiral equations, we derived the Dirac equation and we 
reconsider the two-component Majorana equation. By 
making use of the chiral operator c  defined in Sections 
2 and 3, we construct these equations with a mass term in 
a novel and manifestly covariant way, which reveal its 
intimate connection with the chiral electromagnetism.  

T

To do that, we must considerer the chiral vacuum. Af- 
ter the discovery of the weak interaction that violates 
parity (spatial reflection), we addressed the question on 
whether there may be any empirical evidence for the 
violation of parity in the electromagnetic interaction. If 
the chiral vacuum is take into account, then there is an 

implication in the experimental results that the electro- 
magnetic and the nuclear forces also violate space-re- 
flection symmetry, as well as time reversal symmetry. 

The chiral vacuum is intended to explain the relation 
between electrodynamics in anisotropic material media 
and its analogous formulation in spacetime, with non- 
null Riemann curvature tensor. The electromagnetism 
can be discussed via chiral differential forms, we point 
out the optical activity of a given material medium, 
closely related to topological spin, and the Faraday rota- 
tion, associated to topological torsion. Both quantities are 
defined in terms of the chiral magnetic and electric field. 

In order to investigate the propagation of electromag- 
netic waves in material media, we think that it is analo- 
gous to consider the electromagnetic wave propagation in 
the vacuum, but in a curved spacetime, which is obtained 
by a deformation of the Lorenztian metric of Minkowski 
spacetime. Also, there exists a close relation between 
Maxwell equations in curved spacetime and in an ani- 
sotropic material medium, indicating that electromagnet- 
ism and spacetime properties are deeply related [1]. Be- 
sides, the geometrical aspects of wave propagation can 
be described by an effective geometry which represents a 
modification of the Lorentzian metric of Minkowski 
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spacetime, i.e., a kind of spacetime deformation, that is a 
chiral vacuum. While the left circularly polarized (LCP) 
wave is transmitted straight through the chiral medium 
with no reflection and no refraction, the right circularly 
polarized (RCP) wave is scattered. The reverse can also 
occur. We call this effect as the chiral vacuum.  

The chiral vacuum can be understood physically as 
follows. The polarization and magnetization of chiral 
medium is represented as a sum of electric and magnetic 
contributions, i.e.,  and e m . 
When the condition 

e m P P P
i

 M M M
E H  is satisfied, the electric and 

magnetic contributions cancel each other out for one of 
the circular polarizations, and  is achieved. 
Thus the medium is equivalent to a vacuum only for one 
circular polarization [2-5]. 

0P M

A chiral medium can create an anisotropic electro- 
magnetic environment, which leads to anisotropic quan- 
tum-vacuum fields (and observable quantum-vacuum 
effects) and the physical effects resulting from the quan- 
tum-vacuum fluctuation of left- and right-handed polar- 
ized modes will no longer be exactly canceled [6]. The 
aim of this work is to construct the Dirac equation and 
the neutrino equation in the Weyl representation through 
Maxwell’s equations in the chiral formulation. This 
possibility occurs only when the E field and H field are 
spatially parallel and the field distribution can generate 
mass. These fields are circulatory and stationary and 
under this condition we have no radiation and the vector 
Poynting E H  is zero. In Section 2, the Dirac equ- 
ation in the Weyl representation is constructed through 
chiral Maxwell equations. In Section 3, we derive two 
spinor neutrino equations. The chiral electromagnetic 
neutrino is discussed in Section 4.  

2. The Matrix Form of Chiral Maxwell 
Equation: Dirac Equation 

The author of ref. [7] claims that no Maxwell-Dirac 
equivalence (MDE) may exist because F has six (real) 
degrees of freedom and ψ has eight (real) degrees of 
freedom. Here we show that it is possible to transform 
the Maxwell equation from six real components to four 
complex components and in this form to obtain two spi- 
nor equations in the Weyl representation. First, we will 
consider the Maxwell equations for a sourceless anisot- 
ropic chiral homogeneous medium following [8-13], but 
with the time variation as: . c  is a 
chiral parameter so the Maxwell’s equations without 
charges are expressed as [14-17]: 

1t t cT     T

 1
rot 1 ,t cT

c
   H E         (1) 

div 0E           (2) 

 1
rot 1 ,t cT

c
    E H          (3) 

div 0H             (4) 

If we multiply (4) and (1) by i  1  and add them 
respectively to (2) and (3) we get 

div 0F              (5) 

and  

 1
rot 1t c tT

c c

1    F F F          (6) 

where 

i F E H           (7) 

Here, rot   , c  is the chiral scalar parameter, T
  is the frequency and is the light velocity. Applica- 
tion of rot to (5) and (6) allows us to write the wave 
equation for 

c

F . 

   
2

2 2 2
2 2 2

21
rot rot rot rot rot 0c c

t t t

T T

c c c
      F F F F  

(8) 

This chiral wave equation represents an equation of 
fourth order. For engineering of radiation and appli- 
cations with artificial chiral metamaterials designed and 
fabricated at difference frequency ranges from micro- 
waves to optical waves, the condition is 

 where we have the well known 
second order equation for chiral wave propagation [13]. 
Under this condition usually the E field and H field are 
not spatially parallel. Here we consider the new condition  

2 2 2 2 2 2 1c t cT c T c   

2 2

2 21 cT

c t

 
  

0          (9) 

where Equation (8) is transformed from a fourth order 
equation to a first order one.  

 2 rot 0cT F F          (10) 

and the electric field is parallel to the magnetic field 
iE H . In terms of magnetic and electric polarization 

Equation (10) is equivalent to .,In this case 
we obtain the linear Beltrami Equation (10), which will 
be used to construct the Dirac equation in chiral or Weyl 
representation. 

0 P M

In [15], it was shown that the ordinary Dirac equation 
is equivalent to the chiral quaternionic equation 

  0D D 
c c     with  1 1

1 3: ic Dc m c       
and the Maxwell Equations (5)-(8) are equivalent to the 
pair of chiral equations when the electric field E  is 
parallel to the magnetic field  iH E H . Multiplying 
Equation (10) by ˆi  we have 

 ˆ ˆi 2 i rotcT  0  F F   that is, 
 ˆ ˆ ˆi 2 cT   0    F F  

From this equation we can separate 

 
 

ˆ ˆi 2 i rot 0,

ˆ ˆi 2 i rot 0,

c c

c c

T T

T T

 

 

0

0

    

   

E E

H H 
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Defining  
and making 

  ˆ ˆi , , i ,E R H LE H           
i , , 1t cT c      we obtain 

 1
0 ˆi R Lc mc            (11a) 

 1
0 ˆi L Rc mc            (11b) 

Equations (11) and (12) are equivalent to the quarter- 
nionic chiral Dirac equation obtained in reference [15], 
here Dm m  the Dirac mass. Solutions of (11) and (12) 
may be called the Beltrami fields (see, e.g., [13]). R and 
L, subscripts are associated with circularly polarized 
photons (right or left-handed spirals or chiral photons), 
that is photons that have closed trajectories to form 
standing waves that generate mass. If , the 
Dirac equation in chiral or Weyl representation is 

1c 

i ch m
     0          (12) 

In the chiral Dirac field  T
,R L   , R  and L  

are two different types of 2-component spinor, they re- 
spectively correspond to the nonequivalent representa- 
tions  1 2,0  and  0,1 2  of the Lorentz group, and 
the chiral Dirac equation presents a relation between the 
two spinors. If we consider parity, then it is no longer 
sufficient to consider the 2-component spinors R  and 

L  separately, but the 4-component spinor  T
,R L   . 

This 4-component spinor is an irreducible representation 
of the Lorentz group extended by parity (i.e., the 
   1 2,0 0,1 2  representation).  

Thus, relation between the Dirac operator and the 
Maxwell operators is valid if the condition (9) is fulfilled. 
This happen if E  is parallel to H , that is iE H  
and the vector Poynting is null. 

3. Wave Equations in the New  
Representation: Neutrino Equations 

If we write the Equations (5) and (6) explicitly in terms 
of the components  0 1 2 3, , , F F F F  and following [11, 
12] with  we have 0 0F 

3

3 3

3

1 2 3

0

1 2

2

1 3

2 1

i

i

0

i

i

c t x x x

F

x c t x x F

F

x x c t x F

x x x c t









       
     
              
        

    
      

1







 

This expression becomes 

00, 0,1, 2,3; .
F

x ct
x


 
  


      (13) 

where  

0
0 1

0

2 3

00
, ,

00

00 1
i ,

01 0

y

y

y

y


 




 



  
    
   

  
        

.

 

  are hermitians matrices    
2

0 ,   
 and obey the 

conmutation relations  (no sum- 
mation over 

0   1,
 ), 

 1232,3, 1i , i j  , , 1,ki j  ij ijk k     
The description of electromagnetic phenomena in 

terms of a spinor language, leads to a generalization in 
the sense that the new formalism can make more predic-
tions of physical observables than does the vector for-
malism. Some of these predictions are in one to one cor-
respond-dence with all of the physical predictions of the 
vector representation of the theory. But the remaining 
predictions of the spinor theory have no counterpart in 
the vector theory [14-17], e.g., the condition of E H .  

The factorization of Equation (8) is analogous to a 
consequence of Dirac’s factorization of the Klein Gordon 
equation, leading, for example to the energy coupling 
term H , which has no counterpart in the scalar for- 
malism. The representation of the   matrices of Equa- 
tion (13) is inappropriate for the factorization of Equation 
(8) in two spinor equations. However Equation (13) can 
be reducible if we carry out the similarity transformation 

1R R  , then by means of the unitary matrix 

1 0 1 0

i 0 i 01

0 i 0 i2

0 1 0 1

R

 
 
 
 
 




        (14) 

Then we get the new representation  

1 2

3 0 0

00
, ,

00

0
, .

0

xz

xz

y

y


 




  



  
        

 
   

 

Also, we write 

1

2 3 1

1 2

2 3

i

i1
i2

i

F

F F
R F

F

F F







 
             

 

 

If we use a representation of the spin matrices   in 
which 1 z   is diagonal so that 

0 1 2

3 1 2 3

1 0 1 0 0 1
, ,

0 1 0 1 1 0

0 i
, i etc.

i 0

  

   

     
             

 
   
 

,

. 
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Here, we note that the well known Pauli matrices 
 , ,x y z    are 1 2 3, ,z x y          [11]. 
We can write 

0
, 1, 2,3

0
i

j
i

i





 
  

 
 

where * over   denotes the complex conjugate matrix, 
then Equation (13) in the new representation is  

0
x


 



          (15) 

Here, we use the spinor expression  

1 1
1 2

2 3 2 3

i i
,

i i

F F

F F F
 

  
        F





.

 

We can now write the wave Equation (15) in the new 
representation as a set of two equations 

1 1
1 1 2 2ˆ ˆ0, 0t tc c                 (15a, b) 

where 3 3 3 3 2 2 1 1ˆ ˆ , ,                  
If t t   , these equations are formally the same as 

those proposed for the massless neutrino [16-18]. 
The difference is that in the present case the two equa- 

tions are coupled through the chiral condition 
   1 1t t c 2T      t

i
 when Equation (8) is factor- 

ized to Equation (10) and E H . 
Now we are in conditions of generalize the concept of 

chirality. A chiral vacuum is defined as a vacuum for 
which the constitutive parameter cT  is a matrix. Such 
assumption would imply the chiral vacuum and therefore 
the universe itself may not have a center of symmetry. 

To see how the mass term appears, from Equation (10) 
and Equation (6) we write  

1 1 1

2 2
1 1

rot
2

t t t

t
c

c c c

c T

    

  F F F
 

Equation (9) may be treated in scalar or matrix form. 
In scalar form we have  2

1cT c   (see Section 2), 
but if we define the matrix c  as T 32cT mc  , then 
the mass term can be associated to  the complex 
conjugate of . Also, 

F
F 2 2c c , and Equa- 

tions (9) is transformed to matrix expression 
T T F F 

2 2
2 23

321 0,cT

c


 

 
  

 
1         (9’) 

Then, Equations (15a, b) are 

1
1 1ˆt

mc
c 3 1        


          (16a) 

1
2 2ˆt

mc
c

Equations (16a) and (16b) are equivalents to the Max- 
well system (5)-(10) with 32cT mc  . Equations (16a) 
and (16b) was diagonalized following [8,10,11] and de-
fining 

 T

1 2,R F             (17) 

where the unitary matrix  is given by (14).   1R R R  
Thus, the two-component neutrino theory of Lee and 

Yang and of Landau can be obtained from (16a) or (16b). 
Also, it can be shown that for the free neutrino, their 
equations are equivalent to the Majorana equations, and 
thus are invariant under the full Lorentz group [18-20].  

The electromagnetic interactions of neutrinos  cT  
can generate important effects, especially in astrophysi- 
cal environments, where neutrinos propagate for long 
distances in magnetic fields both in vacuum and in matter. 
In the next section we discuss this problem 

4. Chiral Electromagnetic Neutrino  

Dirac introduced the concept of antiparticles [21]. Now 
we know that for every particle there is an antiparticle.  

However some particles could be self-conjugate, in the 
sense that particle and antiparticle could be the same. Of 
course such particles have to be electrically neutral. 

The possibility of a self-conjugate fermion was first 
pointed out by Majorana [22], and hence they are called 
Majorana fermions while the other fermions (with dis- 
tinct particles and antiparticles) are called Dirac fermions, 
Equations (11a) and (11b) [23]. Among the fermions of 
the Standard Model, only neutrinos are electrically neu- 
tral and hence qualify to be Majorana particles. But it is 
still an open question whether neutrinos are Majorana 
particles or Dirac particles. In our theory we can dis-
criminate this situation if 32cT mc   with m = 

,MR L  or m 12cT mc   with Dm m  respectively 
(see Sections 2 and 3).  

If neutrinos are Majorana particles, lepton number L is 
not conserved and this opens the door to generate an ex- 
cess of leptons over antileptons in the early universe 
which can subsequently generate an excess of baryons 
over antibaryons, thus explaining how after annihilation 
of most of the particles with antiparticles, a finite but 
small residue of particles was left, to make up the present 
Universe.  

To obtain the Majorana equation, the correct statement 
is an equation like Equation (16b) 

1
2 2ˆt

mc
c 3 2        


      (18) 

In the following, we will rename the field 2  by L  
obeying Equation (18). A four-component spinor is 

0
L

L




 
  
 

            (19) 
3 2        


         (16b) 
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Such that we can write Equation (18) in the chiral rep- 
resentation as follows   1c  

0 3

0

ˆ0 0 0 i
i

ˆ 0 0 0
L

L

m

m

  
 

        
             



0

1

 (20) 

Or 

 i iL L

cc
ch L ch Lm m 

               (21) 

where the symbol c denotes charge conjugation as it is 
defined in the chiral representation. Now we can define a 
neutral four-component field 

1 1,M c ML
L L

L

 Mc    


 
    

 
   (22) 

Hence we have 

1 1i 0M M
ch m

             (23) 

Equations (12) and (23) support the see-saw mecha- 
nism to explain why the neutrino masses, although not 
zero, are so tiny. With our theory, using Equations (12) 
and (23) it is possible to obtain a matrix mass 

L D

D R

m m

m m




 

 





           (24) 

The see-saw mechanism is a generic model used to 
understand the relative sizes of observed neutrino masses, 
of the order of eV. See‐saw mechanism may be the rea- 
son for the smallness of the neutrino mass . 
Here,  is natural, since a 

 1 eVm 
0Lm  L  mass term is for- 

bidden by the SM symmetries, Dm  generated by the 
Higgs mechanism can be taken the order of the charged 
lepton masses and Rm  is not “protected” by the SM 
symmetries, and can be taken large. 

If  with 1eVm  R D  we obtain two Majo- 
rana particles, an electron neutrino light  and a 
sterile heavy one . In addition to the non- 
zero neutrino masses and mixing angles, the nonzero 
magnetic moment 

m m

 1 TeVR 
 1 eV 

m

  is another property of neutrinos 
beyond the standard model of particle physics. The im- 
portance of   was first mentioned by Pauli [23]. Sys- 
tematic theoretical studies of neutrino electromagnetic 
properties started after it was shown that in the extended 
Standard Model with right-handed neutrinos the mag- 
netic moment of a massive neutrino is, in general, non- 
vanishing and that its value is determined by the neutrino 
mass [24,25]. 

If neutrinos have a nonzero magnetic moment, it leads 
to precession between left and right-handed neutrinos in 
sufficiently strong magnetic fields [26]. In general, non- 
diagonal elements of the magnetic moment matrix are 
possible and neutrinos can be changed into different fla-
vours and chiralities, see Equation (24). Furthermore, 
with the additional effect of coherent forward scattering 

by matter, neutrinos can be resonantly converted into 
those with different chiralities. 

For a neutrino mass smaller than 1 eV, a Dirac neu-
trino has a non-zero magnetic moment proportional to 
the neutrino mass, that yields a very small value for the 
magnetic moment, 193 10    . As 2e m   . 
From our theory, the Bohr magneton is proportional to 

c  so in this case we have T 810 mcT ec
  ). From 

data obtained of astrophysics (considering the cooling of 
red giant stars), we obtain 

12 113 10 3 10 0.1 m
c   corresponding to neu- 

trino 
T    

 . There is a gap of some orders of magnitude 
between the present experimental limits 

11 121010       on neutrino magnetic moments and 
the predictions of different extensions of the Standard 
Model which hint at a range 14 1510 10      [24- 
27]. The main problem in distinguishing Dirac from Ma-
jorana neutrino is the lack of neutrino with positive 
helicity. One way is to reverse the spin of the neutrino in 
an external magnetic field. The problem is that we need 
large neutrino magnetic moments and large magnetic 
field to obtain visible effects. However with our theory it 
is possible to reverse the spin using laser technology to 
have sufficient energy density to generate Dirac electron  

   22 2 9 14π 1.3 10 e iG E H EE m
    . Here e iE   is 

the critical field for electron positron production 
18 11.3 10 V me iE 

   

T

 [27]. The terrestrial experimental 
constraints have been improved by only one order of 
magnitude during a period of about thirty years. Further 
improvements are very important, but unfortunately at 
the moment there is no new idea which could lead to fast 
improvements in the near future. However, we think that 
by measuring the chirality c  of the processes, we may 
have an improvement in the study of electromagnetic 
properties of neutrinos.  

An example is the modeling of neutrinos propagation 
during core-collapse supernovae where very strong 
magnetic fields are believed to exist and in which the 
influence of neutrino electromagnetic properties has not 
yet been taken into account. Equation (20) is well suited 
to study the electromagnetic properties of neutrinos and 
Majorana particles [15,28,29] such as charge conjugation 
and time reversal, allowing for an experimental study of 
our Equations (16a) and (b).  

5. Conclusions 

In the present article we have shown that Maxwell equa- 
tions can be written in the same form as the two compo- 
nent Dirac and neutrino equations, that is the vector rep- 
resentation of electromagnetic theory was factorized into 
a pair of two-component spinor field equations. We pro- 
posed a simple approach with the electric field E  par- 
allel to the magnetic field H . Our analysis is based on 
the chiral or Weyl form of the Maxwell equations in a 
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chiral vacuum. This theory is a new quantum mechanics 
(QM) interpretation for Dirac and neutrino equation. Our 
research proves that the QM of particles represents the 
electrodynamics of the curvilinear closed chiral waves.  

The two-component Majorana equation, coming in 
two related forms (16a) and (16b) that are connected by a 
spin flip, represents the simplest possible covariant rela- 
tivistic wave equation for a massive but uncharged fer- 
mion. The Dirac equation was directly derived by lin- 
earization of Equation (8), a procedure which leads to 
(11a, b) without explicit recourse to the Dirac theory. An 
important characteristic of neutrino electromagnetic 
properties is that they are different for Dirac and Majo- 
rana neutrinos. In particular, Majorana neutrinos cannot 
have diagonal magnetic or electric moments. Thus, stud- 
ies of neutrino electromagnetic interactions from Equa- 
tions (16a, b) can be used as a procedure to distinguish 
whether a neutrino is a Dirac or Majorana particle. 

Moreover, CP invariance in the lepton sector puts ad-
ditional constraints on the neutrino form factors and can 
be tested with experimental probes of neutrino electro- 
magnetic interactions. 

Also, our approach is related precisely to the po- 
larization of photons so this theory may be important on 
study of uncertainly relations, specifically in the setting 
of quantum information and quantum cryptography, [30, 
31], related with the polarization of a single photon. Our 
approach is related precisely linked to the polarization of 
photons, (See Equations (11a, 11b) and (21, 22)). Also, 
our theory lends itself to study mass generation in gra- 
phene devices.  
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