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ABSTRACT 

Recently the author reported the feasibility of envisioning a scenario where a massive permanent magnetic dipole 
bounces off and oscillates about an invisible horizontal magnetic net in the presence of gravity. The scenario has been 
revisited, modifying its physical contents. The modification embodies analysis of the impact of the induced current due 
to the falling magnetic dipole. The induced current counteracts the conduction current and alters the dynamics and 
kinematics of the motion. This rapid communication reports the recent advances. 
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1. Motivations and Goals 

In [1] we utilize the well-known recipe for a magnetic 
field of a looping conduction DC along the symmetry 
axis perpendicular to the plane of the loop. The inho- 
mogeneity of the field along this axis causes the field to 
exert an attractive force on a permanent magnetic dipole 
with its magnetic moment aligned with the field. In a 
scenario where the symmetry axis is vertical and so grav- 
ity is present we justified the feasibility of oscillations of 
a loose permanent magnet. Interested readers may review 
[1] for details. 

We revisit the given scenario outlined above modify-
ing its physical content by including the induced current 
due to the rate of change of magnetic flux of the falling 
magnet through the loop. For the sake of simplicity we 
assume this change comes about from the variation of the 
axial component of the magnetic field of the magnetic 
dipole. This puts the characteristics of these two fields, 
the field of the conduction current and the field of the 
magnetic dipole in the same footing. The character of the 
azimuthal field is addressed in [2]. 

Magnetic field of the DC looping current along the 
symmetry axis of the loop is, 
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respectively. 

This yields the magnitude of the magnetic force, 
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where µ is the magnetic moment of the permanent mag-
net. Equation (1) with a few modifications is written as, 

 
3

2 2 2

ˆ2
( )

k
z

z r






B k            (3) 

This equation is to apply to a cylindrical permanent 
magnetic dipole of a circular base radius r and a mag-
netic dipole moment µ. The flux of this field through the 
area of the circular looping DC is . Its 
rate of change is the induced emf conducive the induced 
current, iind. Combining these pieces yields, 
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where Rresistance is the ohmic resistance of the conduction 
loops. 

The induction current given by Equation (4) counter- 
acts the conduction current, ic modifying the force F 
given by Equation (2) to its effective value, 
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Utilizing Feff the equation of motion for the permanent 
magnet of mass m becomes, 
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Figure 1. The top row are the graphs reported in [1]. The first two graphs of the second row are their equivalents utilizing 
parameters compiled in values. The third graph of the second row is the corresponding active force. 
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At first glance one realizes the order of magnitude of 
the second term in the brace is O(k'2). Knowing the k' is 
small, one concludes the impact of the iind when com- 
pared to ic is negligible. Therefore, the dynamics of the 
falling magnet is being controlled solely by the conduc- 
tion current. In fact implicitly we have utilized Feff = F in 
[1]. However, if one considers resistances as small as 
mΩ range this changes the scenario considerably. For 
instance with the parameters stored in values in MKS 
units utilizing Mathematica [3] we solve Equation (6) 
numerically. What follows are the graphic display of the 
results. 
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As shown in the first row of Figure 1, for chosen pa- 
rameters in [1] a freely dropped magnetic dipole oscil- 
lates about the magnetic net. The dashed line is added 
and serves as a reference; it is the position of the free 
falling magnet from the loop. The phase diagram, the 
third graph, is the signature character of an oscillator. In 
our current analysis with the parameters stored in values 
the impact of the induced current is shown in the plots of 
the second row. Accordingly, the induced current softens 

the attractive magnetic DC force. The profile of the ac- 
tive force vs. time is depicted in the last graph of the 
second row. The magnet after a few irregular oscillations 
comes to a halt and settles underneath the loop. In other 
words, the induced current dampens the motion, pre-
venting the magnet to oscillate steady. At the final rest-
ing position the induced current is inactive, and the DC 
driven attractive magnetic force equalizes the gravity. 
Interested readers may consider a different set of range 
parameters for the resistance and the mass conducive to 
various scenarios. 

2. Conclusion 

The author analyzes the impact of the induced current on 
the equation of motion of a mobile permanent magnetic 
dipole in the presence of an inhomogeneous magnetic 
field of a DC. It is shown that by selecting a set of 
thoughtful parameters the value of the induced current 
effectively may interfere with the conduction current re- 
sulting in curious outcomes. 
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