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ABSTRACT 

The Duffing equation describes the oscillations of a damped nonlinear oscillator [1]. Its non-linearity is confined to a 
one coordinate-dependent cubic term. Its applications describing a mechanical system is limited e.g. oscillations of a 
theoretical weightless-spring. We propose generalizing the mathematical features of the Duffing equation by including 
in addition to the cubic term unlimited number of odd powers of coordinate-dependent terms. The proposed generaliza-
tion describes a true mass-less magneto static-spring capable of performing highly non-linear oscillations. The equa-
tion describing the motion is a super non-linear ODE. Utilizing Mathematica [2] we solve the equation numerically 
displaying its time series. We investigate the impact of the proposed generalization on a handful of kinematic quantities. 
For a comprehensive understanding utilizing Mathematica animation we bring to life the non-linear oscillations. 
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1. Introduction and Motivation 

In our previous work, for a true, real-life setting we in-
vestigate the motion of a point-like charged particle that 
under the influence of a specially designed electrostatic 
field exhibits non-linear one-dimensional oscillations [3]. 
An observation was made about the mathematical format 
of the electric field or equivalently speaking about its 
associated electric force. It was shown that the Taylor 
expansion of the electrostatic force is a polynomial of 
odd powers of coordinate. It was reasoned that the analy-
sis of the proposed setting is a generalization of the clas-
sic Duffing equation. The electric and the magnetic fields 
possess different sets of characters, however, both being 
mass-less share a common ground; extending our inves-
tigation from electrostatic to magneto static is a must. 

We consider a variety of electromagnet fields capable 
of exerting forces on a loose permanent magnetic dipole. 
This distinguishes the difference between our current 
investigation vs. what we have already reported [3]. We 
begin our investigation by considering a simple case, e.g. 
a static magnetic field that comes about by running a 
constant DC current in a circular loop. We then further 
our analysis by proposing a variety of designs such as 
spaced-out multiple parallel stationary circular loops. 
The equations describing the motion of a magnetic dipole 
under the influence of such fields are highly nonlinear 

exhibiting no analytic solutions. Utilizing Mathematica 
we solve these equations numerically and form an opin-
ion about the kinematics describing the motion of the 
dipole. With these objectives we craft our investigation 
as follows. Beyond the Introduction and Motivation, in 
Section 2 we outline our Objectives. In Section 3, Analy-
sis, we develop the theoretical basis describing the fea-
tures of the electromagnet fields and their interactions 
with a magnetic dipole. In this section we also cast the 
equations describing the motion of a loose magnetic di-
pole. In Section 4 we include the damping factor. In Sec-
tion 5, we analyze the features of an exotic design. In 
Section 6, we address the Energy issues. We close our 
investigation with a few concluding remarks.  

2. Objectives 

One of the objectives of our analysis is to run a descrip-
tive parallel describing the interaction of a point-like 
charged particle with a static electric-spring [3] vs. the 
interaction of a magnetic dipole with a magnetic-spring. 
Generally speaking there are examples dealing with 
nonlinear mechanical springs; however, analyses are ca-
tered to mathematical challenges seeking for analytic 
solutions for equations of motion. For a magnetic-spring 
on the other hand, the force is a nonlinear function of 
position coordinate and its associated equation of motion 
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has no analytic solution. Therefore, as a secondary objec-
tive in light of the fast growing industry of Computer 
Algebra System (CAS), such as Mathematica we seek for 
numeric solutions. We advocate the fact that numeric 
solutions are as informative as the analytic ones. What 
follows are our systematic resolutions. 

3. Analysis 

We assume the electric current is the source of the mag-
netic field. Parallel to our previous work [3], and geo-
metrically speaking we then consider a looping current 
through a flat circle of radius R. From the symmetry of 
the setup one realizes that the symmetry axis of the loop, 
the one which is through the center and perpendicular to 
the loop is the only axis that the magnetic field is ex-
pressed with a one-component vector. The magnetic field 
of any other point off this axis would have more than one 
component. With this notion, in order to quantify the 
field we utilize a simplified version of the Biot-Savart 
law [4,5], 
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being the permeability of a vacuum. Assuming a right 
handed Cartesian coordinate system for a loop placed in 
the xy-plane with a looping counter-clock-wise current 
and with the z-axis being the symmetry axis through the 
center of the loop, Equation (1) trivially evaluates, 
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where = 2R2ni, with n being the number of turns. For 
the chosen counter-clock-wise current the direction of the 
field remains the same on both sides of the loop; it stays 
oriented along the +z-axis. This is not the case for a uni-
form charged ring. In other words, the directions of the 
electric and magnetic fields are the same on one side of 
the loop and are opposite on the other side. Consequently, 
one needs to consider the corresponding electric and 
magnetic forces. Asides from the scaling factors for a 
loop of size 10.0 cm in Figure 1 we display these fields. 

Figure 1 shows the magnetic field along the symmetry 
axis maintains its direction about the center of the loop, 
while the electric field changes its orientation. The elec-
tric field is asymmetrical while the magnetic field is even 
and symmetrical. The strengths of the fields are scaled 
and their units are suppressed.  

Placing a negative point-like charge along the +z-axis 
will experience an attractive force towards the center. 
When it slides to the other side of the loop, according to 
Figure 1, it will slow down coming to a momentary stop. 
For a frictionless axis the energy is conserved and the 
process repeats itself resulting in steady oscillations. The 
value of the electric force causing such oscillations trivi-
ally calculates, qF E  where q is the charge of the  

loose particle and the field is 
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Q being the charge on the ring; details are discussed in 
[3]. For a mobile permanent magnet with magnetic di-
pole moment  the force can be evaluated according to 

U F  , where the magneto static energy of the di-
pole in the external field is U   B , where  is 
subject to Equation (2). Placing a permanent magnet with 
its moment parallel and aligned with the  field along 
the z-axis will experience an attractive force towards the 
center of the loop. The loose magnet will accelerate to-
wards the center sliding to the other side. The magnetic 
field on the opposite side of the loop as shown in Figure 
1 remains along the +z-axis, and it will exert a retarding 
force bringing the dipole to a momentary halt. Applying 
the gradient on the magneto static energy results in mag-
netic force; in other words, the inhomogeneity of the 
field along the z-axis is the cause of the force. Mathe-
matically speaking, since the filed is a function of z, this 
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For a comprehensive understanding we plot the electric 
and magnetic forces. Forces are scaled and the vertical 
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Figure 1. Display of the scaled electric field (red curve) and 
magnetic field (blue curve) of a uniform charged ring and a 
looping current of radius 10.0 cm. 
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axis is proportional to newtons. our analysis we utilize the unexpanded format of the mag-
netic force. Its current format according to Equation (3) is 
a polynomial nz



Along the positive z-axis the electric and magnetic 
forces both are negative; i.e. they act on the mobile 
pieces (either a point-like charge or a permanent magnet) 
attractively, pulling them towards the center of the loop. 
On the contrary, on the other side of the loop, i.e., along 
the negative z-axis, forces are positive, meaning they act 
towards the center causing retardation. Figure 2 also 
shows the electric and magnetic forces aside from their 
relative strengths have somewhat similar characteristics. 
However, the electric force has a longer effective range, 
while the magnetic force is relatively sharper. By inspec-
tion one learns both the electric and magnetic forces at 
certain specific distances from the center of the respec-
tive loops are at their extreme. For magnetic field this is, 

n odd ; it contains odd powers of dis- 
tance. Comparing this super structure force vs. the Duff- 
ing oscillator force that comes about from an additive 
perturbative z3 term to the Simple Harmonic Oscillator, 
i.e., z+z3, with {, } being constants, one realizes the 
unexpanded magnetic force stretches the issues of the 
Duffing oscillator beyond its classic limits.  
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With this insight about the magnetic force we envision 
placing a light permanent cylindrical magnet along the 
horizontal symmetry axis through the center of a circular 
looping current. Applying Newton’s law of motion 

mF a  we study its motion. This equation along the 
horizontal z-axis yields,       0Bmz t F t z t      
where FB and  z t are the magnetic and the viscous 
forces, respectively. For a practical setting we envision 
positioning a horizontal glass tube through the center of 
the loop and placing the magnet in it. The air is pumped 
through fine in-punctured holes from underneath the tube, 
levitating the magnet. While the magnet under the influ-
ence of the electromagnet force slides horizontally in the 
tube it rubs itself against the air experiencing the viscous 
force. From our previous work [6] we have experience 
with a suitable range of variations of the viscosity coeffi-
cient ; we supply its value for our analysis.  

It is also noteworthy to mention the functional form of 
the magnetic and the electric forces are distinctly differ-
ent. For distances further from the center of the loop the 
magnetic field behaves as 1/distance4 while the electric 
field falls off as 1/distance2. Moreover, as shown in Fig-
ure 2, both forces are asymmetric about the origin; their 
Taylor expansions are polynomials of odd integers. Tay-
lor expansions for electric and the magnetic forces be-
yond the third power (the Duffing term) are, respectively, 

To further the analysis of the case at hand the specifi-
cation of the components in the SI units are tabulated in 
the values list. The R is the radius of the loop, n is the 
number of the turns, m is the mass of the magnet,  is its 
dipole moment,= /m is the viscosity per mass, and g 
is the gravity acceleration.  3 5 7
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Figure 3 is a display the magnetic field along the 
symmetry axis of the looping current vs. the distance 
from the center of the loop. 

Utilizing the magnetic force associated with this field 
the equation of motion yields  

This shows the expanded functions fall off either as 
1/distance2 and/or 1/distance4, respectively. To further  
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Figure 3. Display of the magnetic field along the z-axis of the 
looping current vs. distance from the center of the loop. 

Figure 2. The red and the blue curves are the electric and 
magnetic forces, respectively. 
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Figure 4. From left to right; display of position, velocity and acceleration of the oscillating magnetic vs. time, respectively. 
 

 

Figure 5. From left to right, the plots are associated with ,{ , and ,respectively. { , }z z }z z  { , }z z 
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    . This is a highly nonlinear 

differential equation. We were unable to solve this equa-
tion analytically, so did Mathematica. We then deploy 
Mathematica numeric skim. Assuming a set of practical 
initial conditions utilizing NDSolve successfully we sol- 
ve the equation. First we analyze the viscous free case. 

values = {k–>1.0 × 10–7, R 10.5 × 10–2, n 200.0, 
I 2.0, m 2.0 10–3, 1.75, 0, g 9.8}; 

Utilizing the numeric solution of the equation at hand, 
we form the velocity and the acceleration of the magnet. 
Plots of these quantities are shown in Figure 4. 

The left graph of Figure 4 shows the floating magnet 
indeed oscillates along the symmetry axis of the looping 
current. A trained eye would recognize the distinct dif-
ferences between the characters of these oscillations vs. 
the oscillations of a Simple Harmonic Oscillations (SHM). 
As discussed in the text, loosely speaking the magnetic 
force of the former is proportional to 1/z4 while the latter 
is proportional to z. Consequently the sinusoidal oscilla-
tions of a SHM is being replaced with a smoother “sinu-
soidal” function. Since, velocity and the acceleration 
respectively are the slopes of the position and the velocity 
with respect to time, the interpretation of the middle and 
the last plots of Figure 4 are straight forward. For instance 
the spikes shown in the middle graph are the extreme 
speeds of the oscillating magnet at the center of the loop. 

Taking advantage of graphic capabilities of Mathe- 

matica by folding the time axis we display a set of phase 
diagrams. These are shown in Figure 5. In addition to the 
standard diagram, namely the plot of 

.

{ , we display 
two more “phase-type” graphs, namely plots of { ,  
and . 

}z z
}z z

{ , }z z 
Putting all this information into perspective we close 

this section by mentioning that we have an understanding 
about how a linear oscillator oscillates; e.g. oscillations 
of a small angled swing, but what about oscillations of a 
nonlinear oscillator? To make the formulation meaning-
ful, utilizing Mathematica animation we animate the os-
cillations. A snap shot of the oscillations is shown in 
Figure 6. 

 

 

Figure 6. A snap shot of the nonlinear oscillations of the 
magnet (the blue cylinder). The looping current is in red and 
the profile of the magnetic force is the green curve. 
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Figure 7. Description of these plots are the same as shown in Figure 4. The plots are associated with the viscous fluid with 
viscosity factor = 2.0. 

 

 
Figure 8. Description of these plots are the same as Figure 5. The plots are associated with the viscous fluid with viscosity factor 
= 2.0. 

 
4. Damped Nonlinear Oscillations 

In this subsection we consider a case where in addition to 
the magnetic force the loose magnet along with the same 
previous initial conditions experiences also a speed de-
pendent viscous force. From our previous work we util-
ize the value of = /m. Applying NDSolve we solve the 
associated ODE describing the motion of the magnet. 
Utilizing this solution we also form its associated veloc-
ity and acceleration. These are displayed in Figure 7. 

Values = {k–>1.0 × 10–7, R10.5 × 10–2, n 200.0, 
I 2.0, m 2.0 × 10–3, 1.75, 2.0, g 9.8}; 
The impact of the viscous force is severe as expected. 
The viscous force dampens the oscillations bringing the 
oscillator to its final expected position, the center of the 
loop. Similar to what we discussed in the previous case, 
interpretation of the middle and the last graphs are 
straight forward.  

We also plot useful graphs similar to those displayed 
in Figure 5. Intriguing plots such the ones shown in Fig-
ure 8 bring a greater appreciation to the power of Mathe- 
matica! 

5. Exotic Designs, a Three-Ring  
Configuration 

In this subsection we show the analysis of nonlinear os-
cillations may be extended to more sophisticated and 
interesting cases. We discuss one such case in detail and 
leave the design of other cases to the interest of the 

reader. Here we consider a set of three parallel loops 
separated from one another with different distances. In 
general the loops may have different sizes, different 
number of turns, different currents and they may run in 
different directions. For a set of parameters tabulated in 
the values3 list a plot of the magnetic field vs. the dis-
tance from the center of the middle loop is shown in Fig-
ure 9. A 3D plot of the setup is shown in Figure 10. 

Values 3 = {k 1.0 × 10–7, R3 20.0 × 10–2, R1 
15.0 × 10–2, R2 10.0 × 10–2, x3 20.0 × 10–2, x2 
10.0 × 10–2, i3 20.0, i1 10.0, i2 20.0, n1 
200.0, n2 200.0, n3 200.0, m 2.0 × 10–3, 
1.75, 0.}. 
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Figure 9. Plot of the magnetic field along the symmetry axis 
vs. the distance from the center of the middle loop. All three 
currents are in the same direction; two out of three currents 
are the same.  
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Figure 10. A 3D display of the set up. The rings are in red 
and the blue disk is the snap shot position of the magnet. The 
green curve is the profile of the distorted force. 

 
The field along the symmetry axis is distorted. The 

impact of the distortion on the movement of the magnet 
is beyond ones intuition. To form an opinion about the 
movement of the magnet one needs to solve the equation 
of motion. We report our viscous free case and to keep 
the length of the manuscript manageable we do not report 
the cases for the viscous fluid. 

 

As we discussed in the previous cases, with the nu-
meric solution of the position as a function of time we 
form its velocity and acceleration. These quantities are 
shown in Figure 11. 

At a first glance the time dependent position of the 
loose magnet, the left plot of the Figure 11 appears to be 
the same as its counterpart in Figure 4. However, the 
second and the third plots contain subtle and fine differ-
ences. The distorted spikes resemble EKG-type signals. 
Figure 12 is a display of a set of “phase-type” diagrams. 
These are quite different from their counterparts in Fig-
ure 5. The strange shape of the curves are the impact of 
the distorted field. 

Figure 10 is a 3D plot of the setup. This plot helps to 
form a visual understanding about the setting. With much 
effort the author crafted a Mathematica code bringing the 
motion of the loose magnet to life. The interested read-
erfamiliar with Mathematica programming is encouraged 
crafting a code animating the motion. 

6. Energy Issues 

Here we consider the energy of the nonlinear oscillator. 
For a chosen scenario such as case 2 i.e. a single loop 
current and viscous fluid, the evaluation of the energy of 
the system is somewhat straight forward. Similarly, the 
energy of the different scenarios discussed in this text 
may also be evaluated. The energy of the mobile magnet 
is composed of two pieces: kinetic and potential. The total 

 
Figure 11. Description of these plots are the same as Figure 4. The differences result from the distorted magnetic field subject to 
Figure 9. 

 
Figure 12. Description of these plots are the same as Figure 5. These plots are associated with the distorted field shown in 
Figure 9. 
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Figure 13. Plots of K.E. (the black curve) and the P.E. (the 
blue curve) and the total energy E (the red curve) vs. time. 
These are plots of viscous fluid with viscosity coefficient.γ = 
2.0. 
 

energy is E = K.E. + P.E., where  21
. .

2
K E m z  and 

. .P E   B ; utilizing z(t) we evaluate and 

1/(R^2+z^2(t))3/2 . For the case at hand the time series of 
the energies are shown in Figure 13. 
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Descriptively speaking, at the beginning the stationary 
magnet is far from the ring possessing a zero total energy. 
Under the influence of a weak magnetic field it begins 
being pulled towards the center of the loop. While in 
motion it gains kinetic and potential energies. The vis-
cosity of the fluid dissipates the energy, dampening it to 
final rest position. The gradual deterioration of the en-
ergy is noticed with the jagged edges of the red curve. 

7. Conclusions 

Utilizing a static magnetic field we propose a design 
producing oscillations for a magneto static spring-mass 
system. A magneto-spring is made of magnetic field and 
inherently is a mass-less spring. This augments the clas-
sic mechanical view of the spring-mass system by pass-
ing the needed assumptions about the mass-less spring. 
The price we pay for our invention is the mathematical 
challenges we encounter with solving the nonlinear 
ODEs describing the motion. This by itself is a positive  

adventure. In light of the fast growing Computer Algebra 
System industry, such as Mathematica the author be-
lieves the numeric solutions are as powerful and infor-
mative as analytic ones. Had it not been for the former 
the insights that we gained by addressing the numeric 
mathematical challenges of the project at hand we would 
have left the problem unanswered.  

The author would like to mention the current research 
project is a complementary analysis to our previously 
published work [3]. This intertwining of the parallel pa-
pers completes the analysis of truly massless-electric and 
magnetic spring-mass nonlinear oscillations. A thorough 
literature search has been completed by the author; since 
this project is a novel concept without previous studies, 
he is unable to augment the reference list beyond its cur-
rent status. 
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