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ABSTRACT 

FMCW Radar (Frequency Modulated Continuous Wave Radar) is used for various purposes, such as atmospheric Re-
mote Sensing, inter-vehicle ranging, etc. FMCW radar systems are usually very compact, relatively cheap in purchase 
as well as in daily use, and consume little power. In this paper, FMCW radar determines a target range by measuring 
the beat frequency between a transmitted signal and the received signal from the target, and Combines between PO and 
radar single. The approach based on frequency domain physical optics for the scattering estimation and the linear sys-
tem modeling for the estimation of time domain response, and FMCW Radar signal processing. 
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1. Introduction 

The FMCW radar has to adjust the range of frequencies 
of operation to suit the material and targets under inves-
tigation. The transceiver generates a signal of linearly 
increasing frequency for the frequency-sweep period. 
The signal propagates from the antenna to a static target 
and back. The value of the received-signal frequency 
compared to the transmitted-signal frequency is propor-
tional to the propagation range. The main advantages of 
the FMCW radar are the wider dynamic range, lower 
noise figure and higher mean powers that can be radiated. 
In addition a much wider class of antenna is available for 
use by the designer. 

The further advantage of FMCW radar is its ability to 
adjust the range of frequencies of operation to suit the 
material and targets under investigation if the antenna 
has an adequate pass-band of frequencies. This radar 
system mixes the wave reflected by a target object and 
part of the radiated wave to obtain a beat signal that con-
tains distance and speed components. For large scatterer, 
the physical-optics approximation is an efficient method 
in the frequency domain [1,2]. This physical optics (PO) 
approximation is initially applied in the frequency-do- 
main with the inverse Fourier transform [3], [4], [5], [6]. 
With FMCW, the high-frequency circuitry for beat signal 
detection is relatively simple and distance can be directly 
obtained. By mixing the received FMCW and transmitted 
FMCW signals, the system obtains a beat signal having a 
frequency f b. 

2. The Principles of the FMCW Radar 

The principle of the FMCW radar is shown in Figure 1. 
Transmitted signal from one of the antennas is reflected, 
and is received by the other antenna with delay time To 
relative to the original transmitted signal. Mixing the 
received and transmitted frequencies, the beat frequen-
cies bf are observed in the spectra.  

The time takes for the signal to travel the two-way dis-
tance between the target and the radar is To, hence [7], 
[8]: 
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Figure 1. Principle of the FMCW radar 
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From the geometry of transmit and receive waveforms 
we can derive a relationship between the beat frequency f 
b, the range R, and c is the velocity of light. 
From Figure 1, we can see, 
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Substituting (1) in (2), we get  
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3. Scattered Wave from Radar Target 

3.1 Frequency Domain Physical Optics 

For a perfectly conducting body, the frequency-domain 
PO-induced current distribution over the illuminated 
surface is [9,10,11]: 
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where  is the unit vector normal to the surface n̂ R  

and ( , )incH R   is the incident magnetic field with an-

gular frequency  
The frequency-domain scattered field is obtained by 

calculating the integral over the illuminated surface using 

the free space Green’s function: 
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where the vector \R  locates the integration point on the 

scatterer surface,  is the wave number, ok
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is the velocity of the light and o  is the intrinsic free 

space impedance, and `( ,  )po
stj R 


 is the surface-current 

distribution. 
The frequency transfer function ( )H   is defined as 
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where ( )iV   is the input waveform in frequency do-

main physical optics, this is just a magnitude of the 
source. 

The output Voltage ( )oV   is calculated from 

( , )poE R   by considering the receiver antennas as 

[12,13], 
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where ( )cF   is the Complex antenna factor. 

3.2 Treatment of FMCW Signal 

Instantaneous frequency fi(t), is given as 
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and the instantaneous phase ( )i t , is defined as  

( )i t =
0
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Using Equation (9), the FMCW signal waveform is 
defined as 
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The output of mixer VFMCW1(t) is expressed as  

iFMCW1v ( )  (t) ot v v t ( )

)

          (11) 

The output waveform vo(t) is  

vo(t) = vi(t )* h(t) 

when h(t) is a sample delay of To, i.e. 

h(t)= ( ot T              (12) 

Therefore, mixer output signal is   

FMCW1v t( )  = vi (t) vi (t-To)       (13) 

where  
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From Equations (10) and (11) we can calculate: 
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The first Cos term describes a linearly increasing FM 
signal (chirp) at about twice the carrier frequency with a 
phase shift that is proportional to the delay time To. This 
term is generally filtered out. 

The second Cos term: 
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describes a beat signal at a fixed frequency b o
m

B
f T

T
 . 

3.3 Combination of PO and Radar Single   
Processing 

As h(t) given in section 3.2 is just an idealized model, 
more realistic h(t) obtained by PO in section 3.1, Equa-
tion (12) shall be used. 

However, Equation (6) is given in frequency do-
main ( )H  , and it shall be Inverse Fourier transformed 

j t1
( ) ( ) e  d

2
h t H  







            (17) 

It is sufficient that ( )H   is computed only within 

the source frequency range, i.e. .o of f f B    Out-

side the band, ( )H   can be assumed zero, (iV )  is 

also zero in this region. 
In reality, Fourier transform shall be executed nu-

merically. Let us assume the sampling interval T  
which shall satisfy the following relation 
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where sf  is a sampling frequency, LN , and BN  are 

some certain integers. 
Now  is denoted as , and ( )iv t (iv l T ) )(h n T  is 

given as, 

jm 2  
s

-jm 2  *

( ) ( (  2 f ) e
4( )

(m 2  )e )

L B

s

L

s

N N
f n Ts

m NL B

f n T
s

f
h n T H m

N N

H f

















  

 


 



 

(22) 

Convolution (11) is now implemented as, 
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Substituting from (23) and (10) in (13), we can get 
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Figure 2. Frequency domain representation of FMCW sen-
sor output 

where ( )L L BN m N N   , 

Now, we use Fourier Transformation, we get 
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And also we can get 
2

2
2 ( ) (2 )

2
i

FMCW c fb fb
m

V B
V f Cos f

T
        (26) 

describes a beat signal at a fixed frequency b
f

B
f

T
 . 

It can be seen that the signal frequency is directly pro-
portional to the time delay time , and hence is directly 
proportional to the round trip time to the target. 

4. Conclusions 

This paper presents the time domain linear system analy-
sis for FMCW radar response by performing the inverse 
Fourier transform over the frequency-domain scattered 
field which obtained by calculating the integral over the 
illuminated surface using the free space Green’s function. 
Then we got the received FMCW signal and transmitted 
FMCW signal, the product detection is implemented to 
get the beat signal. The Fourier transform is used to find 
the beat frequency. 
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