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ABSTRACT 

The paper describes a mathematical model of the stress-strain state of polymer composite materials in the pultrusion 
process of large-sized products. The influence of the pull speed on the stress-strain state of the products is investigated. 
To determine the maximum possible pull speed series of solutions at different pull speeds are obtained. Depending on 
the maximum strain in the cross section of the rod determined the optimal value of pulling speed.  
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1. Introduction 

Pultrusion is one of the most common ways to manufac-
ture large products made of polymer composites. The 
possibilities to improve the performance of pultruded 
products depending on the reinforcement scheme are well 
studied [1-4]. The influence of constructive and techno-
logical parameters of pultrusion process on the properties 
of the resulting products is no less important. The most 
important to choose the optimal speed at which the qual-
ity product without the main cracks and discontinuity is 
received. The known mathematical models considered 
pultrusion process in the assumption that the polymeriza-
tion of the resin is completed to the exit products from 
the die [5,6]. This assumption reduces the productivity of 
the process, making it unprofitable. A complex numerical 
model for evaluating stress-strain state of polymer com-
posite material is developed. This model assumes incom-
plete polymerization process within the die. The relation 
between pull speed and stress-strain state of composite 
product at the exit from the die is investigated. As an ex- 
ample the optimum value of the pull speed is determined.  

2. Statement of the Problem 

Figure 1 shows the process of passing the composite 
material through a heated die. At the same time the po-
lymerization process takes place. If the pull speed is high 
enough (>60 mm/min), then polymerization process of 
the oversized product does not have time to finish before 
it exits from the die. At this, the strain occurred in a po-
lymerized part of the rod may exceed the maximum al-
lowable values for the material which leads to the main 
crack appearance. The thermal stresses, the pressure of 

the liquid resin and chemical shrinkage are effects on the 
value of strain.  

3. Stress-Strain State Model 

Consider the section A-A of the rod consisting of two 
regions (Figure 2(а)). 
 

  

Figure 1. Scheme of pultrusion. 
 

 

Figure 2. The rod cross-section (a) and the boundary condi-
tions (b). 
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The outside Area I corresponds with cured zone. The 
inner Area II corresponds with zone where resin with 
filler is uncured.  

Hooke’s law for orthotropic solid in cylindrical coor-
dinates taking into account the chemical shrinkage is 
given by 
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where r ,   and z —radial, circumferential and 
axial stress components; 

r ,   and z —radial, circumferential and axial 
strain components; 

r , E E  and zE —modulus of elasticity of material in 
corresponding directions; 

r , r , rz , z r , z  and z —Poisson’s ra-
tios; 

r ,  , z —linear thermal expansion coefficients in 
corresponding directions; 

 ,T T r z  —temperature function; 

r ,  , z —chemical shrinkage of material in corre-
sponding directions. 

We considered the outside Area as transversely iso-
tropic cylindrical solid. For this solid 
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Chemical shrinkage of the material along the fibers is 
neglected, i.e. 0z  . 

Also under symmetry of elastic constants the next re-
lations are take place: 
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For generalized plane strain state 

0z const                (6) 

The equilibrium equation for infinitely small element 
inside cylinder in local cylindrical coordinates r z  (z 
direction—along fibers) for r plane is follow: 
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It is accepted that inner Area II of the rod is acting like 
incompressible liquid. The liquid resin is pressurized and 
acts on the walls of cured cylinder (Figure 2(b)). Then 

boundary conditions for cylinder are following 

1r P    for 1r R 2r P    for 2r R    (9) 

Solve Equations (1)-(3) by stresses, using (4)-(8) and 
boundary conditions (9) the following equations for stre- 
sses can be obtained: 
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The value of pulling force N we can find from (13): 

 d ( ),totN f z S z            (13) 

where  totf z  is the total resisting force per unit area of 
the composit in contact with the die and S the internal 
surface area of the die. The solution for (13) is described 
in [7]. 

4. Failure Criteria 

As mentioned above, at high pull speeds the strain oc- 
curred in a polymerized part of the rod may exceed the 
maximum allowable values for the material which leads 
to the main crack appearance. As a strength criterion the 
maximum deformation criterion is chosen which has the 
form [8]: 
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The study determined that the values of the stresses in 
the cross section of the rod are far from the limit values, 
whereas the strain exceeds the limiting values at high 
pull speed. Therefore, the maximum deformation crite-
rion was chosen as the primary. The sign “+” means ten-
sion, “−” compression, i

    the ultimate strain obtain 
as 

2
2 1, 1 .

zE E

 
 


             (15) 

there 2 2 1, ,    —experimentally determined limiting 
values of stresses for a material by transverse tension, 
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transverse compression and tension along the fibers, re-
spectively. The strains are defined by (1)-(3) with subject 
to (10)-(12) and compared with ultimate values from 
(15). 

5. The Heat Transfer and Polymerization 
Model 

For stress-strain state determination we need to know the 
temperature field distribution and location of the border 
between cured and liquid material. For this we should 
solve the non-linear heat transfer and polymerization 
problem which for pultrusion of the rod has a view [9]: 
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where C—heat capacity; ρ—density; V—pulling velocity; 
W—reaction heat; λ—thermal conductivity; ψ—degree 
of polymerization; χ—resin volume; Tt—absolute tem-
perature; T0 —rod temperature at inlet of die; K0—pre-
exponential factor; EA —active energy of process activa-
tion; R—gas constant; n—total reaction order by reacting 
components; γ—heat-transfer coefficient; ( )z —ambi-
ent temperature. 

Based on the solution of (16)-(18) by the method of fi-
nite differences [11] the radius R1 of the inner zone II is 
obtained. For this radius the degree of polymerization ψ 
= 0.95 (Figure 3(a)). 

Using the value R1 the interval of the temperature dis-
tribution over the cross section is determined for the cal-
culation of integrals in the (10)-(12) (Figure 3(b)). The 
stress values are numerically obtained using the trape-
zium method. 

6. Pressure Model 

One of the process parameter in pultrusion is the pres-
sure-rise inside a die. The pressure of liquid resin appears 
due to fiber/resin system passes through the die (Figure 
4). The equation of incompressibility [5,6] for the flow of 
resin moving through the fibers in a cylindrical coordi-
nate system is follow: 
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In the projections of the velocity vectors onto the axis 
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here K11—medium permeability in axial direction; K22— 
medium permeability in radial direction; v—component 
of resin velocity in radial direction; u—component of 
resin velocity in longitudinal direction; V—component of 
fiber velocity in radial direction; U—component of fiber 
velocity in longitudinal direction (pull speed); μ—viscos-
ity; 1 fV   —porosity; Vf —the function of changes 
in th ume fraction along the length of the tape- 
red die. 
 

e fiber vol

 
(a) 

 
(b) 

Figure 3. Defining the radiu the inner zone (a) and tem-s of 
perature interval (b). 
 

 

Figure 4. The input section of the die and its ge etrical 
parameters. 

om
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Expressions (19)-(21) are based on Darcy’s law for the 
resin flow, passing through a porous medium (fiber) at 
low speeds. According to Gebart’s model [10] the per- 
meability in the axial and transverse directions are given 
as 
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where Rf is the fiber radius, c = 53, C1 = 0.231 and Vfmax 

nto account (20) and (21) and that 

= 0.9068. 
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where ( )z —geometrical parameter of the input secti- 
on of t he taper angle), )(zR is the local radius of 
the die wall, we can obtain the following differential equ- 
ation for the pressure from (19): 
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Vs—is the fiber volume fraction in the straight portion 
of

tanz

 the die (or finished products), Rp is the aperture radius 
of the last pre-form plate. 

To solve the problem (23) by finite differences method 
[11], the solution region divided into four zones (Figure 
4). In this only half die simulated due to symmetry. It 
was assumed that the zone I completely filled a resin (it 
is a resin backflow region there excess resin is squeezed 
out of the die due to the compression of the fiber/resin 
system). For this region Equation (23) has a view: 
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For a III region the Equation (23) is applied in general 

form. For a IV region the Equation (25) is u
into account that 

sed taking 
.f sV V const    

At the computational domain inlet, the pressure is 
considered to be equal to atmospheric pressure P0 
(101,325 Pa). The boundary conditions on the tapered 
wall of the die were determined from the ratio of velocity 
components at the boundary: tan /v u   . The bound-
ary condition for the grid points of the rod, where the 
polymerization is completed ( 0.95  ): 0P z   . At 
the center line (r = 0), and At the Top boundary (straight 
portion of die): 0P r   . 

7. Results and Discussion 

Thus, solving th f Ee system o quations (10)-(18), (23)-(25) 
we can obtain the strains for every rod cross section at 

ing them with ultimate 

s

f

the outlet of the die and, compar
values, prevent main crack appearance. 

The following parameters were used when solving the 
problem. The rod radius Rs = 38 mm, pull speed 70 
mm/min. Pre-form plate radius Rp = 1.085R . Fiber radius 
R  = 0.013 mm, fiber volume fraction Vs = 0.6, taper an-
gle α = 250, length of the taper part of the die L1 + L2 = 
76 mm, the resin viscosity under normal conditions 

1.5  Pa*s, P0 = 101325 Pa. The Poisson’s ratios 
0.3; 0.295rz   ; The thermal expansion coefficients 

615 10    1/С0 , 63 10z
  1/С0 , Modulus of elas-

ticity 8000rE   MPa, 40000zE   MPa. The next stre- 
 for composit material are used [8]: longitudinal 

th 1 1800
ngth data
tensile streng    MP  transverse tensile stre- 
ngth 

a,

2
 43  MPa, tr compressive strength 

2 90 
ansverse 

  MPa. Die temperature settings (the length of 
straight portion of the Die is 1 m): 110-150-190-160 С0. 
The parameters such as preexponential factor, reaction 
heat, active energy of process activation and total reac-
tion order by reacting components was taken from [9].  

As a result of solving the problem (23)-(25) the cent- 
erline pressure profile along the Die is obtained (Figure 
5). 

Figures 6 and 7 show the profiles of the radial (Figure  
 

 

Figure 5. The centerline pressure profile (r = 0). 
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6) and circumferential (Figure 7) strains in rod section 
А-А (Figure (1)). It was assumed that external pressure 

 (Figure 2 (b)), pulling force N. In 
ple the chemical shrinka n as 

2 0P 
this exam

0.1

5000N   
ge was take

5% 

To dete

, the ultimate strain tension ite ma-
o (15) is 

ine the maximu ries 
of solutions at different pull speeds are obtained. For the 
each of the solution the maximum strains (circumferen-
tial and radial) were determined. These values are sum-
marized in Table 1. Figure 8 shows the maximum strain 
profiles as functions of pull speed.  
 

of compos
310   . 

pull speed se
terial in according t

rm
5.4  

m possible 

 

igure 6. The distribution of radial strF
tion. 

ains in the cross sec- 

 

 

Figure 7. The distribution of circumferential strains in the 
oss section. 

 
Table 1. Summary results. 

Pull speed  
U mm/sec 

Resin pressure 
P MPa 

Inner radius 
R1 mm 

Strain 
εrmax, % 

Strain 
εtmax, %

cr

0.75 1.13 22.4 0.3911 0.4282 
0.833 1.25 25.5 0.3843 0.4388 
0.917 1.36 27.1 0.3789 0.4

1 1.48 28.6 0.3722 0.4629 
1.083 1.59 29.4 0.3673 0.4748 
1.167 1.71 30.2 0.3613 0.4893 
1.25 1.82 31.0 0.3545 0.5075 

1.333 1.94 31.7 0.346 0.5
1.417 2.05 32.5 0.3355 0.5

488 

30
60

4 
1 

1.5 2.16 32.5 0.3328 0.5694 

 

Figur Profiles of the maximum strains as a functions of 
pull speed. 

8. Conclusions 

Analyzing the results, it can be concluded that for this 
example the optimum pull speed is up to 1.33 mm/sec.  

The numerical model is a useful tool to determine the 
stress-strain state of polymer composite materials at the 
outlet of the Die through the selection of appropriate val- 
ues for the different process control parameters. An appr- 
eciable stress-strain state can help to suppress crack for-
mation, and aid in the manufacture of a quality pultruded 
product. 
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