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ABSTRACT 

Several algorithms based on homogeneous polynomials for multiplication of large integers are described in the paper. 
The homogeneity of polynomials provides several simplifications: reduction of system of equations and elimination of 
necessity to evaluate polynomials in points with larger coordinates. It is demonstrated that a two-stage implementation 
of the proposed and Toom-Cook algorithms asymptotically require twice as many standard multiplications than their 
direct implementation. A multistage implementation of these algorithms is also less efficient than their direct imple-
mentation. Although the proposed algorithms as well as the corresponding Toom-Cook algorithms require numerous 
algebraic additions, the Generalized Horner rule for evaluation of homogeneous polynomials, provided in the paper, 
decrease this number twice. 
 
Keywords: Homogeneous Polynomials; Toom-Cook Algorithm; Multidigit Integers; Multi-Stage Multiplication;  

Generalized Horner Rule; Large-Integer Multiplication 

1. Introduction and Basic Definitions 

Crypto-immunity of various protocols of secure commu-
nication over open channels is based on modular arith-
metic of large integers with hundreds of decimal digits. 
Multiplications and exponentiations of large integers are 
essential operations in this arithmetic. Yet, standard pro-
gramming libraries in general-purpose computers handle 
multiplication of integers A and B if the number of deci-
mal digits in each does not exceed m. Such integers we 
will refer to as standard integers. For instance, if a com-
puter cannot multiply integers larger than  without 
a specially-written program, then in this case m = 30. 

3010

The first papers on multiplication of large integers 
were published by Karatsuba-Ofman [1] and by Toom 
[2]. Several years later Toom’s scheme was improved by 
Cook {see [3,4]}. Analysis of computational complexity 
of Toom-Cook algorithm (TCA) is provided in [5] and 
theoretical foundation for efficient multiplication of large 
integers is discussed in [6]. An efficient implementation 
of the TCA in cryptographic systems is described in sev-
eral patents [7]. Analysis of computational complexity of 
the TCA and its lower bound is provided in [8].  

A special case of the TCA, where one multiplier is 
significantly larger than another, is considered in [9].  

Consider two nm-digit-large integers 1 2 1 0nA a a a a   

and 1 2 1 0nB b b b b  k

 
1

0

10
n km

k
k

, where every part  and b  is a  ka

m-decimal-digit large standard integer {SI, for short}. 
Let us represent A and B as 

A a




 

 
1

0

10
n km

k
k

B b




 

 
 2 1

0

10
n

sm

;              (1.1) 

and 

.              (1.2) 

Therefore, the product C = AB is expressed as 

s
s

C c




 

2 2 2 3 1 0, , , ,n nc c c c   2 1n 

;            (1.3) 

where  are  unknown coeffi-
cients.  

In order to compute the product C, these coefficients 
must be determined.  
Example 1.1: Suppose we need to multiply two integers  

A = 385,495,374,109; 
and  

B = 608,348,696,284; 

using a computing device that cannot multiply integers of 
order higher than  310O

3 2 1 0

3 2 1 0

385; 495; 374; 109;

608; 348; 696; 284.

a a a a

b b b b

   

   

. Therefore, in this example m 
= 3 and we split A and B into n = 4 parts, where 
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   , ,C x y C x y  

 2 ,nC x y

 ,C p q

The algorithm provided in Section 2 demonstrates how 
to solve this problem by using a minimal number of mul-
tiplications of m-digit SIs. 

2. Multiplication C = AB Based on  
Homogeneous Polynomials 

Consider two n-th degree homogeneous polynomials of 
two integer variables x and y:  

 ,nA x y
0

: ;
n

i n i
i

i

a x y 



 

0

.
n

i n i
i

i

by xx y 



 

0

2
2 .

n
k

k
n k

k

c x y

            (2.1) 

 , :nB             (2.2) 

Let  

     2 , : , ,n n nC x y A x y B x y 



    (2.3) 

Remark 2.1: All coefficients in polyno-mials  ,nA x y
 ,nB x y

 2 ,C x y

2 0 0 0c a b

2 1n 

 
and  are inputs, and the coefficients in  

 are outputs. n

For short, the multiplication algorithm, based on ho-
mogeneous polynomials (HP), provided below is called 
the AHP. 

First of all, definition (2.3) implies that 

;n n nc a b  and .           (2.4) 

Computation of the remaining  coefficients in 
(2.3) is described in the algorithm. Prior to that, let us 
modify Equation (2.3) for integers 1; 1x y  . 
Consider  

      2 2
0

n n

2 1
1 2 1

1

2 22 1 , : ,

                     .
n

k n k
k

nn

k

n xyx c y  

, , ,c c c 2 2, , , nc c   un

c

M x y C x y c

x y


 







 






 (2.5) 

As is shown in Section 3, we can easily separate “odd” 

1 3 2 1n and “even” 2 4c known co-
efficients. 

 

The following properties of homogeneous polynomials 
imply certain limitations on choice of evaluation points: 
Property 1: If n is a degree of homogeneity of  ,H x y

 , ,n

 
and g is a non-zero real number, then 

 H gx gy g H x y

1g 

   , 1 ,
n

.         (2.6) 

Therefore, if , then 

 H x y   H x y

   , ,y

.        (2.7) 

Property 2: If the degree of homogeneity is even, then 
H x H x y  

 ,

;  

otherwise       ,H x y H x y   .         (2.8) 

Corollary 1: Definition (2.3) implies that  

;          (2.9) 

since for every integer n  has an even degree 
of homogeneity. 
Corollary 2: Identity (2.9) implies that it is not advanta-
geous to consider, for instance, both   and 
 ,  C p q ; neither it is advantageous to consider  ,  C p q  

and  ,  C gp gq

           

 for any non-zero integer g (2.6). There- 
fore, in this paper are considered only relatively prime 
pairs of integers p and q. 

3. Separation of “Even” and “Odd”  
Coefficients in AHP 

Step 3.1: Compute sums 

2 1 2 1 2 1, : , , 2 ;n n nS p q M p q M p q pq  
    

1n

  

(3.1) 
for the first   relatively prime pairs of integers  

           
      

,  2,1 ; 1,2 ; 3,1 ; 1,3 ; 3,2 ;

2,3 ; 4,1 ; 1, 4 ; .

p q 



1n

    (3.2) 

Remark 3.1: Using (3.1) and (3.2), we create and solve 
1n  equations with   “even” unknowns  

 2 4 2 1n, , ,c c c 

             

. 
Step 3.2: Compute differences 

2

2 1 2 1 2 1, : , , 2n n nD p q M p q M p q pq  
    

 (3.3) 
for the same pairs  

           
      

,  2,1 ; 1, 2 ; 3,1 ; 1,3 ; 3,2 ;

2,3 ; 4,1 ; 1, 4 ; .

p q 



1n

 

Remark 3.2: As a result, in (3.3), we create   equa-
tions with n unknowns . 1 3 2 1n

Since by this time the values of all “even” coefficients 

2 4 2 2n

, , ,c c c

, , ,c c c   are already computed, we use    2 1n  
(3.5) as the n-th equation for computation of n “odd” 
coefficients. 

1,1M

The following example illustrates a slightly different 
approach to separate “even” and “odd” variables. 

3.1. Separation of Unknowns: n = 5 

 8 ,S p q  {see (3.1)} for  First, compute 
       , 1,1 ; 2,1 ; 1,2p q 

6,  and c c c  ,D p q
 and from three equations 

find 2 4 ; second, compute 8  {see 
(3.3)} for        , 1,1 ; 2,1 ; 1,2p q 

5 7,  ,  ,  c c c c
 and derive three 

equations with four “odd” unknowns 1 3 . As 
the fourth (“missing”) equation, we consider 

  7 6 2 1
7 6

8 3,1 : 3 3 3M c c c c    ;     (3.4) 

{see (2.5)}. After all “even” coefficients are computed, 
let 

Copyright © 2012 SciRes.                                                                                IJCNS 



B. VERKHOVSKY 439

  2 4
8 3,1 3 3: M  6 4 2

23Z c c c 

3
3 13 3c c Z 

2 2
2 1 0 ;

 .     (3.5) 

Finally we derive the fourth equation 
7 5

7 53 3c c  .       (3.6) 

3.2. AHP for Multiplication of Triple-Large  
Integers 

Let us consider a multiplication of triple-large integers; 
let  

 ,A x y a x  a xy a y

2 2
2 1 0, ;b xy b y

2 2 4
0 .y c y 

   1,0 1,0 ;A B

   0,1 0,1 ;A B

 
   



2 1 0

2 1 0

4 2

1 2,1

2 ;

 

and 

 B x y b x   

therefore 

     
4 3

4 3 2

, , ,C x y A x y B x y

c x c x y c x



  
   (3.7) 

Step 3.1:  

 4 2 2: 1,0c a b C        (3.8) 

Step 3.2:  

 0 0 0: 0,1c a b C        (3.9) 

Step 3.3: 

 
 

2 1 0

4 3

: 4 2

2,1 2,

16 8 4

F a a a

C A

c c

  

 

  

b b b

B

c c c

 

 

 4 3 0 ;c c c  


 

0

016 ;c c 

      (3.10) 

Step 3.4: 

  
     

2 1 0 2 1 0:  

1,1 1,1 1,1

G a a a b b b

C A B

    

  
(3.11) 

Step 3.5: 

 
     

2 1 0 2 1

4 3

: 2 4 2 4

1, 2 1, 2 1,2 2

H a a a b b b

C A B c

    

   
(3.12) 

Step 3.6:  

 4 0: 3 2 11,1 ;K G c c M    c c c     (3.13) 

Step 3.7: 

   4 0: 16 2 2,1L F c c M     3 2 14 2 ;c c c   (3.14) 

Step 3.8: 

   4 0: 16 2 1, 2 3 2 12 4 ;M H c c M c     c c 

3 2 1,  and c c c

(3.15) 

Remark 3.3: From the system of linear Equations 
(3.13)-(3.15) we determine . 
Step 3.9: 

  3 1

3 1

: 3 ; 

2 2 .

c c

K c c

 

 

3 1 3 2 1 3;  ;  c P N c c N c K c c

and :

N L M

P L

 

 
        (3.16) 

Step 3.10: 

       .   (3.17) 

The algorithm described in (3.8)-(3.17) requires 24 
algebraic additions.  

4. Reduction of Algebraic Additions 

Let us consider a multiplication of two quatro-large inte-
gers 

A 3 2 1 0;a a a a  and 3 2 1 0;B b b b b

ka kb

   3 2

3 2 1 010 10 10 ;m m m

 

where every part  and  is a m-decimal-digit large 
SI [2]. 
Let us represent A and B as 

A a a a a   

3 2
3 2 1 010 10 10 .m m mB b b b b

    (4.1) 

and 

   

6 5
6 5 1 010 10 10 ;m m mC c c c c    

6 5 1 0, , ,,c c c c

0 0 0:c a b

         (4.2) 

Therefore, the product C = AB can be expressed as 

     (4.3) 

where seven coefficients  must be deter-
mined. 

The drawback of the TCA and AHP algorithms is the 
large number of required algebraic additions. The fol-
lowing algorithm shows how to decrease twice the num-
ber of these additions. 
Step 4.0:  

; ;           (4.4)  6 3 3:c a b

1 3 1 1 3 1

0 2 0 0 2 0

: ; : ;

: ; : ;

Step 4.1:  

A a a B b b

a a B b b

   

A    
        (4.5) 

Step 4.2: 

  
   

1 1 0 1 0

1 1 0 1 0

: ;

: ;

C A A B B

C A A B B

  

    

3 3 1 2 2 0

3 3 1 2 2 0

: 4 ; : 4 ;

: 4 ; : 4 ;

      (4.6) 

Step 4.3: 

A a a A a a

B b b B b b

   

   
      (4.7)  

Step 4.4:  

  
  

2 3 2 3 2

2 3 2 3 2

: 2 2 ;

: 2 2 ;

C A A B B

C A A B B

  

    

5 3 1 4 2 0

5 3 1 4 2 0

: 8 ; : 8 ;

: 8 ; : 8 ;

    (4.8) 

Step 4.5:  

A a A A a A

B b B B b B

   

   
       (4.9) 

Step 4.6: 
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5. Comparison of Evaluated Polynomials in 
TCA vs AHP 

  
 

5 4

4 5 4

3 ;

3 ;

B B

A B B



  
3 5 4

3 5

: 3

: 3

C A A

C A

 

  
    (4.10) 

First of all, in the TCA 
Remark 4.1: For every k the variables kA  and k  are 
used twice {see (4.6)-(4.10)}. In order to decrease the 
amount of computation, we pre-compute them only once. 
Therefore, we reduce twice the number of algebraic ad-
ditions in (4.6)-(4.10). 

B

 

      : 0 , 1 , 1C C C

Step 4.7: 

 
 

1 1

2 2

3 3

:

E C

E C

E C

 

 

 

1 0

2 0

3 0

: 2 ;

2 8;

: 2 18;

C c

C c

C c













 

        (4.11) 

Step 4.8:  

 
2 2 1

3 3 1

: 3;

: 8;

F E E

F E E

 

 

4 2 6

2 1 4 6

: 5 ;

: ;

c F c

c E c c

 

  

 

              (4.12) 

Step 4.9: 

               (4.13) 

Step 4.10:  

 
 

1 1 1

2 2 2

3 3 3

: 2;

: 4;

: 6;

e C C

e C C

e C C







 

 

 

 

             (4.14) 

Step 4.11:  

 
2 2 1

3 3 1

: 3;

: 8;

f e e

f e e

 

 

 

               (4.15) 

Step 4.12:  

5 3 2

3 2 5

1 1 3 5

: 5;

: 5 ;

: .

c f f

c f c

c e c c

 

 

  

              (4.16) 

This algorithm computes the product C = AB using 
seven multiplications of SIs instead of sixteen such mul-
tiplications as required by “grammar-school” rules. For 
more details on the AHP of quatro-large integers see 
Sections 8 and 9. 

   ;        (5.1) 

are computed, and in the AHP  

        : 1,0 , 0,1 , 1,1 , 1, 1C C C C  

3n 

     (5.2) 

are computed. Additional values of evaluated polynomi-
als for  are provided in Table 1.  
Remark 5.1: Observe the fast growth of the values of 
evaluation points in the TCA in comparison with corre-
sponding points in the AHP. 

  and The sets   of polynomial evaluations in 
Table 1 are defined in (5.1) and (5.2). 

6. Comparison of TCA vs AHP for n = 6 

6.1. AHP Framework  

Compute 

       
     
1,0 ; 0,1 ; 1,1 ; (1,1); 2,1 ; (2,1);

1,2 ; (1,2); 3,1 ; (3,1); 1,3 ;

C C C C C C

C C C C C
 (6.1) 

     
     

5 5 10

0 0 0

1,0 1,0 1,0 ;  

0,1 0,1 0,1 ;

C A B a b c

C A B a b c

  

  
    (6.2) 

Computation of 1,1C  1, 1C  and  has the same 
complexity as  1C  in the TCA; and computation of 
    2,1C ; 2, 1C  ; 1, 2C  1, 2 and C  has the same 

complexity as  2C   in the TCA {see Table 1). For 
instance, 

     
   5 4 5 4

5 4 0 5 4 0

10 9 2
10 9 2 1 0

2,1 2,1 2,1

2 2 2 2

2 2 2 2 ;

C A B

a a a b b b

c c c c c



      

     

 



  

(6.3) 
where all coefficients are merely binary shifts. Further-
more, computation of  3,1  3, 1C C ; ; and  1,3C

 3C
 

has the same complexity as  in TCA, {Table 1}. 

6.2. Toom-Cook Algorithm 

Compute 
 

Table 1. Points of polynomial evaluation in TCA and AHP. 

Splitting in Toom-Cook algorithms Algorithms based on HP 

3 parts     2 , 2C C ,   ,  2,1C  

4 parts     2 , 2  , C C ;  3 , 3C C  2,1C ;    ,   2, 1 , 1,2C C

   2 

 

8 parts 
 2 ,C C, ;   3 , 3C C  ;    4 , 4C C  ;  2,1C ;    2, 1 , 1,2C C    1, 2 , 3,1C C; ;  ,

   3, 1 , 1,3C C ;    1, 3 , 3,2C C    3, 2 , 2,3C C; ; ;    55 ,C C     6 , 6C C     7 , 7C C   
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0 ; 1 ; 1 ; 2 ; 2 ;

4 ; 4 ; 5  and 5

C C C C C

C C C C

 

 

   3 ; 3 ;C C 
(6.4) 

  0 0 00 ;B a b c                  (6.5) 

 5 4 0

0;

b b

c

  



       (6.6) 

 5 4 0

;

b b

c

      (6.7) 

 
 

0

1 0

1 0

5

;

a

b b

c



  




       (6.8) 

   0 0C A

     
 5 4 0

10 9 2 1

1 1 1C A B

a a a b

c c c c



   

    

     1 1 1C A B   

 5 4 0

10 9 8 1 0

a a a b

c c c c

     

     

     5 5 5C A B

5 1

5 4

10

3125 5

3125 625

=9765625 5

a a

b b

c c

  

 

 





where both  A p  and B p   can be computed by 

  0 0 0; and 0,1c C a b c  ,   (7.1) 

 remaining co

Let     

Horner Rule [1

7. AHP for n = 7 

0]. 

It is easy to see that 

  7 71,0C a b  14

i.e., we need to compute thirteen efficients 

13 12 1, , ,c c c . 
  14 14, ,p 14 0: ;qM C c qp p c q pq      (7.2) 

 2.5  

” and “even” unknowns, com-

     

 alues of , ,  see C p qmodified v

In order to separate “odd
pute 

     
12 10 8

10 8
12 10

2,1 : ( 2,1 )

2 2

c c c

S M

c c

  

 

 

In general, by computing 

6 4 2

2

1,1 : 1,1 1, 1 2

;

( 2, 1 8

.. .

S M M

c c c

M

c

    
  

  
 

     (7.3) 

       2
;, 2p q pq     (7.4) , : ,S p q M p q M  

for               ; 1,3 ; 3,2
nknowns 2 ,c c

 

, 1,1 ; 2,1 ; 1,2 ; 3,1p q   we cre- 
ate six 4 12, ,c . 

Analogously, by computing 
 equations with six “even” u

   , : ,D p q M p q  , 2;M p q       (7.5) 

for              ,1 ; 1,3 ; 3,2
nowns 1,c

2 4, , ,c c c
he sev-

enth equation for computation of all “odd” coefficients. 

 , we cre- , 1,1 ; 2,1 ; 1,2 ; 3p q 
ate si 3 13, ,c c . 

After the values of ”even” coefficients 12 
are computed, we use  2,3M  {see (7.2)} as t

x equations with seven “odd” unk

8. AHP for n = 4 in Details 

Consider  

    , : ,C x y A x y B ,x y ;         (8.1) 

 
3

3

0

, : k k
k

k

where 

A x y a x y 



  ; 

 
3

3

0

, : k k
k

k

B x y b x y 



 

and 

 
6

6

0

, : i i
i

k

C x y c x y 



  ; 

          (8.2) 

;           (8.3) 

           (8.4) 

then 

  0 0 00,1C c a b  ;  1,0C c 6 3 3a b ;      (8.5) 

 
   

6 5 1 0

3 0 3 0

1,1 :

;

C c c c c

a a b b

    

    



 
         (8.6) 

 
 

6 5 0

3 0 3 0

1, 1 :C c c c

a a b

    

      



  ;b
     (8.7) 

 
  

6 5 4 1 0

3 2 1 0 3 2 1 0

2,1 : 64 32 16 2

8 4 2 8 4 2

C c c c c c

a a a a b b b

     

     



;b
(8.8) 

 
 

6 5 1 0

3 2 1 0 3 2 1 0

2, 1 : 64 32 2

8 4 2 8 4 2

C c c c c

a a a a b b b

     

        



 (8.9) 

;b

 
  

6 5 4 1 0

3 2 1 0 3 2 1 0

1, 2 : 2 4 32 64

2 4 8 2 4 8

C c c c c c

a a a a b b b b

     

      


   

(8.10) 

9. Solution of System of Equations 
(8.6)-(8.10) 

.

Step 9.1:  1 6 0: 1,1V C c c   ; 

ep 9.2:  0 1, 1c C2 6:V cSt    ; 

 Step 9.3: 3 0 6: 2,1 32V C c c     ; 

 

2

Step 9.4: 4 6 0: 32 2, 2c C   1V c   ; 

 Step 9.5: 5 6 0: 1, 2 2 32c c    

.1: Using V1-V5, we find e unknowns 
om five linear equations: 

5 4 3 2 1 1c c c c c V

V C . 

Remark 9 fiv

1 5, ,c c  fr

    ;          (9.1) 
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5 4 3 2 1 2c c c c c V     ;          (9.2) 

5

16 8 4c c c 

4 3 2 116 8 4 2c c c c c V     ;       (9.3) 

5 4 3 2 12c c V   ;       (9.4) 

2 1 58 16c c V   .       (9.5) 

3

4

5 4 32 4c c c 

Step 9.6:  

   6 1 2 4 2: 2  ;V V V c c            (9.6) 

Step 9.7:  

   7 3 4 4 2 4 ;c c  .      (9.7) 

 

: 4V V V 

Step 9.8:  

4 7 6: 3;V              (9.8) 

St

2 6 4:c V c  .               (9.9) 

St

1 2 4: V c c ; 2 3 4 2: 8 2B V c c   ; 

4

 of three equations 

5 3 1 1c c c B   ;          (9.10) 

5 3 14 16c B .           (9.12) 

St

c V 

ep 9.9:  

ep 9.10: 

 1B

3 5: 2B V c 

olve the system
unknowns: 

28c . 

Remark 9.2: Now we s
with three 

  

5 3 1 216 4c c c B   ;           (9.11) 

c c  3

ep 9.11: 

   1 ;c       (9.13) 4 2: 4B B  1 53  4B c

Step 9.12: 

   5 13  4B c c     .     (9.14) 

Step 9.13:  

5 3 1: 4B B

   5 1 ;B B c c            (9.15) 

Step 9.14: 

6 4 5: 3B

 1 5c B B  6 5 6 1: 5;  : ;c B c        (9.16) 

Step 9.15: 

                (9.17) 

6 2 3n

3 1 5 1c B c c   .  

10. Multistage Implementation of TCA and 
AHP 

10.1. Two-Stage Implementation (TSI) 

Let us consider   

3 3
1 0 1 010 ;  10 ;m m

, and analyze how to multi-
ply sextuple-large integers in two stages. On the first 
stage, we represent A and B as double long: 

A A A B B B         (10.1) 

and compute AB applying the Karatsuba algorithm [1], 
which requires three multiplications of 3m-long integers. 

Then, as the second stage, we compute every product 
of triple-long integers using either the TCA or AHP each 
requiring five standard multiplications {SMs, for short}. 
Therefore, the two-stage implementation requires fifteen 
SMs rather than eleven SMs required by the TCA or by 
AHP. Table 2 provides comparison for several other 
cases, where 

     :R n TSI n DI n

1

0

10 ;
r

ksm
k

k

.        (10.2) 

General case: Let us now analyze the two-stage imple-
mentation of a multiplication algorithm if n = rs. 

First, we represent A and B as 

A A




 

1

0

10 ;
r

ksm
k

k

B B




 

2 1r 

2 1

             (10.3) 

and  

             (10.4) 

Such an implementation requires  multiplica-
tions each of sm-long integers. Then, on the second stage, 
we multiply sm-long integers. Every such multiplica-tion 
requires s   SMs. Therefore, we need  

    2 1 2 1 4r s O n            (10.5) 

SMs in total. However, the direct (one-stage) multiplica-
tion requires only  

   2 1 2   SMs.D n n O n        (10.6) 

It is easy to verify that both parts in the inequality  

  2 1 2 1 2 1r s rs   

 
Table 2. Number of SMs in two-stage (TSI) and direct implementation (DI). 

n 4 21 25 35 49 121 

         (10.7) 

are equal if and only if either r = 1, or s = 1, or r = s = 1. 
In all other cases 

6 9 15 

TSI 9 15 25 45 65 81 117 169 441 

DI 7  241 

1.  1  1  

 11 17 29 41 49 69 97

R  (n) 29 .36 .47 1.55 1.59 1.65 1.70 1.74 1.83 
  

Copyright © 2012 SciRes.                                                                                IJCNS 



B. VERKHOVSKY 443

 
 2 1 1s rs   .     (1 ) 

Thus, th SI of e er the T for lar
and s asym

e DI. 
ample 10.1: Now let m = 4; 

e need to split A and B 
into three parts, i.e., n = 3. 

he algorithm, described in Sectio 8 and 9 we can 
C = AB using five multiplications of four-digit 

large integers. However, if the standard ntegers are only 
tw

algorithm. Each of these five 
pr

lti-Stage Implementation  

need 
ly fifteen SMs. 

braic additions in 
mptotica

 2 1r 2 32    0.8

e T ith CA or AHP ge r 
ptotically requires twice as many SMs than 

th
Ex

385,425,374,179;A   
and  

608,368,695,784.B   

Therefore, in this example w

By t
compute 

ns 

 i
o-digit long, we can pre-compute each product recur-

sively using the Karatsuba 
oducts requires three SMs, i.e., overall we need fifteen 

SMs to compute C = AB. On the other hand, we can 
compute the same product AB splitting both A and B into 
six parts. 

In this case m = 2. To compute AB, we need only ele-
ven SMs by using the direct implementation vs fifteen 
SMs required in the recursive TSI implementation. 

10.2. Mu

Let now 38 2n   . Therefore, we multiply A and B in 
either three stages using the Karatsuba algorithm [1] or 
using the AHP or TCA directly. In the MSI we 

33 27  SMs; while in the DI we need on
Remark 10.1: Since the number of alge
the DI asy lly grows as function of n, it is essen-
tial to properly select the evaluation points  ,p q  to 
implement symmetricity illustrated above in Section 4 

.4)-4.16)} and to simplify computational com-{see (4
plexity stemming from the multiplication by constant 
coefficients. These issues are addressed in Sections 11- 
13. 

11. Number of Algebraic Additions 

Notice that computation of  ,M p q  requires 2n addi- 
tions of SIs. Since we need to compute  ,M p q  for  

n   diffe t valu f  ,p the to umber of 
algebraic additions is of order  24 .O n  This number 
c redu twice a monstrated in S  2. Since 
e addit f m-di ng in has r 

ren es o q , tal n

an be ced s de ection
very ion o git lo tegers  orde  O m , 

therefore the total complexity of all additions is of order 
 2 .n  Hence, the overa plexity is equal 2O m ll com

     
   

2 2

2If ,  then

, 2 2 2 .

, 2 .

T m n O nm mn O nm m n

T m n O nmm n

     


 )  (11.1

12. Analysis of TCA vs AHP 

In large-integer multiplication we addressed two
of complexity: the number of standard multiplications 
and the number of algebraic additions. The third source 

onstant coefficients 

 sources 

of complexity is multiplication by c
when the polynomials  ,A x y  and  ,B x y  are evalu- 
ated at points    , ,x y p q .  

The Table 3 compares the polynomial evaluations in 
the TCA and AHP frameworks respectively for various 
values of n. It means that if n = 15, then in TCA polyno-
mials  C p  are eval r 2, , 14p     
and in the corr P po

uated fo  0, 1,
esponding AH lynomials  ,C p q  are 

evaluated for 

         
       

, 0,1 , 1, 1 , 2, 1 , 1, 2 , ,

1, 5 , 5, 2 , 2, 5 , 5, 4 ,

p q    

   



Example 12.1

 4, 5
 

: Compare for n = 14 the computation of 
C(2,5) and C(13): 

 
13 13

0 0

0 0

13 13 13 ;k k
k k

k k 
13 13

13 135, 2 2 5 2 5 .
k k

k k bC a
 

 

  

In the next section we provide an iterative procedure 
that computes 

k k k k bC a   
  (12.1) 

 ,C p q . 

13. Generalized Horner Rule for  
Homogeneous Polynomial 

Let 0 0: ;R a  0 : ;nL a  and for 1, ,k n   
 

Table 3. Evaluations required in 

4 8 

Toom’s vs AHP frameworks. 

5 6 7 n 1 2 3 

TCA  0C   1C           2C  3C   4C   5C    7C    7C  

 0,1C   1, 1C    2, 1C    1, 2C    3, 1C    1, 3C    3, 2C    2, 3C   AHP 

n 9 10 11 12 13 14 15 16 

TCA  8C  C  9  10C            13C   14C   15C   11C  12C  

AHP  4, 1C   C  1, 4   5, 1C  1, 5C  5, 2C  2, 5C   5, 4C    4, 5C         
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1
k

k k kR R q a p  ;             3.1) 

and 

1
k

k k n kp a q   ;        3.2) 

en 

 , n n

 
   

   
    

(0,1); 1 ;

(1, 1 2, 1 ; 7, 1

1, 2 ; , 3 ; ; 1, 7 ;

3, 2 ; 5, 2 ; 7 2 ;

C C

C

C C

  
: (1

:L L     (1

th

A p q L R 

ogously, pute  ,B p q . 

 ,p q  Simplifying  

.             (13.3) 

Anal we can com

14. Values of 

Computation of  ,A p q  and  ,B p q  

Case 1: if 2sp   and 2tq  3
requires a binary shift on sk , an

1  in ), then k
ka p  

p d 1kR q  re-
 s d one alge-

 

(1 .1
nsositio

quires merely a b hift on t positions an
braic addition [3].

 2: if 2

inary

Case sq   and in (13.2 na-
usly as in the Case1, equires a

2 1tp    ), then, a
k

n ka q  r  binary shift 

1 p  requ  on 

 and 

 and n (13

ase 5, it is necessar

logo
on sk positi d kL  ires a binary shift t 
positions and one algebraic addition. 
Case 3: if  2 2 1r tq    and 1p   in (13.1), then it is 
necessary to use two binary shifts and one algebraic ad-

ons, an

dition. 
Case 4: if  2 2 1r tp   1q   in (13.2), then, 
analogously as in the Case 3, it is necessary to use two 
binary shifts and one algebraic addition. 

r  Case 5: if 1p   i .1), then it is neces-
sary to use only one binary shift on r positions. 
Case 6: if 2rp   and 1q   in (13.2), then, analo-

2q 

gously as in t y to use only one 
binary shift. 
Example 14.1: In the following set of 37 points each 

he C

 ,p q  sati ne of si cial cases listed above: 

         , 1,1 ; 2,1 ; 3,1 ; ; 10,1 ;p q  

s i s  f e  o x spe

  
 

; 17, 4 ;

17,16 .

Add to this set the other  p q , 

         12,1 ; 14,1 ; ; 18,1 ; 20,1 ; 24,1 ;

     

   
      
     

28,1 ; 30,1 ; 31,1 ;

17,2 ; 31,2 ;

5, 4 ; 7,4 ; 9,4 ; 15,4

9,8 ; 15,8 ; 17,8 ; and

         3,2 ; 5,2 ; 7, 2 ; 9,2 ; 15, 2 ;  

111 points ,  p  
and  ,q p . For each of these number of 
required algebraic additions i smaller than 
in the corresponding TCAs. 
Example 14.2: If n = 22, then for the TCA we need to 
evaluate  C p  

,q
148 

n the 
points the 

AHPs is 

 at 43 points  0C ,  1 , , 12C C  ; 
l yet, for the AHP we evaluate polynomia  ,C p q  at 

nts  poi

1 


     2, 3 ; 2, 5 ; 2, 7 ;C C C

,0

); ;C ;

,

C C

C C

C

  

  

  

  

and 



 5, 4C , where, for instance, the evaluation of 
C(5,4) requires fewer basic operations than for C(21) in 

to decrease twice the number of additions/sub- 
tractions, we need to adjust the Generalized Horner Rule 
for iterative computation of  ,

the TCA. 

15. Optimized AHP 

In order 

A x y  and  ,B x y .  
Notice that if n is odd  2 1n s  , then 

 

 
      

 
     

2 1

2 1 2 2 2 12
2 02 1

2

2 1 2 1

,s

s s s
s

s s

A p q

a p a p q a q

a



  


 

   




  (15.1) 

Otherwise, if n is even, i.e., if n = 2s, then 

 

2 3 2 3
3 1

0 1= , , .

s s
s p q a pq

A p q A p q

 
  





 2 ,sA p q

    
 

  

2 2 2 12 1 2 3 2 3
2 1 2 3 3 1

2 1 2 2 2 1
2 02 1 ...

s ss s

       

3

2 2 .0 1, ,A p p 

s s

s s

s s

q a

q A q

s
s

a p a p q a p q a pq

a p q a p q

  
 

 

(15.2) 
Therefore, for every even and odd n 

       0 1, , , ;n n n




    

  


 

A p q A p q A p q         (15.3) 

       0 1, , , .n n nA p q A p q A p q         (15.4) 

iterative com-
putation of (15.1). 

Consider 2 1n s

Let us show how to modify (13.1) for 

  ; 1:i n id a   ; assign  0
0 0: ;R a  

 0
0 0: ;L d  and for every 1,2,k    compute 

 
 
 0 0 2 2

2 22 1: k
k kkR R q a p  ;         (15.5) 

 
 

 0 0 2 2
2 22 1: ;k

k kkL L p d q           

     
 

 
 0 0 0

2 1 2 1 2 1, .s s sA p q R L   

Assign  1
0 : 0;R

(15.6) 

hence, 

       (15.7) 

  1
0 : 0;L    

and for every 1,2,k   compute  

 


   

 
 

 

2 12 1

1 1 2 2
2 2 12 1

kk

k kkL L d q



 
 (15.8)

1 1 2 2 1
2 ;k

kR R q a p q 

1 .kp p
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hence 

 
 


1 1

2 1 2, .sR L 

Thus,  

 
 

 
 0 1

2 1 2 1 ;s sL L    (15.9) 

 
 

 
 0 1

2 1 2 1s sR R 

.1: L t us . Then 


 

2 2 4 6
2 0

3
3 1

   1
2 1sA p q 


1s  

   
 

 
 0 1

2 1 2 1 2 1,s s sp q R R   A

 2 1 ,sA p q   .     (15.10) 

Example 15 consider n = 7e

  

   

6 4
7 6 4

5 3
5

1
6 6

0

,

.

5

A p q a p a p q a

a p q a p q

R R



 

 

p q a q

a p

  



The iterative procedures (15.5)-(15.8) are si plified if 
1) p is a p 2 1; 1tq t    o

 1 ; {see the corresponding Cas-
n 13}.  

The Equations (13.2), (15.5) and (15.6) can be
gously modified for iterative computation of  

     0 1
2 2, ; , ;s s

q  

m
r ower of 2 and 

nd 2 2r tq  2) p = 1 
es 1-6 in

a
 Sectio

 analo-

 A p q A p q  

     
2 1s s 

     0 1
2 2, ; , .s sq B p q  

 that the overh n the Toom-
m is higher th

us polynomials  ,

 0 1, ; , ;B p q B p q  2 1

and 

 B p

16. Conclusion 

It has been demonstrated ead i  
Cook algorith an in the proposed approach 
based on homogeneo A x y  and 
B

. 
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