
Int. J. Communications, Network and System Sciences, 2012, 5, 437-445
http://dx.doi.org/10.4236/ijcns.2012.58054 Published Online August 2012 (http://www.SciRP.org/journal/ijcns)

Large-Integer Multiplication Based on
Homogeneous Polynomials

Boris S. Verkhovsky
Computer Science Department, New Jersey Institute of Technology, Newark, USA

Email: verb@njit.edu

Received June 17, 2012; revised July 28, 2012; accepted August 6, 2012

ABSTRACT

Several algorithms based on homogeneous polynomials for multiplication of large integers are described in the paper.
The homogeneity of polynomials provides several simplifications: reduction of system of equations and elimination of
necessity to evaluate polynomials in points with larger coordinates. It is demonstrated that a two-stage implementation
of the proposed and Toom-Cook algorithms asymptotically require twice as many standard multiplications than their
direct implementation. A multistage implementation of these algorithms is also less efficient than their direct imple-
mentation. Although the proposed algorithms as well as the corresponding Toom-Cook algorithms require numerous
algebraic additions, the Generalized Horner rule for evaluation of homogeneous polynomials, provided in the paper,
decrease this number twice.

Keywords: Homogeneous Polynomials; Toom-Cook Algorithm; Multidigit Integers; Multi-Stage Multiplication;

Generalized Horner Rule; Large-Integer Multiplication

1. Introduction and Basic Definitions

Crypto-immunity of various protocols of secure commu-
nication over open channels is based on modular arith-
metic of large integers with hundreds of decimal digits.
Multiplications and exponentiations of large integers are
essential operations in this arithmetic. Yet, standard pro-
gramming libraries in general-purpose computers handle
multiplication of integers A and B if the number of deci-
mal digits in each does not exceed m. Such integers we
will refer to as standard integers. For instance, if a com-
puter cannot multiply integers larger than without
a specially-written program, then in this case m = 30.

3010

The first papers on multiplication of large integers
were published by Karatsuba-Ofman [1] and by Toom
[2]. Several years later Toom’s scheme was improved by
Cook {see [3,4]}. Analysis of computational complexity
of Toom-Cook algorithm (TCA) is provided in [5] and
theoretical foundation for efficient multiplication of large
integers is discussed in [6]. An efficient implementation
of the TCA in cryptographic systems is described in sev-
eral patents [7]. Analysis of computational complexity of
the TCA and its lower bound is provided in [8].

A special case of the TCA, where one multiplier is
significantly larger than another, is considered in [9].

Consider two nm-digit-large integers 1 2 1 0nA a a a a

and 1 2 1 0nB b b b b k

1

0

10
n km

k
k

, where every part and b is a ka

m-decimal-digit large standard integer {SI, for short}.
Let us represent A and B as

A a

1

0

10
n km

k
k

B b

 2 1

0

10
n

sm

; (1.1)

and

. (1.2)

Therefore, the product C = AB is expressed as

s
s

C c

2 2 2 3 1 0, , , ,n nc c c c 2 1n

; (1.3)

where are unknown coeffi-
cients.

In order to compute the product C, these coefficients
must be determined.
Example 1.1: Suppose we need to multiply two integers

A = 385,495,374,109;
and

B = 608,348,696,284;

using a computing device that cannot multiply integers of
order higher than 310O

3 2 1 0

3 2 1 0

385; 495; 374; 109;

608; 348; 696; 284.

a a a a

b b b b

. Therefore, in this example m
= 3 and we split A and B into n = 4 parts, where

Copyright © 2012 SciRes. IJCNS

B. VERKHOVSKY 438

 , ,C x y C x y

 2 ,nC x y

 ,C p q

The algorithm provided in Section 2 demonstrates how
to solve this problem by using a minimal number of mul-
tiplications of m-digit SIs.

2. Multiplication C = AB Based on
Homogeneous Polynomials

Consider two n-th degree homogeneous polynomials of
two integer variables x and y:

 ,nA x y
0

: ;
n

i n i
i

i

a x y

0

.
n

i n i
i

i

by xx y

0

2
2 .

n
k

k
n k

k

c x y

 (2.1)

 , :nB (2.2)

Let

 2 , : , ,n n nC x y A x y B x y

 (2.3)

Remark 2.1: All coefficients in polyno-mials ,nA x y
 ,nB x y

 2 ,C x y

2 0 0 0c a b

2 1n

and are inputs, and the coefficients in

 are outputs. n

For short, the multiplication algorithm, based on ho-
mogeneous polynomials (HP), provided below is called
the AHP.

First of all, definition (2.3) implies that

;n n nc a b and . (2.4)

Computation of the remaining coefficients in
(2.3) is described in the algorithm. Prior to that, let us
modify Equation (2.3) for integers 1; 1x y .
Consider

 2 2
0

n n

2 1
1 2 1

1

2 22 1 , : ,

 .
n

k n k
k

nn

k

n xyx c y

, , ,c c c 2 2, , , nc c un

c

M x y C x y c

x y

 (2.5)

As is shown in Section 3, we can easily separate “odd”

1 3 2 1n and “even” 2 4c known co-
efficients.

The following properties of homogeneous polynomials
imply certain limitations on choice of evaluation points:
Property 1: If n is a degree of homogeneity of ,H x y

 , ,n

and g is a non-zero real number, then

 H gx gy g H x y

1g

 , 1 ,
n

. (2.6)

Therefore, if , then

 H x y H x y

 , ,y

. (2.7)

Property 2: If the degree of homogeneity is even, then
H x H x y

 ,

;

otherwise ,H x y H x y . (2.8)

Corollary 1: Definition (2.3) implies that

; (2.9)

since for every integer n has an even degree
of homogeneity.
Corollary 2: Identity (2.9) implies that it is not advanta-
geous to consider, for instance, both and
 , C p q ; neither it is advantageous to consider , C p q

and , C gp gq

 for any non-zero integer g (2.6). There-
fore, in this paper are considered only relatively prime
pairs of integers p and q.

3. Separation of “Even” and “Odd”
Coefficients in AHP

Step 3.1: Compute sums

2 1 2 1 2 1, : , , 2 ;n n nS p q M p q M p q pq

1n

(3.1)
for the first relatively prime pairs of integers

, 2,1 ; 1,2 ; 3,1 ; 1,3 ; 3,2 ;

2,3 ; 4,1 ; 1, 4 ; .

p q

1n

 (3.2)

Remark 3.1: Using (3.1) and (3.2), we create and solve
1n equations with “even” unknowns

 2 4 2 1n, , ,c c c

.
Step 3.2: Compute differences

2

2 1 2 1 2 1, : , , 2n n nD p q M p q M p q pq

 (3.3)
for the same pairs

, 2,1 ; 1, 2 ; 3,1 ; 1,3 ; 3,2 ;

2,3 ; 4,1 ; 1, 4 ; .

p q

1n

Remark 3.2: As a result, in (3.3), we create equa-
tions with n unknowns . 1 3 2 1n

Since by this time the values of all “even” coefficients

2 4 2 2n

, , ,c c c

, , ,c c c are already computed, we use 2 1n
(3.5) as the n-th equation for computation of n “odd”
coefficients.

1,1M

The following example illustrates a slightly different
approach to separate “even” and “odd” variables.

3.1. Separation of Unknowns: n = 5

 8 ,S p q {see (3.1)} for First, compute
 , 1,1 ; 2,1 ; 1,2p q

6, and c c c ,D p q
 and from three equations

find 2 4 ; second, compute 8 {see
(3.3)} for , 1,1 ; 2,1 ; 1,2p q

5 7, , , c c c c
 and derive three

equations with four “odd” unknowns 1 3 . As
the fourth (“missing”) equation, we consider

 7 6 2 1
7 6

8 3,1 : 3 3 3M c c c c ; (3.4)

{see (2.5)}. After all “even” coefficients are computed,
let

Copyright © 2012 SciRes. IJCNS

B. VERKHOVSKY 439

 2 4
8 3,1 3 3: M 6 4 2

23Z c c c

3
3 13 3c c Z

2 2
2 1 0 ;

 . (3.5)

Finally we derive the fourth equation
7 5

7 53 3c c . (3.6)

3.2. AHP for Multiplication of Triple-Large
Integers

Let us consider a multiplication of triple-large integers;
let

 ,A x y a x a xy a y

2 2
2 1 0, ;b xy b y

2 2 4
0 .y c y

 1,0 1,0 ;A B

 0,1 0,1 ;A B

2 1 0

2 1 0

4 2

1 2,1

2 ;

and

 B x y b x

therefore

4 3

4 3 2

, , ,C x y A x y B x y

c x c x y c x

 (3.7)

Step 3.1:

 4 2 2: 1,0c a b C (3.8)

Step 3.2:

 0 0 0: 0,1c a b C (3.9)

Step 3.3:

2 1 0

4 3

: 4 2

2,1 2,

16 8 4

F a a a

C A

c c

b b b

B

c c c

 4 3 0 ;c c c

0

016 ;c c

 (3.10)

Step 3.4:

2 1 0 2 1 0:

1,1 1,1 1,1

G a a a b b b

C A B

(3.11)

Step 3.5:

2 1 0 2 1

4 3

: 2 4 2 4

1, 2 1, 2 1,2 2

H a a a b b b

C A B c

(3.12)

Step 3.6:

 4 0: 3 2 11,1 ;K G c c M c c c (3.13)

Step 3.7:

 4 0: 16 2 2,1L F c c M 3 2 14 2 ;c c c (3.14)

Step 3.8:

 4 0: 16 2 1, 2 3 2 12 4 ;M H c c M c c c

3 2 1, and c c c

(3.15)

Remark 3.3: From the system of linear Equations
(3.13)-(3.15) we determine .
Step 3.9:

 3 1

3 1

: 3 ;

2 2 .

c c

K c c

3 1 3 2 1 3; ; c P N c c N c K c c

and :

N L M

P L

 (3.16)

Step 3.10:

 . (3.17)

The algorithm described in (3.8)-(3.17) requires 24
algebraic additions.

4. Reduction of Algebraic Additions

Let us consider a multiplication of two quatro-large inte-
gers

A 3 2 1 0;a a a a and 3 2 1 0;B b b b b

ka kb

 3 2

3 2 1 010 10 10 ;m m m

where every part and is a m-decimal-digit large
SI [2].
Let us represent A and B as

A a a a a

3 2
3 2 1 010 10 10 .m m mB b b b b

 (4.1)

and

6 5
6 5 1 010 10 10 ;m m mC c c c c

6 5 1 0, , ,,c c c c

0 0 0:c a b

 (4.2)

Therefore, the product C = AB can be expressed as

 (4.3)

where seven coefficients must be deter-
mined.

The drawback of the TCA and AHP algorithms is the
large number of required algebraic additions. The fol-
lowing algorithm shows how to decrease twice the num-
ber of these additions.
Step 4.0:

; ; (4.4) 6 3 3:c a b

1 3 1 1 3 1

0 2 0 0 2 0

: ; : ;

: ; : ;

Step 4.1:

A a a B b b

a a B b b

A
 (4.5)

Step 4.2:

1 1 0 1 0

1 1 0 1 0

: ;

: ;

C A A B B

C A A B B

3 3 1 2 2 0

3 3 1 2 2 0

: 4 ; : 4 ;

: 4 ; : 4 ;

 (4.6)

Step 4.3:

A a a A a a

B b b B b b

 (4.7)

Step 4.4:

2 3 2 3 2

2 3 2 3 2

: 2 2 ;

: 2 2 ;

C A A B B

C A A B B

5 3 1 4 2 0

5 3 1 4 2 0

: 8 ; : 8 ;

: 8 ; : 8 ;

 (4.8)

Step 4.5:

A a A A a A

B b B B b B

 (4.9)

Step 4.6:

Copyright © 2012 SciRes. IJCNS

B. VERKHOVSKY

Copyright © 2012 SciRes. IJCNS

440

5. Comparison of Evaluated Polynomials in
TCA vs AHP

5 4

4 5 4

3 ;

3 ;

B B

A B B

3 5 4

3 5

: 3

: 3

C A A

C A

 (4.10)

First of all, in the TCA
Remark 4.1: For every k the variables kA and k are
used twice {see (4.6)-(4.10)}. In order to decrease the
amount of computation, we pre-compute them only once.
Therefore, we reduce twice the number of algebraic ad-
ditions in (4.6)-(4.10).

B

 : 0 , 1 , 1C C C

Step 4.7:

1 1

2 2

3 3

:

E C

E C

E C

1 0

2 0

3 0

: 2 ;

2 8;

: 2 18;

C c

C c

C c

 (4.11)

Step 4.8:

2 2 1

3 3 1

: 3;

: 8;

F E E

F E E

4 2 6

2 1 4 6

: 5 ;

: ;

c F c

c E c c

 (4.12)

Step 4.9:

 (4.13)

Step 4.10:

1 1 1

2 2 2

3 3 3

: 2;

: 4;

: 6;

e C C

e C C

e C C

 (4.14)

Step 4.11:

2 2 1

3 3 1

: 3;

: 8;

f e e

f e e

 (4.15)

Step 4.12:

5 3 2

3 2 5

1 1 3 5

: 5;

: 5 ;

: .

c f f

c f c

c e c c

 (4.16)

This algorithm computes the product C = AB using
seven multiplications of SIs instead of sixteen such mul-
tiplications as required by “grammar-school” rules. For
more details on the AHP of quatro-large integers see
Sections 8 and 9.

 ; (5.1)

are computed, and in the AHP

 : 1,0 , 0,1 , 1,1 , 1, 1C C C C

3n

 (5.2)

are computed. Additional values of evaluated polynomi-
als for are provided in Table 1.
Remark 5.1: Observe the fast growth of the values of
evaluation points in the TCA in comparison with corre-
sponding points in the AHP.

 and The sets of polynomial evaluations in
Table 1 are defined in (5.1) and (5.2).

6. Comparison of TCA vs AHP for n = 6

6.1. AHP Framework

Compute

1,0 ; 0,1 ; 1,1 ; (1,1); 2,1 ; (2,1);

1,2 ; (1,2); 3,1 ; (3,1); 1,3 ;

C C C C C C

C C C C C
 (6.1)

5 5 10

0 0 0

1,0 1,0 1,0 ;

0,1 0,1 0,1 ;

C A B a b c

C A B a b c

 (6.2)

Computation of 1,1C 1, 1C and has the same
complexity as 1C in the TCA; and computation of
 2,1C ; 2, 1C ; 1, 2C 1, 2 and C has the same

complexity as 2C in the TCA {see Table 1). For
instance,

 5 4 5 4

5 4 0 5 4 0

10 9 2
10 9 2 1 0

2,1 2,1 2,1

2 2 2 2

2 2 2 2 ;

C A B

a a a b b b

c c c c c

(6.3)
where all coefficients are merely binary shifts. Further-
more, computation of 3,1 3, 1C C ; ; and 1,3C

 3C

has the same complexity as in TCA, {Table 1}.

6.2. Toom-Cook Algorithm

Compute

Table 1. Points of polynomial evaluation in TCA and AHP.

Splitting in Toom-Cook algorithms Algorithms based on HP

3 parts 2 , 2C C , , 2,1C

4 parts 2 , 2 , C C ; 3 , 3C C 2,1C ; , 2, 1 , 1,2C C

 2

8 parts
 2 ,C C, ; 3 , 3C C ; 4 , 4C C ; 2,1C ; 2, 1 , 1,2C C 1, 2 , 3,1C C; ; ,

 3, 1 , 1,3C C ; 1, 3 , 3,2C C 3, 2 , 2,3C C; ; ; 55 ,C C 6 , 6C C 7 , 7C C

B. VERKHOVSKY 441

0 ; 1 ; 1 ; 2 ; 2 ;

4 ; 4 ; 5 and 5

C C C C C

C C C C

 3 ; 3 ;C C
(6.4)

 0 0 00 ;B a b c (6.5)

 5 4 0

0;

b b

c

 (6.6)

 5 4 0

;

b b

c

 (6.7)

0

1 0

1 0

5

;

a

b b

c

 (6.8)

 0 0C A

 5 4 0

10 9 2 1

1 1 1C A B

a a a b

c c c c

 1 1 1C A B

 5 4 0

10 9 8 1 0

a a a b

c c c c

 5 5 5C A B

5 1

5 4

10

3125 5

3125 625

=9765625 5

a a

b b

c c

where both A p and B p can be computed by

 0 0 0; and 0,1c C a b c , (7.1)

 remaining co

Let

Horner Rule [1

7. AHP for n = 7

0].

It is easy to see that

 7 71,0C a b 14

i.e., we need to compute thirteen efficients

13 12 1, , ,c c c .
 14 14, ,p 14 0: ;qM C c qp p c q pq (7.2)

 2.5

” and “even” unknowns, com-

 alues of , , see C p qmodified v

In order to separate “odd
pute

12 10 8

10 8
12 10

2,1 : (2,1)

2 2

c c c

S M

c c

In general, by computing

6 4 2

2

1,1 : 1,1 1, 1 2

;

(2, 1 8

.. .

S M M

c c c

M

c

 (7.3)

 2
;, 2p q pq (7.4) , : ,S p q M p q M

for ; 1,3 ; 3,2
nknowns 2 ,c c

, 1,1 ; 2,1 ; 1,2 ; 3,1p q we cre-
ate six 4 12, ,c .

Analogously, by computing
 equations with six “even” u

 , : ,D p q M p q , 2;M p q (7.5)

for ,1 ; 1,3 ; 3,2
nowns 1,c

2 4, , ,c c c
he sev-

enth equation for computation of all “odd” coefficients.

 , we cre- , 1,1 ; 2,1 ; 1,2 ; 3p q
ate si 3 13, ,c c .

After the values of ”even” coefficients 12
are computed, we use 2,3M {see (7.2)} as t

x equations with seven “odd” unk

8. AHP for n = 4 in Details

Consider

 , : ,C x y A x y B ,x y ; (8.1)

3

3

0

, : k k
k

k

where

A x y a x y

 ;

3

3

0

, : k k
k

k

B x y b x y

and

6

6

0

, : i i
i

k

C x y c x y

 ;

 (8.2)

; (8.3)

 (8.4)

then

 0 0 00,1C c a b ; 1,0C c 6 3 3a b ; (8.5)

6 5 1 0

3 0 3 0

1,1 :

;

C c c c c

a a b b

 (8.6)

6 5 0

3 0 3 0

1, 1 :C c c c

a a b

 ;b
 (8.7)

6 5 4 1 0

3 2 1 0 3 2 1 0

2,1 : 64 32 16 2

8 4 2 8 4 2

C c c c c c

a a a a b b b

;b
(8.8)

6 5 1 0

3 2 1 0 3 2 1 0

2, 1 : 64 32 2

8 4 2 8 4 2

C c c c c

a a a a b b b

 (8.9)

;b

6 5 4 1 0

3 2 1 0 3 2 1 0

1, 2 : 2 4 32 64

2 4 8 2 4 8

C c c c c c

a a a a b b b b

(8.10)

9. Solution of System of Equations
(8.6)-(8.10)

.

Step 9.1: 1 6 0: 1,1V C c c ;

ep 9.2: 0 1, 1c C2 6:V cSt ;

 Step 9.3: 3 0 6: 2,1 32V C c c ;

2

Step 9.4: 4 6 0: 32 2, 2c C 1V c ;

 Step 9.5: 5 6 0: 1, 2 2 32c c

.1: Using V1-V5, we find e unknowns
om five linear equations:

5 4 3 2 1 1c c c c c V

V C .

Remark 9 fiv

1 5, ,c c fr

 ; (9.1)

Copyright © 2012 SciRes. IJCNS

B. VERKHOVSKY 442

5 4 3 2 1 2c c c c c V ; (9.2)

5

16 8 4c c c

4 3 2 116 8 4 2c c c c c V ; (9.3)

5 4 3 2 12c c V ; (9.4)

2 1 58 16c c V . (9.5)

3

4

5 4 32 4c c c

Step 9.6:

 6 1 2 4 2: 2 ;V V V c c (9.6)

Step 9.7:

 7 3 4 4 2 4 ;c c . (9.7)

: 4V V V

Step 9.8:

4 7 6: 3;V (9.8)

St

2 6 4:c V c . (9.9)

St

1 2 4: V c c ; 2 3 4 2: 8 2B V c c ;

4

 of three equations

5 3 1 1c c c B ; (9.10)

5 3 14 16c B . (9.12)

St

c V

ep 9.9:

ep 9.10:

 1B

3 5: 2B V c

olve the system
unknowns:

28c .

Remark 9.2: Now we s
with three

5 3 1 216 4c c c B ; (9.11)

c c 3

ep 9.11:

 1 ;c (9.13) 4 2: 4B B 1 53 4B c

Step 9.12:

 5 13 4B c c . (9.14)

Step 9.13:

5 3 1: 4B B

 5 1 ;B B c c (9.15)

Step 9.14:

6 4 5: 3B

 1 5c B B 6 5 6 1: 5; : ;c B c (9.16)

Step 9.15:

 (9.17)

6 2 3n

3 1 5 1c B c c .

10. Multistage Implementation of TCA and
AHP

10.1. Two-Stage Implementation (TSI)

Let us consider

3 3
1 0 1 010 ; 10 ;m m

, and analyze how to multi-
ply sextuple-large integers in two stages. On the first
stage, we represent A and B as double long:

A A A B B B (10.1)

and compute AB applying the Karatsuba algorithm [1],
which requires three multiplications of 3m-long integers.

Then, as the second stage, we compute every product
of triple-long integers using either the TCA or AHP each
requiring five standard multiplications {SMs, for short}.
Therefore, the two-stage implementation requires fifteen
SMs rather than eleven SMs required by the TCA or by
AHP. Table 2 provides comparison for several other
cases, where

 :R n TSI n DI n

1

0

10 ;
r

ksm
k

k

. (10.2)

General case: Let us now analyze the two-stage imple-
mentation of a multiplication algorithm if n = rs.

First, we represent A and B as

A A

1

0

10 ;
r

ksm
k

k

B B

2 1r

2 1

 (10.3)

and

 (10.4)

Such an implementation requires multiplica-
tions each of sm-long integers. Then, on the second stage,
we multiply sm-long integers. Every such multiplica-tion
requires s SMs. Therefore, we need

 2 1 2 1 4r s O n (10.5)

SMs in total. However, the direct (one-stage) multiplica-
tion requires only

 2 1 2 SMs.D n n O n (10.6)

It is easy to verify that both parts in the inequality

 2 1 2 1 2 1r s rs

Table 2. Number of SMs in two-stage (TSI) and direct implementation (DI).

n 4 21 25 35 49 121

 (10.7)

are equal if and only if either r = 1, or s = 1, or r = s = 1.
In all other cases

6 9 15

TSI 9 15 25 45 65 81 117 169 441

DI 7 241

1. 1 1

 11 17 29 41 49 69 97

R (n) 29 .36 .47 1.55 1.59 1.65 1.70 1.74 1.83

Copyright © 2012 SciRes. IJCNS

B. VERKHOVSKY 443

 2 1 1s rs . (1)

Thus, th SI of e er the T for lar
and s asym

e DI.
ample 10.1: Now let m = 4;

e need to split A and B
into three parts, i.e., n = 3.

he algorithm, described in Sectio 8 and 9 we can
C = AB using five multiplications of four-digit

large integers. However, if the standard ntegers are only
tw

algorithm. Each of these five
pr

lti-Stage Implementation

need
ly fifteen SMs.

braic additions in
mptotica

 2 1r 2 32 0.8

e T ith CA or AHP ge r
ptotically requires twice as many SMs than

th
Ex

385,425,374,179;A
and

608,368,695,784.B

Therefore, in this example w

By t
compute

ns

 i
o-digit long, we can pre-compute each product recur-

sively using the Karatsuba
oducts requires three SMs, i.e., overall we need fifteen

SMs to compute C = AB. On the other hand, we can
compute the same product AB splitting both A and B into
six parts.

In this case m = 2. To compute AB, we need only ele-
ven SMs by using the direct implementation vs fifteen
SMs required in the recursive TSI implementation.

10.2. Mu

Let now 38 2n . Therefore, we multiply A and B in
either three stages using the Karatsuba algorithm [1] or
using the AHP or TCA directly. In the MSI we

33 27 SMs; while in the DI we need on
Remark 10.1: Since the number of alge
the DI asy lly grows as function of n, it is essen-
tial to properly select the evaluation points ,p q to
implement symmetricity illustrated above in Section 4

.4)-4.16)} and to simplify computational com-{see (4
plexity stemming from the multiplication by constant
coefficients. These issues are addressed in Sections 11-
13.

11. Number of Algebraic Additions

Notice that computation of ,M p q requires 2n addi-
tions of SIs. Since we need to compute ,M p q for

n diffe t valu f ,p the to umber of
algebraic additions is of order 24 .O n This number
c redu twice a monstrated in S 2. Since
e addit f m-di ng in has r

ren es o q , tal n

an be ced s de ection
very ion o git lo tegers orde O m ,

therefore the total complexity of all additions is of order
 2 .n Hence, the overa plexity is equal 2O m ll com

2 2

2If , then

, 2 2 2 .

, 2 .

T m n O nm mn O nm m n

T m n O nmm n

) (11.1

12. Analysis of TCA vs AHP

In large-integer multiplication we addressed two
of complexity: the number of standard multiplications
and the number of algebraic additions. The third source

onstant coefficients

 sources

of complexity is multiplication by c
when the polynomials ,A x y and ,B x y are evalu-
ated at points , ,x y p q .

The Table 3 compares the polynomial evaluations in
the TCA and AHP frameworks respectively for various
values of n. It means that if n = 15, then in TCA polyno-
mials C p are eval r 2, , 14p
and in the corr P po

uated fo 0, 1,
esponding AH lynomials ,C p q are

evaluated for

, 0,1 , 1, 1 , 2, 1 , 1, 2 , ,

1, 5 , 5, 2 , 2, 5 , 5, 4 ,

p q

Example 12.1

 4, 5

: Compare for n = 14 the computation of
C(2,5) and C(13):

13 13

0 0

0 0

13 13 13 ;k k
k k

k k
13 13

13 135, 2 2 5 2 5 .
k k

k k bC a

In the next section we provide an iterative procedure
that computes

k k k k bC a
 (12.1)

 ,C p q .

13. Generalized Horner Rule for
Homogeneous Polynomial

Let 0 0: ;R a 0 : ;nL a and for 1, ,k n

Table 3. Evaluations required in

4 8

Toom’s vs AHP frameworks.

5 6 7 n 1 2 3

TCA 0C 1C 2C 3C 4C 5C 7C 7C

 0,1C 1, 1C 2, 1C 1, 2C 3, 1C 1, 3C 3, 2C 2, 3C AHP

n 9 10 11 12 13 14 15 16

TCA 8C C 9 10C 13C 14C 15C 11C 12C

AHP 4, 1C C 1, 4 5, 1C 1, 5C 5, 2C 2, 5C 5, 4C 4, 5C

Copyright © 2012 SciRes. IJCNS

B. VERKHOVSKY 444

1
k

k k kR R q a p ; 3.1)

and

1
k

k k n kp a q ; 3.2)

en

 , n n

(0,1); 1 ;

(1, 1 2, 1 ; 7, 1

1, 2 ; , 3 ; ; 1, 7 ;

3, 2 ; 5, 2 ; 7 2 ;

C C

C

C C

: (1

:L L (1

th

A p q L R

ogously, pute ,B p q .

 ,p q Simplifying

. (13.3)

Anal we can com

14. Values of

Computation of ,A p q and ,B p q

Case 1: if 2sp and 2tq 3
requires a binary shift on sk , an

1 in), then k
ka p

p d 1kR q re-
 s d one alge-

(1 .1
nsositio

quires merely a b hift on t positions an
braic addition [3].

 2: if 2

inary

Case sq and in (13.2 na-
usly as in the Case1, equires a

2 1tp), then, a
k

n ka q r binary shift

1 p requ on

 and

 and n (13

ase 5, it is necessar

logo
on sk positi d kL ires a binary shift t
positions and one algebraic addition.
Case 3: if 2 2 1r tq and 1p in (13.1), then it is
necessary to use two binary shifts and one algebraic ad-

ons, an

dition.
Case 4: if 2 2 1r tp 1q in (13.2), then,
analogously as in the Case 3, it is necessary to use two
binary shifts and one algebraic addition.

r Case 5: if 1p i .1), then it is neces-
sary to use only one binary shift on r positions.
Case 6: if 2rp and 1q in (13.2), then, analo-

2q

gously as in t y to use only one
binary shift.
Example 14.1: In the following set of 37 points each

he C

 ,p q sati ne of si cial cases listed above:

 , 1,1 ; 2,1 ; 3,1 ; ; 10,1 ;p q

s i s f e o x spe

; 17, 4 ;

17,16 .

Add to this set the other p q ,

 12,1 ; 14,1 ; ; 18,1 ; 20,1 ; 24,1 ;

28,1 ; 30,1 ; 31,1 ;

17,2 ; 31,2 ;

5, 4 ; 7,4 ; 9,4 ; 15,4

9,8 ; 15,8 ; 17,8 ; and

 3,2 ; 5,2 ; 7, 2 ; 9,2 ; 15, 2 ;

111 points , p
and ,q p . For each of these number of
required algebraic additions i smaller than
in the corresponding TCAs.
Example 14.2: If n = 22, then for the TCA we need to
evaluate C p

,q
148

n the
points the

AHPs is

 at 43 points 0C , 1 , , 12C C ;
l yet, for the AHP we evaluate polynomia ,C p q at

nts poi

1

 2, 3 ; 2, 5 ; 2, 7 ;C C C

,0

); ;C ;

,

C C

C C

C

and

 5, 4C , where, for instance, the evaluation of
C(5,4) requires fewer basic operations than for C(21) in

to decrease twice the number of additions/sub-
tractions, we need to adjust the Generalized Horner Rule
for iterative computation of ,

the TCA.

15. Optimized AHP

In order

A x y and ,B x y .
Notice that if n is odd 2 1n s , then

2 1

2 1 2 2 2 12
2 02 1

2

2 1 2 1

,s

s s s
s

s s

A p q

a p a p q a q

a

 (15.1)

Otherwise, if n is even, i.e., if n = 2s, then

2 3 2 3
3 1

0 1= , , .

s s
s p q a pq

A p q A p q

 2 ,sA p q

2 2 2 12 1 2 3 2 3
2 1 2 3 3 1

2 1 2 2 2 1
2 02 1 ...

s ss s

3

2 2 .0 1, ,A p p

s s

s s

s s

q a

q A q

s
s

a p a p q a p q a pq

a p q a p q

(15.2)
Therefore, for every even and odd n

 0 1, , , ;n n n

A p q A p q A p q (15.3)

 0 1, , , .n n nA p q A p q A p q (15.4)

iterative com-
putation of (15.1).

Consider 2 1n s

Let us show how to modify (13.1) for

 ; 1:i n id a ; assign 0
0 0: ;R a

 0
0 0: ;L d and for every 1,2,k compute

 0 0 2 2

2 22 1: k
k kkR R q a p ; (15.5)

 0 0 2 2
2 22 1: ;k

k kkL L p d q

 0 0 0

2 1 2 1 2 1, .s s sA p q R L

Assign 1
0 : 0;R

(15.6)

hence,

 (15.7)

 1
0 : 0;L

and for every 1,2,k compute

2 12 1

1 1 2 2
2 2 12 1

kk

k kkL L d q

 (15.8)

1 1 2 2 1
2 ;k

kR R q a p q

1 .kp p

Copyright © 2012 SciRes. IJCNS

B. VERKHOVSKY 445

hence

1 1

2 1 2, .sR L

Thus,

 0 1

2 1 2 1 ;s sL L (15.9)

 0 1

2 1 2 1s sR R

.1: L t us . Then

2 2 4 6
2 0

3
3 1

 1
2 1sA p q

1s

 0 1

2 1 2 1 2 1,s s sp q R R A

 2 1 ,sA p q . (15.10)

Example 15 consider n = 7e

6 4
7 6 4

5 3
5

1
6 6

0

,

.

5

A p q a p a p q a

a p q a p q

R R

p q a q

a p

The iterative procedures (15.5)-(15.8) are si plified if
1) p is a p 2 1; 1tq t o

 1 ; {see the corresponding Cas-
n 13}.

The Equations (13.2), (15.5) and (15.6) can be
gously modified for iterative computation of

 0 1
2 2, ; , ;s s

q

m
r ower of 2 and

nd 2 2r tq 2) p = 1
es 1-6 in

a
 Sectio

 analo-

 A p q A p q

2 1s s

 0 1
2 2, ; , .s sq B p q

 that the overh n the Toom-
m is higher th

us polynomials ,

 0 1, ; , ;B p q B p q 2 1

and

 B p

16. Conclusion

It has been demonstrated ead i
Cook algorith an in the proposed approach
based on homogeneo A x y and
B

.

17. Acknowledgements

I deeply appreciate comments of I. V. Semushin and sty-
 suggestions of Yu. Polyakov and R. Rubino t

he quality of this paper. I wish to express my
gratitude to typesetters for their patience.

NCES

unctional
tegers,” Soviet

Mathematics-Doklady, Vol. 7, 1963, pp. 714-716.

[3] S. A. Cook, “ Time of
Functions,” C arvard University,

 ,x y . Integrality of all coefficients in the TCA and
AHP is demonstrated by the first author in [11]

listic
improved t

hat

REFERE
[1] A. Karatsuba and Yu. Ofman, “Multiplication of Multi-

digit Numbers on Automata,” Soviet Physics-Doklady,
Vol. 7, 1963, pp. 595-596.

[2] A. Toom, “The Complexity of a Scheme of F
Elements Realizing the Multiplication of In

On the Minimum Computation
hapter 3, Ph.D. Thesis, H

Cambridge, 1966, pp. 51-77.

[4] D. Knuth, “Art of Computer Programming: Seminumeri-
cal Algorithms,” 2nd Edition, Vol. 2, Addison-Wesley,
New York, 1981.

[5] R. Crandall and C. Pomerance, “Prime Numbers: A Com-
putational Perspective,” Springer, New York, 2001.
doi:10.1007/978-1-4684-9316-0

[6] D. Bernstein, “Multidigit Modular Multiplication with
Explicit Chinese Remainder Theorem,” 1997.
ftp://koobera. math.uic.edu/pub/papers/m3.dvi

[7] R. Crandall, “Method and Apparatus for Public Key Ex-
change in a Cryptographic Systems,” US Patents 5159632,
1992; 5271061, 1993; 5463690, 1994.

[8] F. Ablayev and M. Karpinski, “A Lower Bound for Inte-
ger Multiplication on Randomized Ordered Read-Once
Branching Programs,” Information and Computation, Vol.
186, No. 1, 2003, pp. 78-89.
doi:10.1016/S0890-5401(03)00118-4

[9] A. Zanoni, “Iterative Toom-Cook Methods for Very Un-
balanced Long Integer Multiplication,” Proceedings of
the 2010th International Symposium on Symbolic and
Algebraic Computation, Munich, 25 July 2010, pp. 319-
323. doi:10.1145/1837934.1837995

[10] W. G. Horner, “A New Method of Solving Numerical
Equations of All Orders, by Continuous Approximation,”
Philosophical Transactions of Royal
Vol. 109, 1819, pp. 308-335.

Society of London,
98/rstl.1819.0023doi:10.10

o. 5, 2012, pp. 517-

[11] B. Verkhovsky and R. Rubino, “Corporate Intranet Secu-
rity: Packet-Level Protocols for Preventing Leakage of
Sensitive Information and Assuring Authorized Network
Traffic,” International Journal of Communications, Net-
work and System Sciences, Vol. 5, N
524.

Copyright © 2012 SciRes. IJCNS

http://dx.doi.org/10.1016/S0890-5401(03)00118-4
http://dx.doi.org/10.1016/S0890-5401(03)00118-4
http://dx.doi.org/10.1016/S0890-5401(03)00118-4
http://dx.doi.org/10.1016/S0890-5401(03)00118-4
http://dx.doi.org/10.1016/S0890-5401(03)00118-4

