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ABSTRACT 

In the present paper we introduce new heuristic methods for the state minimization of nondeterministic finite automata. 
These methods are based on the classical Kameda-Weiner algorithm joined with local search heuristics, such as sto- 
chastic hill climbing and simulated annealing. The description of the proposed methods is given and the results of the 
numerical experiments are provided. 
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 1. Introduction 

Finite automata (FA) are widely used in various fields 
and especially in the theory of formal languages. We 
suppose that the reader is familiar with the basics of 
automata theory (see, for example, [1]) and provide only 
some necessary definitions. 

Let  be an alphabet and n  where 

i  be a word. A set of words *  is called 
a language

 1 2w a a a 
:i a   L  

. 

 , , , ,
The nondeterministic finite automaton (NFA) is a 

5-tuple A Q I F   Q
Q Q

, where  is a finite set of 
states,  is a finite alphabet,     is a transi-
tion relation, I Q  and F Q  are respectively the 
sets of initial and final states. Transitions of the automa-
ton A  are often described by the transition function 

. The NFA is called deterministic (DFA) 
iff 

: Q  2Q

1I   and  , :a    , 1q a q Q  (or  
 , 1q a  ). 
Finite automata may be used to recognize and define 

languages. Two automata are called equivalent if they 
recognize one and the same language. For each NFA the 
equivalent DFA may be constructed using the powerset 
construction process (each state of such DFA is a subset 
of states of the original NFA). 

For a word  the reverse word is  1 2 nw a a a 

1n nw a a a  1 , for a language L the reverse language is 

 L w w L   , , , , and for an automaton A Q I F    

the reverse automaton is  , , , ,A Q  F I  where  

, ,q a qi j  iff  , ,q a q  j i

For a given language L a DFA which recognizes it and 
has the minimum possible number of states is called the 
canonical automaton and a DFA which recognizes 

. 

L  
and has the minimum possible number of states is called 
the reverse canonical automaton (these automata are 
unique for L up to isomorphism). 

The NFA state minimization problem is formulated as 
follows: for a given NFA A find an automaton which is 
equivalent to it and has the minimum possible number of 
states. Note that solution of this problem may not be 
unique. As it is shown in [2] the state minimization 
problem for NFA is PSPACE-complete. The worst case 
complexity for the same problem for DFA is  

 logO Q Q   . 

All known exact NFA state minimization methods use 
different types of exhaustive search and are computa-
tionally hard. Very often they become impractical even 
for relatively small automata. This is one of the reasons 
why they are not implemented in software tools that deal 
with finite automata and related structures, such as 
AMoRE [3], FSM [4], Vaucanson [5], JFlap [6]. More-
over, only few of such tools provide heuristic NFA state 
minimization algorithms. 

In the present paper we propose new heuristic methods 
for NFA state minimization problem which are based on 
the classical Kameda-Weiner algorithm [7] and well- 
known local search heuristics (metaheuristics). The nov-
elty of these methods is that the most time consuming 
part of the exact algorithm is replaced with fast heuristic 
procedures. The obtained methods are not exact but they 
allow to reduce minimization time. 

*The work is supported by the Ministry of Education and Science of 
the Russian Federation (grant number 1.919.2011). 
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The remainder of the paper has the following structure. 
In Sections 2 and 3 a brief description of the Ka-
meda-Weiner algorithm and local search heuristics is 
given, in Section 4 the proposed algorithm is described 
and in Section 5 the results of some numerical experi-
ments are provided. 

2. Kameda-Weiner Algorithm 

Lets us consider the brief description of the Kameda- 
Weiner algorithm (for detailed description see [7]). 

Suppose that NFA A is given. The algorithm searches 
for the minimum state NFA(s) equivalent to A using bi-
nary matrix RAM (Reduced Automaton Matrix) which is 
constructed as follows. 

First, canonical automaton B and reverse canonical 
automaton C for A are constructed. Note that each state 
of these automata is a subset of states of the automaton A. 
Then, for each nonempty states i  of  
and 

p  1, ,B i m 
jq  of  the element  of the RAM 

is defined by the following formula  
 ,  ijr1,C j n

,

.
i j

i j

p q

p q

0,

1,ijr
     

 

Let X be a subset of rows and Y a subset of columns of 
the RAM. Then X Y

 1,3 2,3
2,  1, 2,3 2

a b

 is called a (prime) grid if it sat-
isfies the following conditions: 1) all intersections of its 
rows and columns contain 1 s; and 2) neither X nor Y can 
be enlarged without violating the fist condition. 

The set of grids cover RAM if each 1 in it belongs to 
at least one grid in the set. A minimum cover of RAM is 
a cover which consists of the minimum number of grids. 

Let us consider the NFA A with transition table shown 
in Table 1 (the example is taken from [7]).  

Tables 2 and 3 show the canonical automaton B and 
the reverse canonical automaton C of A respectively. 
RAM of A is presented in Table 4. 

There are 4 grids in RAM: 1)   , 2) 
, 3)   , 4)   . It is 

easy to see that the first two grids make the minimum 
cover of RAM. 

   3 1, 2  3 1,2,3

Given a cover of RAM one can construct an NFA 
which may be equivalent to the original NFA A (in this 
case the cover is called legitimate). This is done by the 
means of the special intersection rule. The number of 
states in the constructed NFA equals to the number of 
grids in the cover. In the considered example the 
minimum cover of RAM is legitimate and yields the 
minimum state NFA shown in Table 5. 

The general schema of the Kameda-Weiner minimiza-
tion technique is described by Algorithm 1. Note that 
steps 1, 3 and 4 of this algorithm theoretically have ex-
ponential complexity. On practice the construction of the 
canonical automata usually performed rather quick and 
the most time consuming parts of the algorithm are steps  

Table 1. NFA A. 

    

     1 1,3  2  

     2 1  2,3  

     3 1  3  

 
Table 2. Canonical automaton B. 

  a b  

  
1 2,3b  2b 1b   

  
2 1b  3b 1b   

   
3 1,3b  3b 1b   

 
Table 3. Reverse canonical automaton C. 

  a b  

  
1 1c  2c 4c   

  
2 1,2,3c  2c 2c



   

  3 2,3c  1c 2c

4c

   

  4c 4c   

 
Table 4. RAM of A. 

 1     1,2,3  2,3   

 2,3  0 1 1 

 1  1 1 0 

 1,3  1 1 1 

 
Table 5. Minimum state NFA equivalent to A. 

  a b  

   
1

 p  1 2,p p  2p  

    
2p  1p  2p  

 
Algorithm 1. Kameda-Weiner algorithm. 

Require: NFA A 

1: Construct canonical automata B and C 

2: Construct RAM 

3: Find all grids of RAM 

4:
Find minimum legitimate cover(s) of RAM and construct 
minimum state NFA(s) using intersection rule 

Ensure: Minimum state NFA(s) equivalent to A 
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3 and 4 which perform the exhaustive search for grids 
and covers respectively. 

3. Local Search Heuristics 

Local Search (LS) is a group of metaheuristic optimiza-
tion techniques which are widely used especially in com-
binatorial optimization. Its general schema is described 
by Algorithm 2.  

Each LS algorithm starts from some initial solution 
(line 1) and then iteratively updates it (lines 2 - 4) until 
stop condition is satisfied (in the most simple case it is 
the maximum number of steps). The Neighbor() function 
finds neighbors of the current solution Solution and the 
Update() function changes the current solution depending 
on the found neighbors. The quality of the solutions is 
compared using the special Cost() function. 

The simplest LS algorithm is called Hill Climbing 
(HC). In HC the Update() function always selects the 
best neighbor of the current solution (the steepest move). 
The Stochastic Hill Climbing (SHC) is a variant of HC 
which randomly chooses one of the neighbors and decides 
whether to move to it or to consider another neighbor. 

The disadvantage of the HC algorithms is that they can 
easily stuck in the local optimum. The Simulated An-
nealing (SA) is a more complicated LS algorithm which 
tries to avoid this problem. Algorithm 3 shows in detail 
the minimization process using SA. 

The distinctive feature of the algorithm is the usage of 
the control parameter T (temperature) which slowly de-
creases as the number of iterations k increases. The 
Neighbor() function generates a neighbor of the current 
solution and the Update() function accepts it with the 
probability  

1,
P



if 0;

e , if 0,T



  
  

 ost Solution


              (1) 

where .  Cost NewSolution C  
As it follows from (1) the algorithm always accepts the 

generated neighbor if it is not worse than the current so-
lution. If the neighbor is worse than the current solution 
it is accepted with some probability which decreases as 
the temperature decreases. So, the worse moves are made 
more often in the beginning of the optimization process. 
In classical SA the best solution is not stored (lines 2, 3, 
8 - 12 are missing) and the algorithm returns the current 
solution. 

More details on heuristic optimization algorithms can 
be found in [8,9]. 

4. Combinig Kameda-Weiner Algorithm 
with Local Search Heuristics 

First of all let us consider in more detail the last step of  

Algorithm 2. Local search. 

Require: InitialSolution 

1: Solution := InitialSolution 

2: repeat 

3:  Solution := Update(Neighbor(Solution)) 

4: until StopCondition() 

Ensure: Solution 

 
Algorithm 3. Simulated annealing. 

Require: InitialSolution 

1: Solution := InitialSolution 

2: BestSolution := Solution 

3: BestCost := Cost(Solution) 

4: T := InitialTemperatue() 

5: k := 0 

6: while not StopCondition() do 

7:  NewSolution := Neighbor(Solution) 

8:  NewCost := Cost(NewSolution) 

9:  if NewCost < BestCost then 

10:   BestSolution := NewSolution 

11:   BestCost := NewCost 

12:  end if 

13:  Solution := Update(Solution, NewSolution, T) 

14:  k := k + 1 

15:  T := UpdateTemperature(T, k) 

16: end while 

Ensure: BestSolution 

 
the Kameda-Weiner algorithm, i.e. the exhaustive search 
for minimum legitimate covers (see Algorithm 4). Here 
M is a set of minimum state NFAs. IsLegitimateCover() 
function tests whether the set of grids is a legitimate 
cover and IntersectionRule() constructs NFA using the 
cover. The bounds  and  of the main loop may  min

be calculated as follows: 
i maxi

min 2log Bi N     where BN  is  

the number of states in canonical automaton B,  
 min , 1, 1i N N Nmax G A B  

N
 where GN  is the number 

of grids in RAM, A  is the number of states in A and 

B  is the number of states in B. N
For each step of the outer loop in the inner loop (lines 

5 - 10) all possible i-combinations of grids have to be 
analyzed. The idea of the heuristic methods proposed in 
this paper is to replace this computationally hard process  
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Algorithm 4. Exhaustive search for minimum legitimate 
covers. 

1: Calculate  and  mini maxi

2: :M 

mini maxi

:M M 

 

3: for i from  to  do 

4:  found := false 

5:  for all i -combinations of grids Comb do 

6:   if IsLegitimateCover(Comb) then 

7:    {IntersectionRule(Comb)} 

8:    found := true 

9:   end if 

10:  end for 

11:  if found = true then 

12:   break 

13:  end if 

14: end for 

 
by non-exhaustive LS procedures (of course, this may 
result in obtaining approximate solutions, i.e. reduced 
NFAs). This approach is described by Algorithm 5. 

So, we use LS in the Kameda-Weiner algorithm to 
find minimum covers of RAM and then analyze their size 
and legitimacy. Now let us consider the details of this 
process. The solution of both LS methods (SHC and SA) 
for the considered problem is a cover which is coded by a 
binary vector where 1 in i-th position means that i-th grid 
is included in a cover and 0 means that it is not included. 
In the considered example vector  means that 
only first two grids are included in the cover. 

 1,1,0,0

 1,0,0,0

mini max

To start search LS algorithms need the initial solution. 
The simplest way to setup the initial solution is to use the 
trivial solution with all bits set to 1. To obtain nontrivial 
initial solution Algorithm 6 may be used. 

The Cost() function simply counts the number of 1s in 
the vector and the Neighbor() function inverts several 
bits in it. After creating a neighbor of the current solution 
we need to check its feasibility (i.e. to check whether the 
obtained set of grids covers all 1s in RAM). If the con-
structed neighbor is not a feasible solution then we add 
one or several 1s to it using algorithm similar to Algo-
rithm 6. (e.g., in the considered example the solution 

 is not feasible and it needs to be corrected). 
To ensure the diversity of minimum covers one may 

run LS several times or use parallel versions of LS where 
each thread starts from its own initial solution. Note also 
that if the minimum legitimate covers not found then 
both exact end heuristic methods return the canonical 
automaton B if it has less number of states than the given  

Algorithm 5. Heuristic search for minimum legitimate cov-
ers. 

1: Calculate  and i  

2: Find minimum cover(s) of RAM using LS 

3: if cover(s) of size less or equal to  found then maxi

4:  
Select minimum legitimate cover(s) and construct 
minimum state NFA(s) using intersection rule 

5: end if 

 
Algorithm 6. Construction of initial solution for LS algo-
rithms.  

1: repeat 

2:  Take next 1 in the RAM 

3:  Randomly choose a grid that covers this 1 

4:  Set to 1 the corresponding bit of the InitialSolution 

5:  
Eliminate all 1s that are covered by the chosen grid 
from the RAM 

6: until there are 1s in the RAM 

 
automaton A. 

5. Numerical Experiments 

We have implemented the proposed NFA minimization 
methods in the ReFaM project. ReFaM (Rational Ex-
pressions and Finite Automata Minimization) is a part of 
the HeO (Heuristic Optimization) library. This library is 
a cross-platform open source project written in C++ that 
provides several parallel metaheuristic optimization 
methods such as Genetic Algorithm (GA), Simulated 
Annealing (SA), Stochastic Hill Climbing (SHC) and 
Branch and Bound (BnB). These methods are imple-
mented as algorithmic skeletons using metaprogramming, 
pattern design and different parallelization techniques 
(OpenMP and MPI). The latest version of the library may 
be obtained via SVN (the homepage of the project: 
http://code.google.com/p/heo/). 

In the exact version of the Kameda-Weiner algorithm 
the search for grids of the RAM and the search for 
minimum legitimate covers were parallelized using 
OpenMP and MPI techniques. In the heuristic versions of 
this algorithm the parallel versions of SHC and SA algo-
rithms of the HeO library were used. Each version of the 
algorithm is implemented in a separate solver. 

Let us compare the performance of the exact and heu-
ristic solvers for the random sample of the 100 pairwise 
inequivalent trim NFAs generated with the following 
parameters: number of states 6Q  , number of initial 
states 1I  , number of final states 2F  , alphabet  
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size 2  , transition density 2
0.3

T

Q
 



N

D , where  

T is the number of automaton transitions. The computa-
tional experiments were conducted using the following 
SMP system: Intel Core 2 Quad Q6600 2.4 Ghz, 4 Gb 
RAM, MS Windows XP Professionsl SP 3. 

First of all let us consider the results of the exact 
solver which are presented in Table 6. Here, m and n are 
the number of rows and number of columns in RAM 
respectively; d is the density of ones in RAM; G  is 
the number of grids in RAM; MN  is the number of the 
minimum state NFAs; MQ  is the number of states in 
the minimum state NFAs; min and max are minimal and 
maximal values;   is the mean value;   is the stan-
dard deviation. The results were obtained using 4 threads. 
The average minimization time is 1.1 seconds and the 
total number of the minimum state automata found for 
the whole sample is 268, 9 automata have no equivalent 
minimum state NFA. As it can be seen from the table 
some of the automata in the sample have multiple mini-
mum state NFAs (the mean value is 2.95) and the aver-
age number of states in the minimum state NFAs is 3.52. 

Now let us consider the results of the heuristic solvers 
obtained with different number of threads N = 1, 2, 4, 8, 
16, 32, 64 which are presented in Tables 7 and 8. Since 
LS is used only at the last stage of the Kameda-Weiner 
algorithm the first 4 columns of Table 6 will be the same 
for heuristic solvers and we replace them with the fol-
lowing columns: T —the total number of minimum 
(reduced) state NFAs found for the sample, U— num-
ber of unminimized automata, T—average minimization 
time in seconds (for columns 

N
N

MN  and MQ

GN

 the mean 
values are provided). 

As it can be seen from these tables the total number of 
the minimum state NFAs increases and the number of 
unminimized automata decreases as the number of 
threads grows. The average minimization time is very 
small and remains almost constant up to 4 threads and 
then increases proportionally to the number of threads 
because the hardware used for experiments supports si-
multaneous execution only of 4 threads. 

6. Conclusion 

In the present paper we have considered new heuristic 
algorithms for NFA state minimization problem which is 
known to be computationally hard. These algorithms are 
a combination of the classical Kameda-Weiner algorithm 
and local search heuristics which are widely used in 
combinatorial optimization. The essential feature of the 
proposed algorithm is that the most time consuming part 
of the exact algorithm is replaced with fast local search 
procedures. Numerical experiments have shown that such 
combination is much less time consuming and allows to  

Table 6. Exact algorithm results. 

 m n d  MN  MQ

min 1 1 0.63 1 0 1 

max 16 14 1.00 92 32 5 

  5.70 6.00 0.73 15.40 2.95 3.52 

  2.83 2.85 0.05 17.74 5.21 0.95 

 
Table 7. SA algorithm results. 

TN UN  N MN  MQ  T 

1 69 31 1.00 3.48 0.0071 

2 76 28 1.06 3.43 0.0071 

4 98 25 1.31 3.47 0.0078 

8 114 20 1.43 3.49 0.0148 

16 122 20 1.53 3.41 0.0258 

32 137 19 1.69 3.41 0.0491 

64 157 16 1.87 3.45 0.0917 

 
Table 8. SHC algorithm results. 

TN UN  N MN  MQ  T 

1 69 31 1.00 3.52 0.0057 

2 75 28 1.04 3.42 0.0056 

4 95 26 1.28 3.46 0.0059 

8 112 21 1.42 3.52 0.0111 

16 128 24 1.68 3.42 0.0192 

32 148 16 1.76 3.46 0.0364 

64 161 16 1.92 3.45 0.0674 

 
obtain acceptable results. In the future we plan to con-
centrate on the other time consuming part of the Ka-
meda-Weiner algorithm, i.e. the exhaustive search for 
grids of the RAM.  
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