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Abstract 

Ant colony optimization (ACO) has been proved to be one of the best performing algorithms for NP-hard 
problems as TSP. The volatility rate of pheromone trail is one of the main parameters in ACO algorithms. It 
is usually set experimentally in the literatures for the application of ACO. The present paper first proposes an 
adaptive strategy for the volatility rate of pheromone trail according to the quality of the solutions found by 
artificial ants. Second, the strategy is combined with the setting of other parameters to form a new ACO 
method. Then, the proposed algorithm can be proved to converge to the global optimal solution. Finally, the 
experimental results of computing traveling salesman problems and film-copy deliverer problems also indi-
cate that the proposed ACO approach is more effective than other ant methods and non-ant methods. 

Keywords: Ant Colony Optimization (ACO), Adaptive Volatility Rate, Pheromone Trail  

1. Introduction 
 
ACO was first proposed by M. Dorigo and his colleagues 
as a multi-agent approach to deal with difficult combi-
natorial optimization problems such as TSP [1]. Since 
then, a number of applications to the NP-hard problems 
have shown the effectiveness of ACO [1]. Up till now, 
Ant Colony System (ACS) [2] and MAX-MIN Ant Sys-
tem (MMAS) [3] are so successful and classical that their 
strategies such as pheromone global-local update and 
Maximum-Minimum of pheromone are widely used in 
recent research [1]. 

The main parameters of ACO may conclude: , k  , 

  and  , where  is the number of artificial ants 

used for solution construction, 

k

  is the parameter for 

volatility of pheromone trail and ,   determines the 

relative importance of pheromone value and heuristic 
information [2,4,5]. All of the parameters are usually set 
with experimental methods in the application of ACO 
[5–7]. For the adaptive parameter setting, M. Dorigo and 
L.M. Gambardella presented a formula for the optimal 
number of ants  based on the value of k   and  in 0q

ant colony system. I. Watanabe and S. Matsui proposed 
an adaptive control mechanism of the parameter candi-
date sets based on the pheromone concentrations [8]. M. 
L., Pilat, and T. White put forward the ACSGA-TSP 
algorithm [9] with an adaptive evolutionary parame-
ters  ,  ,  and gave the experimental values of 

these parameters for some TSP problems. For the pa-
rameters 

0q

  and  , which regulate the relative impor-

tance of pheromone trail and closeness [10], H. Huang 
proposed a dynamic strategy for a bi-directional search-
ing ant colony system [11]. However, other parameters 
should be set experimentally. 

This paper presents a trial work of setting the parame-
ters of ACO adaptively. First, a tuning rule for   is 
designed based on the quality of the solution constructed 
by artificial ants. Then, we introduce the adaptive   to 

form a new ACO algorithm, which is tested to compute 
several benchmark instances of traveling sales-man 
problem and film-copy deliverer problem. Finally, the 
experimental result indicates that the new ACS with 
adaptive   performs better than GA [12], ACO [13] 

and ACS [2,14]. Furthermore, the convergence of the 
proposed ACO algorithm is proved. 
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2. Adaptive Volatility Rate of Pheromone 
Trail 

 
The framework of ACO [1–2] is inspired by the ants’ 
foraging behavior in selecting the shortest path between 
the nest and the food. Each ant builds a tour (i.e. a feasi-
ble solution to the TSP) by repeatedly applying a sto-
chastic greedy rule (the state transition rule) as Equation 
(1) shows. 
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where m
gsP  is the probability with which the ant  

chooses to move from city 

m

g  to city  in iteration , s t

  is the pheromone, 1/ d   is the reciprocal of dis-

tance gsd , and (m )J g  is the set of cities not having 

been visited yet when ant  is at city m g . 

After constructing its tour, an artificial ant also modi-
fies the amount of pheromone on the visited edges by 
applying the pheromone updating rule. The rule is de-
signed so that it tends to give more pheromone to the 
edges which should be visited by ants. The classical 
pheromone updating rule is: 

( 1) (1 ) ( ) ( )gs gs gst t t               (2) 

where ( )gs t
( , )

 is the increment for the pheromone of 

edge g s  at the -th iteration, and t   is the volatil-

ity rate of the pheromone trail. The optimal   was set 

0.1   experimentally [1,2,4], which means that 90 per 

cent of the original pheromone trail remains and its 10 
per cent is replaced by the increment.  

In order to update the pheromone according to the 
quality of solutions found by ants, an adaptive rule for 
volatility of the pheromone trail is designed as follows: 

1 1 1/ ( )m m m PL L L                 (3) 

where  is the length of the solution  found by ant 

, and 
mL mS

m PL  is the length of the solution PS  built based 

on the pheromone matrix, shown as Equation (4). 

( )
arg max {[ ( , )}

mu J r
s r u


           (4) 

where s  is the city selected as the next one to city  
for any 

r
( , ) Pr s S . 

The motivation of the proposed rule is: better solutions 
should contribute more pheromone, and the worse ones 
contribute less. We will use this rule to design a new 
ACO algorithm in the following section. 

3. An ACO Algorithm with the Adaptive 
Parameter 

 
In this section, a new ACO algorithm with the adaptive 
rule (shown as Equation 3) is introduced as follows: 

Algorithm new ACO 
   input: An instance of TSP or FDP problems 
   Initialize solutions and pheromone value.  
   bestS NULL . 

   while termination conditions not met do 
      Construct PS   

      for 1i  to  do  { k  is the number of ar-
tificial ants} 

k

         ( )iS ConstructSolution t .    

         i  is calculated based on . iS

         if ( ) or 

(

( ) ( )iLength S Length S best

LbestS NUL )  then  

             best iS S  

         Endif 
      Endfor 
      best  is calculated based on . bestS

      Carry out the pheromone updating rule with 

i  ( 1,...,i k ) and best . 

Endwhile 
    Output: . bestS

End_Algorithm 

The framework of the proposed algorithm is similar to 
ant colony system (ACS) [2], so are the initialization, 
solution construction and setting of the parameters 

0 0.9q  , 10k  , 1   and 2  . There is only an up-

dating rule in the algorithm shown as Equation 5 and 6. 
1( 1) (1 ) ( )gs i gst t       i iL           (5) 

where ( , ) ig s S   and  for the 

-th iteration. 

1 1 1/ ( )i i i PL L L    
t

1( 1) (1 ) ( )gs best gs best bestt t        L       (6) 

where ( , ) bestg s S   and  for 

the -th iteration. 

1 1/ ( )best best best PL L L     1

t

 
4. Convergence of the Proposed Algorithm 
 
In this section, we give the convergence proof of the new 
ACO algorithm. 

Given an arbitrary path ( , )g s , 
'

' 1
1 1 1

1
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(7) 
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Therefore, ( )gs t  has an upper boundary and a lower 

boundary, we assume 0 ( )low gs highP t P    
where , , 0 't t  1 1 1

1 min min max/ ( )L L L     maxU   

,  is the length of the worst tour 

and  is the length of optimal tours. 

1
min), ( ) }L 
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out a loss of generality. 
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When  is the optimal solution to a n -city TSP 

and 
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) *( ,a b S  as an arbitrary path, the probability 

, with which  is found by artificial ant in 

iteration , can meet: 
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and the results are shown in Table 1. It should be noted 
that every instance is computed 20 times. The algorithms 
are both programmed in Visual C++6.0 for Windows 
System. They would not stop until a better solution could 
be found in 500 iterations, which is considered as a vir-
tual convergence of the algorithms. 

where  [2], 0 0{p P q q 
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which  can be found by ants in iteration , is 

, where  is the number 

of cities. The probability, by which  can never be 
found from iteration , is: 
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Table 1 shows that the proposed ACO algorithm 
(PACO) performs better than ACS [2] and ACO [13]. 
The shortest lengths and the average lengths obtained by 
PACO are shorter than those found by ACS and ACO in 
all of the TSP instances. Furthermore, it can be con-
cluded that the standard deviations of the tour lengths 
obtained by PACO are smaller than those of another al-
gorithms. Therefore, we can conclude that PACO is 
proved to be more effective and steady than ACS [2] and 
ACO [13]. Computation time cost of PACO is not less 
than ACS and ACO in all of the instances because it 
needs to compute the value of volatility rate 1k   times 
per iteration. Although all optimal tours of TSP problems 
cannot be found by the tested algorithms, all of the errors 
for PACO are much less than that for another two ACO 
approaches. The algorithms may make improvement in 
solving TSP when reinforcing heuristic strategies like 
local search like ACS-3opt [2] and MMAS+rs [3] are 
used. 
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where  is the number of artificial ants and  can be 

arbitrary. 

k 0t

Hence,  can be found by probability one when the 
iteration , which theoretically confirms the capac-
ity of global optimization of the proposed ACO algorithm. 

*S
t 

 
5. Numerical Results FDP problem is an extended style of TSP problem. 

Two FDP instances in the literature [14] are computed by 
GA-FDP [12], ACS-FDP [14] and the proposed ACO- 
FDP on a PC with an Intel Pentium 400MBHz Processor 
and 128 MB EMS memory, and the results are shown in 
Table 2. It should be noted that every instance is com-
puted 20 times. The algorithms are both programmed in 
Visual C++6.0 for Windows System. They would not 
stop until a better solution could be found in 500 itera-
tions, which is considered as a virtual convergence of the 
algorithms. 

 
This section indicates the numerical results in the ex-
periment that the proposed ACO algorithm is used to 
solve TSP problems [15] and FDP problems [14]. Other 
approaches for the problems ACS [2], ACO [13], GA- 
FDP [12] and ACS-FDP [14] are also tested in the same 
machines as the comparison with the proposed ACO.  

Several TSP instances are computed by ACS [2], ACO 
[13] and the proposed ACO on a PC with an Intel Pen-
tium 550MBHz Processor and 256MB SDR Memory,           



Z. Q. CAI  ET  AL. 795
   

Table 1. Comparison of the results obtained by ACS [2], ACO [3] and the proposed ACO (PACO) in TSP instances. 

Problem Algorithm best ave time(s) standard deviation 

ACS 21958 22088.8 65 1142.77 

ACO 21863 22082.5 94.6 1265.30 kroA100 

PACO 21682 22076.2 117.2 549.85 

ACS 130577 133195 430.6 7038.30 

ACO 130568 132984 439.3 7652.80 ts225 

PACO 130507 131560 419.4 1434.98 

ACS 84534 86913.8 378.4 4065.25 

ACO 83659 87215.6 523.8 5206.70 pr226 

PACO 81967 83462.2 762.2 3103.41 

ACS 14883 15125.4 88.8 475.37 

ACO 14795 15038.4 106.6 526.43 lin105 

PACO 14736 14888 112.2 211.34 

ACS 23014 23353.8 56.2 685.79 

ACO 22691 23468.1 102.9 702.46 kroB100 

PACO 22289 22728 169.6 668.26 

ACS 21594 21942.6 54.8 509.77 

ACO 21236 21909.8 78.1 814.53 kroC100 

PACO 20775 21598.4 114.8 414.62 

ACS 48554 49224.4 849.2 1785.21 

ACO 48282 49196.7 902.7 2459.16 lin318 

PACO 47885 49172.8 866.8 1108.34 

 
Table 2. Comparison of the results obtained by GA-FDP [12], ACS-FDP [14] and the proposed ACO-FDP in FDP instances [14]. 

Problem Algorithm best ave time(s) 

GA-FDP 4240.67 4261.4 153 

ACS-FDP 4122.33 4138.5 78 Problem I 

ACO-FDP 4122.33 4126.2 80 

GA-FDP 4208 4250.6 184 

ACS-FDP 4163 4289.2 130 Problem II 

ACO-FDP 4163 4165.8 135 

 
The results in Table 2 indicate that PACO-FDP per-

forms better than GA-FDP [12] and ACS-FDP [14] in 
the item of average length though it cannot find better 
solution than ACS-FDP [14]. PACO-FDP can be also 
considered as the improvement of ACS-FDP because the 
special strategies [14] are also used in PACO-FDP. 
 
6. Discussions and Conclusions 
 
This paper proposed an adaptive rule for volatility rate of 
pheromone trail, attempting to adjust the pheromone 
based on the solutions obtained by artificial ants. Thus, a 
new ACO algorithm is designed with this tuning rule. 
There is a special pheromone updating rule in the pro-
posed algorithm whose framework is similar to Ant 
Colony System. Then, the convergence of the proposed 
ACO algorithm is proved to ensure its capacity of global 
capacity. Moreover, there are some experimental com-

parisons among the proposed ACO approach and other 
methods [2,12–14] in solving TSP and FDP problems. 
The results also show the effectiveness of the proposed 
algorithm. 

Further study is suggested to explore the better man-
agement for the optimal setting of the parameters of 
ACO algorithms, which will be very helpful in the ap-
plication. 
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