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Abstract 
 
This paper proposes a new model of facility location problem referred to as k-product uncapacitated facility 
location problem with multi-type clients. The k-product uncapacitated facility location problem with multi- 
type clients consists of two set of sites, one is the set of demand points where clients are located and the 
other is the set of sites where facilities of unlimited capacities can be set up to serve the clients. Each facility 
can provide only one kind of products. Each client needs to be served by a set of facilities depending on 
which products it needs. Each facility can be set up only for one of the k products with a non-negative fixed 
cost determined by the product it is designated to provide. There is also a nonnegative cost of shipping goods 
between each pair of locations. The problem is to determine the set of facilities to be set up and to find an 
assignment of each client to a set of facilities so that the sum of the setup costs and the shipping costs is 
minimized. Under the assumption that the setting costs is zero and the shipping costs are in facilities centered 
metric space, it is shown that the problem with two kinds of clients is NP-complete. Furthermore a heuristic 
algorithm with worst case performance ratio not more than 2-1/k is presented for any integer k. 
 
Keywords: Heuristic Algorithm, Complexity, Facility Location 

1. Introduction 
 
In the last few years, a number of constant factor ap-
proximation algorithms have been proposed for facility 
location problem when the service cost is assumed to be 
in the metric space by Ageev [1], Chudak and Shmoys 
[2], Guha & Khuller [3], Mahdian et al. [4], Shmoys et al. 
[5] and Zhang  [6]. That is, the service cost is assumed 
to be symmetric and satisfy the triangle inequality. The 
first heuristic algorithm with a performance guarantee of 
3.157 was given by Shmoys et al. [5], which is based on 
a linear program rounding algorithm extended from the 
filter technique of Lin & Vitter [7]. 

In the classical simple uncapacitated facility location 
problem, each client only needs one kind of product. 
Recently k-product uncapacitated facility location prob-
lem which is proposed by Huang and Li [8] can be de-
scribed as follow: there is a set of demand points where 
clients are located and a set of potential sites where fa-
cilities of unlimited capacities can be set up. There are k 
different kinds of products. Each client needs to be sup-
plied with k kinds of products by a set of k different fa-
cilities and each facility can be set up to supply only a 

distinct product with a non-negative fixed cost deter-
mined by the product it intends to supply. 

But in practice, it is not the case that all of the clients’ 
demands are the same. For example, let k = 2, some cli-
ents may only need product p1, some clients may only 
need product p2 and some other clients need both product 
p1 and p2. More concisely, let D be the set of clients and 
F be the set of potential facilities. There are k kinds of 
products,  1 2, , , kP p p p  . For each , there is 
a set 

j D
jP  of products demanded by client j. Certainly 

jP  is a subset of P which contains k products. Each fa-
cility i F  may be set up to provide at most one of the 
products. The cost of setting up a facility i to supply 
product pl is l

if , i F , . The cost of shipping 
between any two points  is equal to ijc . 
Each client 

1
,i j

j D

l k 
F D

  must be supplied with all of the 
products in jP  by a set of jP  facilities. In other 
words, split source is not allowed for a given product. 
 
2. The Formulation of the Problem 
 
Let l

ijx  be equal to 1 if facility i supplies client j with 
product , and 0 otherwise for any , lp i F j D  



 
72 L. S. WANG  ET  AL. 

and jl P . Let l
iy  be 1 if facility i is set up to supply 

product pl, and 0 otherwise. Then the problem described 
above can be formulated as the following integer pro-
gram: 
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 ,1 , , ,l l
ij i jx y i F j D l    P       (5) 

In the above formulation, constraints (2) ensure that 
each client is supplied by precisely one facility for a 
product it demands. Constraints (3) ensure that facility i 
is set up to supply product l if client j receives product l 
from this facility. Constraints (4) ensure that each facility 
is set up to supply at most one kind of the k products. 

Now we consider a special case of integer program 
(P1) in which 1

k

;

.

jP   for any , i.e., each client 
need only one products. But different clients may need 
different products. Under such an assumption, we can get 
a partition of client set 1 2  such that 
all of the clients in Dl only need product pl, . 
This special case can be formulated as the following in-
teger program: 
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Theorem 1. To solve any instance of (P1) is equiva-
lent to solve an instance of (P2). 

Proof. For any instance of (P1), let . If j D jP 1 , 
then we use jP  copies of client j to replace client j 
such that each copy need only one different product of Pj, 
respectively. Then the instance of (P1) is equivalently 
transformed into an instance of (P2). 

Because of Theorem 1, we only consider (P2) in the 
following of this paper and refer to (P2) as k-product 
uncapacitated facility location problem with multi-type 
clients. When all of the setting up costs are zero, then all 
facilities can be set up. We use P-k-N to denote k-product 
uncapacitated facility location problem with multi-type 

clients when the setting up costs are zero: 
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Throughout this paper, we make the following as-
sumptions on costs unless specially mentioned: 

 

(1) 0, , 1, 2, , ;

(2) 0, , ;

(3) , , ,

(4) , , , ,

(5) min , , , ,

l
i

ij

ij ji

ij ih hj
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f i F l k

c i j F D
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c c c i j h F D

c c c i j F h

   

  

  

   

   






 

Conditions (2)-(4) mean that the ship costs are in met-
ric space and condition (5) means that we only consider 
the problem with centered facilities. In the following of 
this paper we say the ship costs are in facilities centered 
metric space if they satisfy conditions (2)-(5) mentioned 
above. 
 
3. The Complexity of the P-2-N 
 
Theorem 2. The P-2-N is NP-complete even under the 
assumption that the ship costs are in facilities centered 
metric space. 

Proof. We will establish the proof by reducing the 
max-cut problem, which is an NP-complete problem in 
Garey and Johnson [9], to the P-2-N. Consider the 
max-cut problem defined on an undirected graph G = (V, 
E) with node set V and arc set E. Suppose 

 1 2, , , .nv v vV   and  1 2, , .me e eE   Let 1 2S S V  
be a partition of V. The set of the total edges between S1 
and S2 is defined as a cut of graph G. Let CUT (S1,S2) 
denote the set of such edges. The max-cut problem is to 
find a partition of V, 1 2 , such that SV  S

 1 2CUT ,SS  is maximal. By graph G, we construct an 
instance of the P-2-N with the set of facilities F = V and 
the set of clients D = E E , where  1 2E , , , me e e  
is a copy of the edge set E. We define the serving costs 
as follows: 
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     E

1,
 

It is easy to show that the ship costs are in facilities 
centered metric space. Let F = V = 1 2  be a parti-
tion of V. S1 and S2 are set up to supply products p1 and 
p2, respectively. Let C (S1,S2) denote the cost of the 
P-k-N under the ordered partition F = V = . Now 
we consider the servicing cost of each 

S S

e
1S S

Ej

2

  and 
Eje   under this partition of F and let Cj (S1,S2) denote 

the total servicing cost of ej and je . Let  and  be 
the two end points of ej, i.e. ej = ( , ). 

1i
v

2i
v

2i
v

1i
v

Case 1. ej  CUT (S1,S2). 
In this case, the two end points of ej fall into S1 and S2, 

respectively. Without loss of generality, suppose 
1i

 is 
in S1 and 

2i
 is in S2. We assign 

1i
 to supply ej with 

product p1 and 
2i

 to supply 

v
v v

v je  with product p2, re-
spectively. It is easy to see that Cj (S1,S2) = 2. 

Case 2. ej  CUT (S1,S2). 
In this case, both 

1i
and 

2i
 belong to either S1 or S2. 

Without loss of generality, suppose both 
1i

 and 

2i
belong to S1. We set 

1i
 to supply ej with products p1. 

Because 
1

 by our definition, the servicing cost of 
ej for p1 is 1. Furthermore we must select a i

v v
v

v v
1i jc 

v  S2 to 
supply je  with p2. For any vi  S2, 2ijc   because ej 
is not incident to vi. Thus we have Cj (S1, S2) = 3. 

Because there are exactly  1 2CUT S ,Sm   edges 
which are not in CUT (S1,S2), from Case 1 and Case 2 
discussed above, we can conclude that 
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Because m, the number of edges in E, is fixed, C 
(S1,S2) gets its minimal value when  1 2CUT S ,S  
reaches its maximal value, and vice versa. This means an 
optimal solution of the P-2-N provides an answer to the 
max-cut problem. Thus we have proved that the P-2-N is 
NP-complete. 
 
4. Heuristic algorithm for P-k-N 
 
If we remove the conditions that each facility can only 
supply one product, then (P-k-N) becomes the following 
problem (P-k-N)': 
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In the following we refer to the optimal solution of 
(P-k-N)' as the overlap optimal solution of (P-k-N). It is 
obvious that the value of overlap optimal solution is a 
lower bound of the value of the optimal solution for 
(P-k-N). It is easy to get an overlap optimal solution by 
letting each client be supplied by its closest facility. Now 
we give an approximation algorithm for (P-k-N): 

Algorithm A. 
Step 1. Find an overlap optimal solution by letting 

each client be supplied by its closest facility. Set Si: = , 
=1, 2,···, k and F : = F. 

Step 2. Fi  , let 
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We iterate this process until F   . 
Step 3. We use the facilities in Sl to supply products pl 

and for each client 1j D , we select its closest facility 
in Sl as its supplier, l = 1,2, ···, k. 

Theorem 3. For the P-k-N with the assumption that 
the ship costs are in facilities centered metric space, the 
algorithm A has worst case performance ratio not more  

than 
1

2  
k

 . 

Proof. , 1, 2,1j D l k,     let il(j) is the closest 
facility of j in Sl. For each facility Fi , let 

1i il
 be the set of the clients which use facility i 

as its supplier in overlap optimal solution. Now we con-
sider the total costs Ai produced by the clients of Bi in the 
algorithm A. Suppose . Then we have  

k
B  lB

0
Sli

 0 max 1,2, , .l l
i ia a l   k  

Therefore we get 
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where the first inequality follows from the triangle ine-
quality, the second follows from (5) of the assumption on 
ship costs and the last follows from  

 0 max 1,2, , .l l
i ia a l   k  

 
5. Discussion 
 
In this paper we consider the k-product uncapacitated 
facility location problem with multi-type clients and 
suggest an approximation algorithm for P-k-N under the 
assumption that the ship costs are in facilities centered 
metric space. One interesting question that remains open 
is whether there exist approximation algorithms with 
constant worst case performance ratio for the P-k-N 
when we only suppose that the ship costs are in metric 
space. 
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