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ABSTRACT 

Estimation of distribution algorithms are a class of evolutionary optimization algorithms based on probability distribu- 
tion model. In this article, a Pareto-based multi-objective estimation of distribution algorithm with multivariate T- 
copulas is proposed. The algorithm employs Pareto-based approach and multivariate T-copulas to construct probability 
distribution model. To estimate joint distribution of the selected solutions, the correlation matrix of T-copula is firstly 
estimated by estimating Kendall’s tau and using the relationship of Kendall’s tau and correlation matrix. After the cor- 
relation matrix is estimated, the degree of freedom of T-copula is estimated by using the maximum likelihood method. 
Afterwards, the Monte Carte simulation is used to generate new individuals. An archive with maximum capacity is used 
to maintain the non-dominated solutions. The Pareto optimal solutions are selected from the archive on the basis of the 
diversity of the solutions, and the crowding-distance measure is used for the diversity measurement. The archive gets 
updated with the inclusion of the non-dominated solutions from the combined population and current archive, and the 
archive which exceeds the maximum capacity is cut using the diversity consideration. The proposed algorithm is ap- 
plied to some well-known benchmark. The relative experimental results show that the algorithm has better performance 
and is effective. 
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1. Introduction 

Optimization problems are widely encountered in various 
fields of science and technology. When an optimization 
problem involves only one objective function, the task of 
obtaining the optimal solution is called single objective 
optimization. When an optimization problem involves 
more than one objective function, the task of finding one 
or more optimum solutions is called multi-objective op- 
timization. Many real-world optimization problems in- 
volve multiple objectives. The fundamental difference 
between single-objective and multi-objective optimiza- 
tion lies in the cardinality of the optimal set. In problems 
with two or more conflicting objectives, there is no sin- 
gle optimum solution. There exist a number of solutions 
which are optimal. Such solutions are called Pareto-op- 
timal solutions. The solution to a multi-objective optimi- 
zation problem consists of a solution set with multiple 
solutions that may produce tradeoffs between different 
objectives. These solutions are called non-dominated so- 
lutions and the corresponding solution set is called the 
Pareto-front [1]. None of the solutions in the Pareto-front 
is best with respect to all objectives. In addition, no solu- 
tion in the Pareto-front is better than any other solution in  

the front with respect to all objectives. Hence, without 
any additional problem-specific information about the 
priorities of various objectives, all the solutions in the 
Pareto-front are important. The main objective of multi- 
objective optimization is to find many such solutions 
which reflect the tradeoffs between the objectives. Multi- 
objective optimization algorithms, especially those based 
on evolutionary principles, have been widely used to 
solve problems with multiple objectives. In recent years, 
a considerable amount of interest has been shown in mul- 
ti-objective evolutionary algorithm (MOEA) and a num- 
ber of different MOEAs have been suggested, such as 
Strength Pareto Evolutionary Algorithm (SPEA2) [2], 
Non-dominated Sorting Genetic Algorithm (NSGA-II) 
[3], and Fast Pareto Genetic Algorithm (FastPGA) [4]. 

Estimation of distribution algorithms (EDAs) [5] are a 
class of evolutionary algorithms based on probability 
distribution model. They estimate a probability distribu- 
tion from population of solutions, and sample it to gener- 
ate the next population. It has been proven that EDA has 
some special characteristics of good convergence, high 
efficiency, concise concept and been successfully ex- 
tended to multi-objective optimization problems. The 
performance of an EDA highly depends on how well it 
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estimates and samples the probability distribution. A 
wide variety of EDAs using different techniques to esti- 
mate and sample the probability distribution have been 
proposed and are the subject of active research. Many 
EDAs use probabilistic graphical modeling techniques [6, 
7] for this purpose. However, EDA using probabilistic 
graphical modeling techniques generally spend too much 
time on the learning about the probability distribution of 
the promising individuals. Copula [8,9] is a recently de- 
veloped mathematical theory and a power tool for multi- 
variate probability analysis. According to copula theory, 
a joint probability distribution can be decomposed into n 
marginal probability distributions and a copula function. 
So, the joint probability distribution of multivariate can 
be constructed utilizing a copula function and the mar- 
ginal probability distributions of every variable. Copulas 
have be applied to constitute the probabilistic model in 
the conventional EDAs [10,11]. It is simpler and easier to 
model the probability distribution compared with other 
methods in EDAs. 

In this paper, EDA is extended to multi-objective op- 
timization problems by using a Pareto-based approach 
and T-copulas. The extended multi-objective EDA em- 
ploys multivariate T-copulas to construct probability dis- 
tribution model. T-copula parameters are firstly estimated, 
thus, joint distribution is estimated by estimating Kend- 
all’s tau and using the relationship of Kendall’s tau and 
correlation matrix. After the correlation matrix is esti- 
mated, the degree of freedom of T-copula is estimated by 
using the maximum likelihood method. Afterwards, the 
Monte Carte simulation is used to generate new indivi- 
duals. An archive with maximum capacity is used to ma- 
intain the non-dominated solutions. The Pareto optimal 
solutions are selected from the archive on the basis of the 
diversity of the solutions, and the crowding-distance 
measure is used for the diversity measurement. The ar- 
chive gets updated with the inclusion of the non-domi- 
nated solutions from the combined population and cur- 
rent archive, and the archive which exceeds the maxi- 
mum capacity is cut using the diversity consideration. 
The proposed algorithm is applied to some well-known 
benchmark. The relative experimental results show that 
the algorithm has better performance and is effective. 

2. Multi-objective Optimization Problems 

The general multi-objective optimization problem can be 
defined as follows: 

     1 2min ,f fF x x   , , kfx x

1, 2, ,

 

s.t.   0,ig i m  

1,2, ,h i p  

n  X

 

x          (1) 

  0,i x

 , , ,x x xx 

         (2) 

where  is an n-dimensional deci- 

sion variable vector and X is the decision variable space. 
The constrains given by (1) and (2) define the feasible 
region Ω and any point in Ω defines a feasible solution. 

1 2

 ,M  y y F x x
 F x

  is referred to as objective 
space. The k components of the vector  are the 
criteria to be considered. The constrains  g xi  and 
 h x



i  represent the restrictions imposed on the decision 
variables. 

When there are several objective functions, the con- 
cept of optimum changes, because in multi-objective op- 
timization problems the purpose is to find “trade-off so- 
lutions rather than a single solution. The concept of op- 
timum commonly adopted in multi-objective optimiza- 
tion is Pareto optimality. Pareto optimality is defined as: 

A point x  x is Pareto optimal if  and 
 1, 2, , k    either: I ii I f f  x x

i I
i  and, 

there is at least one     such that f f x x
x

x

i i

This definition says that  is Pareto optimal if there 
exists no feasible vector  which would decrease some 
criteria without causing a simultaneous increase in at 
least one other criterion. Other important definitions as- 
sociated with Pareto optimality are Pareto dominance. 

 

 , , ,1 2 nx x xx  is said to dominate  A vector 
 , , ,1 2 ny y yy  , denoted by x y

 1,2, ,i k   i i

, if and only if x is 
partially less than y, i.e.,  x y  and, 
at least for one i, i ix y . 

For a given multi-objective problem , the Pareto 
optimal set 

 F x
P  is defined as: 

    P     x x F x F x

 F x
,P

 

For a given multi-objective problem  and Pareto 
optimal set   the Pareto front  is defined as: PF 

         1 2, , , kPF f f f P   F x x x x x

P

 

The set of all Pareto optimal solutions in the feasible 
region Ω is called Pareto optimal set and the correspond- 
ing set of objective vector is called Pareto optimal front. 
The illustrative example of a multi-objective minimiza- 
tion problem with two objectives, f1 and f2, that are plot- 
ted in the objective space M mapped from the feasible 
region Ω is shown in Figure 1. The bold curve in the 
feasible region Ω indicates the Pareto optimal set  . 
The bold curve in the objective space M indicates the Pa- 
reto front  . PF

3. Multivariate T-Copulas 

Estimation of distribution algorithms differ from tradi- 
tional evolutionary algorithms. Instead of applying ge- 
netic operators like mutation and crossover to the parents, 
estimation of distribution algorithms estimate a probabil- 
ity distribution over the search space based on how the 
parent individuals are distributed in the search space, and 
then sample the offspring individuals from this distribu-  
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Figure 1. The illustrative example. 
 

tion. The major issues in estimation of distribution algo- 
rithms are how to build a probability distribution model 
and how to sample the new individuals according to the 
probability distribution model. 

The theory of copulas is known to provide a useful 
tool for modelling dependence in many applications. Co- 
pulas have attracted significant attention in the recent li- 
terature for modeling probability distribution of multi- 
variate observations. An important feature of copulas is 
that they enable us to specify the univariate marginal dis- 
tributions and their joint behavior separately. Archime- 
dean Copula and Gaussian Copula have be applied to 
constitute the probabilistic model in EDAs [10,11]. 

The copula theory is briefly introduced in the follow- 
ing, the details can be found in [8,9]. 

An n-dimensional copula is a multivariate C.D.F., C, 
with uniformly distributed margins on [0, 1] (U(0,1)) and 
the following properties: 

1) C: [0, 1]n → [0, 1]; 
2) C is grounded and n-increasing; 
3) C has margins Ci which satisfy  

 for all   1, ,1,i uC C 1u ,1, , u   0,1u
1, , n

. 
It is obvious, from the above definition, that if F F

  , ,F x
1, ,i n 

, ,

 
are univariate distribution functions,  

 is a multivariate C.D.F. with 
margins 1 , since , , is a 
uniform random variable. Copula functions are a useful 
tool to construct and simulate multivariate distributions. 

 1 1C F x n n

, , nF F  i i iXU F

The following theorem is known as Sklar’s Theorem. 
It is the most important theorem regarding to copula 
functions since it is used in many practical applications. 

Theorem: Let F be an n-dimensional C.D.F. with con- 
tinuous margins 1 nF F . Then F has the following 
unique copula representation (canonical decomposi- 
tion): 

      1 1, , F x x C F x 1 , ,n n nF x

1, , n

     (3) 

The theorem of Sklar is very important, because it 
provides a way to analyse the dependence structure of 
multivariate distributions without studying marginals dis- 
tributions. From Sklar’s theorem we see that, for con- 
tinuous multivariate distribution functions, the univariate 
margins and the multivariate dependence structure can be 

separated. The dependence structure can be represented 
by an adequate copula function. Moreover, the following 
corollary is attained from (3). 

Corollary: Let F be an n-dimensional C.D.F. with 
continuous margins F F  and copula C (satisfying 
(3)). Then, for any  1, , nu uu   in [0,1]n: 

      1 1
1 1 1, , , ,n n n

 C u u F F u F u 
1

    (4) 

where iF  is the generalized inverse of Fi. 
The T-copula can be thought of as representing the 

dependence structure implicit in a multivariate T-distri- 
bution. For a symmetric and positive definite matrix 

  , 1, 2, , , 1,2, ,r i n j n  R  
T

,i j  with unit diagonal 
entries, let ,vR  denote the standardized multivariate 
Student’s T-distribution with correlation matrix R  and 

 degrees of freedom: 1v 

 
 

 

1
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2
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1

2
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π
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1 d d
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n
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T y y
v

v
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v



 

 


  
 
  
 

   
 

 
R

x R x

 



 (5) 

The multivariate T-copula (MTC) is defined as: 

      1 1
1 2 , 1, , , ; , , ,n v v v nC u u u v T T u T u  RR 

1T

 

where v
  is the inverse of the univariate Student’s t 

cumulative distribution function with v degrees of free- 
dom. 

The corresponding density is 

 

 
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1 2 1 2
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1
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
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

              
             

  
 



R
R

ω R ω



   T 1, , , ;  , 1, ,T u j n       ω

  (6) 

with . 1 2 n j v j

A number of recent papers have shown that the em- 
pirical fit of the T-copula is generally superior to that of 
the so-called Gaussian copula, the dependence structure 
of the multivariate normal distribution. One reason for 
this is the ability of the T-copula to capture better the 
phenomenon of dependent extreme values. In the paper, 
we use T-copulas to model probability distribution in 
multi-objective estimation of distribution algorithm. 

4. Multi-Objective EDA with T-Copulas 

EDAs are undoubtedly a powerful search engine for solv- 
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ing single objective optimization problems. However, the 
original scheme has to be modified for solving multi- 
objective optimization problems. As we saw in Section II, 
the solution set of a problem with multiple objectives 
does not consist of a single solution. Instead, in multi- 
objective optimization, we aim to find Pareto optimal set. 
Besides using multivariate T-copulas for constructing pro- 
bability distribution model in the multi-objective EDA, 
we have used an archive with maximum capacity to ma- 
intain the non-dominated solutions and the crowding- 
distance measure for the diversity measurement. The Pa- 
reto optimal solutions are selected from the archive on 
the basis of the diversity of the solutions. The archive 
gets updated with the inclusion of the non-dominated so- 
lutions from the combined population and current archive, 
and the archive which exceeds the maximum capacity is 
cut using the diversity consideration. The algorithm steps 
of multi-objective EDA with T-copulas for solving multi- 
objective optimization problems are as follows: 

t=0, initialize a population  
S(0) In itialization ()

inated(S(0))

Sample()
(S(t) S (t))

(t 1) A(t)) 

; 
Evaluate(S(0)) 
A(0) Non_Dom  

WHILE  t < T  DO 
Estimate_Marginals_Distribution(); 
Estimate_Correlation_Matrix(); 
Estimate_Degrees_Freedom(); 
S ( )t
S(t

; 
1) Selection   

Evaluate(S(t+1)) 
A( 1) Non_Dominated(St    
IF A( 1) Mt    THEN Cut_Archive(A( 1))t   

t 1t    
END WHILE 
Output obtained Pareto optimal front 

The function initialization() is used to initialize a popu- 
lation S(0) with size N. The initial population S(0) is 
chosen randomly and should uniformly cover the entire 
solution space based on the consideration of the require- 
ment of population diversity. The function Evaluate() is 
used to evaluate each individual in population. The ar- 
chive A(0) has been initialized to contain the non-domi- 
nated solutions from S(0). The function Non_Domina() 
returns the non-dominated solutions from a population. 

The function Estimate_Marginals_Distribution() is used 
to estimate the marginals distribution from population. 
The function Estimate_Correlation_Matrix() is used to 
estimate the correlation matrix R in T-copulas. 

A simple method [9] based on Kendall’s tau is applied 
for estimating the correlation matrix R. The method con- 
sists of constructing an empirical estimate of Kendall’s 

tau for each bivariate margin of the copula and then us- 
ing relationship (7) 

   ,

2
, arcsin

πk m k mr X X

 ,k m

       (7) 

To infer an estimate of the relevant element of R. 
More specifically we estimate X X  by calculat- 
ing the standard sample c coefficient 

 

    
1

ˆ ,

2
sign

1

k m

i,k j,k i,m j,m
i j n

X X X X
n n



  

     

X X

, , ,

 (8) 

From the original data vectors 1 2X NX X , and 
write the jth component of the ith vector as ,i jX ; this 
yields an unbiased and consistent. An estimator of   ,k mr

is then given by  ,

π
ˆ ˆsin ,

2k m k mr    
 

X X

R

,k̂ mr

. In order to  

obtain an estimator of the entire matrix  we can col- 
lect all pairwise estimates  and then construct the 
estimator 

 πˆ ˆsin , , 1, , , 1, ,
2 k m k N m N      

  
R X X    (9) 

Then, The function Estimate_Degrees_Freedom() is 
used to estimate the degrees of freedom v by maximum 
likelihood method. 

The function Sample() is used to generate offspring 
population  S t  by sampling a T-copula function ,vTR  
with correlation matrix  and v degrees of freedom can 
be generated as follows [9]. 

R

R
T

1) Find the Cholesky decomposition of , so that 
A A R , with A  lower triangular; 

2) Generate a sample of n independent random vari- 
ables from N(0, 1);  T

, , ,z z zZ 

2
v

1 2 n

3) Generate an independent random variables s with Z 
from   distribution; 

v
4) Set Y AZ , 

s
W Y

 T

1 2, , , nw w wW   1 2, , ,
T

ny y y 

 with 

 and Y ; 

  , 1, ,ju T w j n  5) Set j v

6) Return 
; 

       1 1 1
1 2 1 1 2 2, , , , , ,n n nx x x F u F u F u   X  

 S t

. 

The function Selection() is used to evaluate each indi- 
vidual in the current population  and the offspring 
population  S t  and carry out the non-dominated sort- 
ing and ranking selection, developed by Deb et al. in [3] 
to select non-dominated individuals to constitute the next 
generation population  1S t  . 

 AThe proposed algorithm maintains an archive t  
with maximum capacity M. At each iteration, the archive 
gets updated with the inclusion of the non-dominated 
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 1S t  solutions from the next generation population   
and the archive 

0,1ix 

   
 A t

1 1

. If the size of the archive exceeds 
the maximum capacity M, it is cut using the diversity 
consideration. The function Cut_Archive() is used to cut 
the archive. 

5. Simulation Results 

In order to test efficiency of the Pareto-based multi-ob- 
jective estimation of distribution algorithm with T-copu- 
las, the performance of the proposed algorithm is com- 
pared with that of some multi-objective optimization al- 
gorithms. The following some well-known benchmark 
functions [12] have been used to test. 

1) ZDT1: 

 f xx

 

 

    x g x2 11f g x x   0,1ix 

 

 

   2
1ig x D 

1 1

1 9
D

i
  x  

2) ZDT2: 

 f x

 

x

 

 

    2

2 1x g x 1f g x x  0,1ix 

   

 

  2
1

D

ig x D 

1 1

1 9
i x  

3) ZDT3: 

 f xx

 

 

       1 1
11 sin 10π

x x
2f g x

g g

 
    

 
x x

x x



 

0,1ix 

     

 

2
1 9 1

D

ii
g x D


  x

1 1

 

4) ZDT4: 

 f xx

 

 

    2 11f g x g x x x  

   1 0,

2,

1 , ix x 

,i D

5,5 ,

      2
2

1 10 1 10cos 4π
D

i ii

 

 

g D x x


    x  

5) ZDT6: 

     6
1 11 exp 4 sin 6π 1f x x  

     

x

 

 

  2

2 11f g f x g x x x  

 

 0.25

2
1 9 1

D

ii
g x D


  x  

The two common metrics used to compare are con- 
vergence metric γ and divergence metric Δ. For these 
metrics we need to know the true Pareto front for a prob- 
lem. In our experiments we use 1000 uniformly spaced 
Pareto optimal solutions as the approximation of the true 
Pareto front. A brief introduction of these metrics is 
given here: 

Convergence metric γ was proposed by Deb et al. [3], 
measures the distance between the obtained non-domi- 
nated front NF and optimal Pareto front PF. Mathemati-
cally, it may be defined as: 

1

N

i
i

d

N



γ

d

                (10) 

where N is the number of non-dominated solutions found 
by the algorithm being analyzed and i  is the minimum 
Euclidean distance (measured in the objective space) 
between the ith solution of NF and the solutions in PF. 

Diversity metric Δ was proposed by Deb et al. [3]. It 
measures the extent of spread achieved among the ob- 
tained solutions and is defined as: 
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where s is the number of members in the set of non- 
dominated solution found so far, and the parameter fd

d
 

and i  are the Euclidean distances between the extreme 
solutions and the boundary solutions of the obtained 
non-dominated set. The parameter d  is the average of 
all distances  1, , 1d i si   , assuming that there are s 
solutions on the best non-dominated front. The smaller 
the value of these metrics is, the better the performance 
of the algorithm is. The initial population was generated 
from a uniform distribution in the ranges specified below. 
Population size N = 80. All experiments were repeated 
for 30 runs. The maximum number of iterations is set to 
1000 in each running. 

Table 1 listed the mean and standard deviation(sd) 
values of convergence metric γ and diversity metric Δ 
obtained using SPEA2 [2], NSGA-II [3], FastPGA [4] 
and the proposed algorithm(EDATCMO) on the multi- 
objective benchmark functions ZDT1, ZDT2, ZDT3, 
ZDT4 and ZDT6. It can be known from Table 1, the 
mean values of convergence metric γ obtained by using 
EDATCMO is smaller than those obtained by using 
SPEA2, NSGA-II, FastPGA. And the mean values of di- 
versity metric Δ obtained by using EDATCMO is smaller 
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Table 1. Mean and sd of the convergence and diversity met- 
rics for Benchmark functions. 

Problem Algorithm 
Convergence γ 

(mean ± sd) 
Diversity Δ 
(mean ± sd) 

SPEA2 0.09462 ± 0.04511 0.42209 ± 0.01012

NSGA-Ⅱ 0.10872 ± 0.00362 0.50827 ± 0.02446

FastPGA 0.09154 ± 0.00621 0.70009 ± 0.01174
ZDT1 

EDATCMO 0.02363 ± 0.00146 0.21738 ± 0.00368

SPEA2 0.08073 ± 0.06101 0.50013 ± 0.01612

NSGA-Ⅱ 0.09023 ± 0.00401 0.30163 ± 0.01503

FastPGA 0.02067 ± 0.00702 0.60034 ± 0.02984
ZDT2 

EDATCMO 0.00821 ± 0.00472 0.20022 ± 0.00863

SPEA2 0.13996 ± 0.07603 0.74932 ± 0.05006

NSGA-Ⅱ 0.04208 ± 0.09104 0.85061 ± 0.09025

FastPGA 0.07024 ± 0.06541 0.86027 ± 0.06453
ZDT3 

EDATCMO 0.02005 ± 0.01843 0.50064 ± 0.06132

SPEA2 0.62768 ± 0.10676 0.51682 ± 0.07319

NSGA-Ⅱ 1.13458 ± 0.90054 0.85454 ± 0.09003

FastPGA 2.97402 ± 1.94585 0.96856 ± 0.07032
ZDT4 

EDATCMO 0.50547 ± 0.08019 0.41621 ± 0.02971

SPEA2 0.91036 ± 0.09105 0.74532 ± 0.04093

NSGA-Ⅱ 0.49311 ± 0.00874 0.63847 ± 0.08006

FastPGA 0.72347 ± 0.01106 0.84442 ± 0.04034
ZDT6 

EDATCMO 0.10048 ± 0.01002 0.31618 ± 0.01782

 
than those obtained by using SPEA2, NSGA-II, FastPGA. 
It indicates that EDATCMO outperforms SPEA2, NS- 
GA-II and FastPGA algorithms on the benchmark func- 
tions in both aspects of convergence and distribution of 
solutions. 

6. Conclusion 

We proposed a multi-objective estimation of distribution 
algorithm using T-copulas and Pareto-based approach. 
The proposed algorithm employs the multivariate T- 
copulas to construct probability distribution model, and 
the new individuals are generated according to the prob- 
ability distribution model. An archive is used to maintain 
the non-dominated solutions. The Pareto optimal solu- 
tions are selected from the archive. The archive gets up- 
dated with the inclusion of the non-dominated solutions 
from the combined population and current archive. The 
algorithm is applied to some well-known benchmarks. 
The results show that the algorithm has better perform- 
ance than SPEA2 [2], NSGA-II [3], FastPGA [4] on the 
multi-objective benchmark functions ZDT1, ZDT2, ZDT3, 
ZDT4 and ZDT6. 
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