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ABSTRACT 

The EMG signal which is generated by the muscles activity diffuses to the skin surface of human body. This paper pre- 
sents a pattern recognition system based on Linear Discriminant Analysis (LDA) algorithm for the classification of up- 
per arm motions; where this algorithm was mainly used in face recognition and voice recognition. Also a comparison 
between the Linear Discriminant Analysis (LDA) and k-Nearest Neighbor (k-NN) algorithm is made for the classifica- 
tion of upper arm motions. The obtained results demonstrate superior performance of LDA to k-NN. The classification 
results give very accurate classification with very small classification errors. This paper is organized as follows: Muscle 
Anatomy, Data Classification Methods, Theory of Linear Discriminant Analysis, k-Nearest Neighbor (kNN) Algorithm, 
Modeling of EMG Pattern Recognition, EMG Data Generator, Electromyography Feature Extraction, Implemented 
System Results and Discussions, and finally, Conclusions. The proposed structure is simulated using MATLAB. 
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1. Introduction 

EMG signals, which are measured at the skin surface, are 
the electrical manifestations of the activity of muscles. It 
provides an important access to the human neuromuscu- 
lar system. EMG has been well recognized as an effec- 
tive tool to generate control commands for prosthetic de- 
vices and human-assisting manipulators. Information ex- 
tracted from EMG signals, represented in a feature vector, 
is chosen to minimize the control error. In order to achieve 
this, a feature set must be chosen which maximally sepa- 
rates the desired output classes. The extraction of accu- 
rate features from the EMG signals is the main kernel of 
classification systems and is essential to the motion com- 
mand identification [1]. 

Early attempts using pattern matching algorithms for 
prosthesis control have been proposed by Finely [2]. 

In today’s literature on EMG classification the signal 
processing chain is often broken down to three algorith- 
mic components: the feature extraction, the dimensional- 
ity reduction and the pattern classification. In the feature 
extraction step attributes are extracted omitting redun- 
dancy. In the second step the amount of data is further re- 
duced by selecting or projecting features for more robust 
and accurate classification. In the last step pattern match- 
ing algorithms are applied to detect the category of the 
input data. The complete processing queue has to be 
carefully balanced-especially the combination of the pat- 

tern matching algorithm and the selected feature contrib- 
utes significantly to the classification accuracy. 

EMG classification is one of the most difficult pattern 
recognition problems because there are large variations 
in EMG features. Especially, it is difficult to extract use- 
ful features from the residual muscle of an amputee. So 
far, many researches proposed many kinds of EMG fea- 
ture to classify posture and they showed good perform- 
ance. However, how to select a feature subset with the 
best discrimination ability from those features is still an 
issue for classifying EMG signals [3]. 

2. Muscle Anatomy 

The muscles that are responsible for the movement of the 
arm, wrist, and hand abduction are performed by the del- 
toid. Human elbow is mainly actuated by two antagonist 
muscles: biceps and triceps, although it consists of more 
muscles. Consequently, biceps and a part triceps are biar- 
ticular muscles. Many studies have been performed to 
investigate the effects of biarticular muscles. By adjust- 
ing the amount of force generated by these muscles, the 
elbow angle and impedance can be arbitrary controlled 
[4]. The biceps brachii and triceps brachii however, which 
insert from the arm contraction of the biceps brachii fle- 
xes the elbow and supinated the forearm. Contraction of 
triceps brachii extends the elbow. Most of the muscles 
that move the forearm and hand originate within the fore- 
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arm. The flexor carpi radialis flexes and abducts the wrist, 
while the flexor carpi ulnaris flexes and adducts. The ex- 
tensor carpi radialis produces extension and abduction of 
the wrist, while the extensor carpi ulnaris produces ex- 
tension and abduction [5]. 

3. Data Classification Methods 

The most commonly used techniques for data classifica- 
tion is the Linear Discriminant Analysis. This method ma- 
ximizes the ratio of between-class variance to the with- 
in-class variance in any particular data set thereby guar- 
anteeing maximal separability. The use of Linear Discri- 
minant Analysis for data classification is applied to clas- 
sification problems and recognition. This method also 
helps to better understand the distribution of the feature 
data [6]. 

The Linear discriminant analysis (LDA) is a classical 
statistical approach for supervised classification. LDA 
computes an optimal transformation (projection) by mini- 
mizing the within-class distance and maximizing the be- 
tween-class distance simultaneously, thus achieving maxi- 
mum class discrimination. Hence LDA will be used in 
this paper as the classification method due its ability in 
class discrimination. In the case of the classification of 
the upper arm motion; these motions are similar to each 
other in signal shape. Therefore, the obtained results in 
this paper demonstrated that this method of classification 
can provide accurate classification result with minimum 
classification error in the classification of the upper arm 
motions. 

4. Theory of Linear Discriminant Analysis 
[6] 
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where  is the centroid of the j-th class, and c is the 
global centroid. It can be verified from the definitions 
that St= Sb + Sw. Define three matrices Hw, Hb, and Ht as 
follows: 
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where   and e are vectors of all ones of length nj and 
n, respectively. Then the above three scatter matrices can 
be expressed as 

 

It follows from the properties of the matrix trace that 
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Thus trace (Sw) measures the distance between the data 
points and their corresponding class centroid, and trace 
(Sb) captures the distance between the class centroids and 
the global centroid. 

In the lower-dimensional space resulting from the lin- 
ear transformation G, the scatter matrices become 
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 L
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w  simultaneously, which 
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S
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optimal transformation, , of LDA is computed by 
solving the following optimization 
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It is known that the optimal solution to the optimiza- 
tion problem in above equation can be obtained by solv- 
ing the following generalized eigenvalue problem: 

  

More specifically, the eigenvectors corresponding to 
the k − 1 largest eigenvalues form columns of GLDA. 
When St is nonsingular, it reduces to the following regu- 
lar eigenvalue problem: 
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When St is singular, this is known as the singularity or 
undersampled problem in LDA. When St is singular, the 
classical LDA formulation discussed above cannot be ap- 
plied directly. 

The unified framework consists of four steps described 
below: 
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5. k-Nearest Neighbor (kNN) Algorithm 

The k-nearest neighbor (kNN) classification rule is well- 
known and widely used nonparametric pattern classifica- 
tion method. It was originally suggested by Cover and 
Hart [7]. Its simplicity and effectiveness have led it to be 
widely used in a large number of classification problems. 
When there is little or no prior knowledge about the dis- 
tribution of the data, the kNN method should be one of 
the first choices for classification. It is a powerful non- 
parametric classification system which bypasses the pro- 
blem of probability densities completely. The class as- 
signed to a pattern is the class of the nearest pattern 
known to the system, measured in terms of a distance de- 
fined on the feature (attribute) space. On this space, each 
pattern defines a region (called its Voronoi region). When 
distance is the classical Euclidean distance, Voronoi re- 
gions are delimited by linear borders. To improve the 
classification, more than one neighbor may be used to 
determine the class of a pattern or distances other than 
the Euclidean distances that may be used [8]. The kNN 
rule classifies assigning it the label most frequently rep- 
resented among the k nearest samples; this means that, a 
decision is made by examining the labels on the k-near- 
est neighbors and taking a vote. kNN classification was 
developed from the need to perform discriminant analy- 
sis when reliable parametric estimates of probability den- 
sities are unknown or difficult to determine [8]. 

6. Modeling of EMG Pattern Recognition 

The structure of the implemented system is shown in Fi- 

gure 1, which will form a common baseline measure- 
ment against other algorithms for comparison. 

The process of pattern recognition can be broken down 
into two main phases: feature extraction and classifica- 
tion. 

Feature extraction refers to the transformation of the 
input signal into a set of representative signal features. 
Number of features that are now commonly used for 
EMG classification; in this paper features that are used 
are the root mean square and autoregressive coefficients. 

Classification maps feature vectors into specific classes, 
with the mapping function determined using training data. 
This classification procedure is implemented using LDA 
classifier, and kNN classifier. 

7. EMG Data Generator 

The data used in this paper are generated using EMG Si- 
mulator [9]. These data were simulated from simulation 
of seven sites on the forearm and one site on the bicep. 

Signals are generated using a model constructed to 
closely resemble the physiology and morphology of ske- 
letal muscle, combined with line source models of com- 
monly used needle electrodes positioned in a way consis- 
tent with clinical studies. The validity of the simulation 
routines is demonstrated by comparing values of statis- 
tics calculated from simulated signals with those from 
clinical EMG studies of normal subjects. The simulated 
EMG signals are used to explore the relationships be- 
tween muscle structure and activation and clinically ac- 
quired EMG signals. 

EMG data were simulated as the subject underwent 
seven distinct limb motions: hand open, hand close, supi- 
nation, pronation, wrist flexion, wrist extension, and rest, 
as shown in Figure 2. These data are used to create test- 

 
EMG Data 

Generator 

Create Training Set Create Testing Set 

Extract Features from the 

Training Data 

Extract Features from the 

Testing Data 

Classifying 

Majority Voting 

Remove Transitions  
 

Figure 1. System Model. 
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ing set and training set.  
8. Electromyography Feature Extraction 

The first four autoregressive coefficients and the root 
mean square value were used as the feature vector. The 
analysis window size was 256 ms, which were spaced 
128 ms apart for training data and 32 ms apart for testing 
data. Data that were 256 ms before or after a change in 
limb motion were removed from the training set to avoid 
transitional data. 

Rest          Wrist flexion       Wrist extension    Hand close

Hand open        Supination        pronation

 

Features are computed from the EMG signals using a 
sliding analysis window. In this paper the sliding window 
is depicted in Figure 3, with analysis windows of 256 ms 
in length, spaced 32 ms apart. A single feature vector is 
produced from each analysis window. 

9. Implemented System Results and  
Discussions 

The classification error from the testing data was 2.9329% 
(with no feature reduction). To improve classification ac- 
curacy, majority vote post-processing can be employed. 
The majority vote uses the current classification result, 
along with the previous classification results (with an 
analysis window spacing of 32 ms, this corresponds to 
the classification results within the last 256 ms) and 
makes a classification decision based on the class that 
appears most often (Figure 4). 

The resulting effect is a smooth operation that removes 
spurious misclassification. The classification error re- 
duces to 2.3316% after majority vote post processing. 

The errors that are present occur during transitional 
periods, which are expected as the system is in an unde- 
termined state between contractions. 

If we removed the analysis windows that are 256 ms 
before and after the transition, the classification error is 
0.85402% (i.e. no transitions). 

If we combine majority vote post processing with no 
transition error; the classification error will be 0.84067%. 
The classification errors from the testing data (with Lin- 
ear Discriminant Classifier and ULDA Feature Reduc- 
tion) are shown in Figure 5. 

Also the classification errors from the testing data 
(with Linear Discriminant Classifier and PCA Feature 
Reduction) are shown in Figure 6. 

While the classification errors from the testing data 
(with k-Nearest Neighbor Classifier and PCA Feature 
Reduction) are shown in Figure 7. 

The classification errors from the testing data are sum- 
marized in Table 1. 

10. Conclusions 

Results in this paper demonstrate that a relatively simple 
pattern classification system can achieve high classifica- 

 

Figure 2. Motion classes. 
 

256 ms 32 ms  

Figure 3. Sliding analysis window. 
 

 

Figure 4. Majority vote post-processing. 
 

tion accuracy. One can improve classification accuracy 
by changing the pattern recognition components in the 
system. For example, different features and classifiers 
may yield an improved system. The system presented in 
this paper establishes a good baseline to which other sys- 
tems can be compared. This includes comparisons in sys- 
tem complexity. This is of particular importance for 
EMG control systems, where the computational require- 
ments are important in an embedded system implementa- 
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Figure 5. Classification errors from the testing data (with Linear Discriminant Classifier and ULDA Feature Reduction). 
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Figure 6. Classification errors from the testing data (with Linear Discriminant Classifier and PCA Feature Reduction). 
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Figure 7. Classification errors from the testing data (with 
kNN Classifier and PCA Feature Reduction). 

 
Table 1. The classification errors. 

 % Error 
% Majority  
Vote Error

% No  
Transition 

Error 

% Majority Vote 
Error/No  

Transition Error

LDA-ULDA 2.9329 2.3316 0.8540 0.8406 

LDA-PCA 10.7252 5.7430 8.9271 3.9098 

PCA-kNN 11.15472 5.7185 9.4476 3.9899 

 
tion (e.g. computation load, power requirements, system 
robustness). 
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