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ABSTRACT 

There have been many studies on observer-based fault detection and isolation (FDI), such as using unknown input ob-
server and generalized observer. Most of them require a nominal mathematical model of the system. Unlike sensor 
faults, actuator faults and process faults greatly affect the system dynamics. This paper presents a new process fault 
diagnosis technique without exact knowledge of the plant model via Extended State Observer (ESO) and soft comput-
ing. The ESO’s augmented or extended state is used to compute the system dynamics in real time, thereby provides 
foundation for real-time process fault detection. Based on the input and output data, the ESO identifies the un-modeled 
or incorrectly modeled dynamics combined with unknown external disturbances in real time and provides vital informa-
tion for detecting faults with only partial information of the plant, which cannot be easily accomplished with any exist-
ing methods. Another advantage of the ESO is its simplicity in tuning only a single parameter. Without the knowledge 
of the exact plant model, fuzzy inference was developed to isolate faults. A strongly coupled three-tank nonlinear dy-
namic system was chosen as a case study. In a typical dynamic system, a process fault such as pipe blockage is likely 
incipient, which requires degree of fault identification at all time. Neural networks were trained to identify faults and 
also instantly determine degree of fault. The simulation results indicate that the proposed FDI technique effectively de-
tected and isolated faults and also accurately determine the degree of fault. Soft computing (i.e. fuzzy logic and neural 
networks) makes fault diagnosis intelligent and fast because it provides intuitive logic to the system and real-time in-
put-output mapping. 
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1. Introduction 

The main function of an observer, also known as estima- 
tor, is to extract information of the otherwise immeasur- 
able variables for a vast number of applications that in- 
clude feedback controls and system health monitoring or 
fault diagnosis. Over the past few decades, two classes of 
observer design have emerged. One relies on mathe- 
matical plant models to produce state estimates; the other 
uses available plant knowledge to estimate not only the 
state but also the part of the physical process that is not 
described in the plant model, i.e. disturbances. For the 
first class, however, it requires an accurate mathematical 
model of the plant that is often unavailable in practice. In 
contrast, the second class provides practical state and 
disturbance estimation when significant nonlinearity and 
uncertainty are present in a dynamic system. 

The term “fault diagnosis” generally refers to fault de- 
tection and isolation (FDI). The fault diagnosis for 
nonlinear dynamic systems using model-free or model- 
based approaches has received much attention lately 
[1-3]. The model-free approach relies on rich data collec- 
tion to train neural networks in conjunction with the use 
of fuzzy inference system. Such an approach might prove 
to be impractical, if not impossible, to collect rich ex- 
perimental data. The model-based approach uses a linear 
or linearized model of the supervised system to generate 
a series of fault-indicating signals. In particular, the ob- 
server-based FDI methodologies have been developed 
along with the observer theory, and some of them have 
been successfully applied to industrial processes [4-6]. 
To deal with the nonlinearity and uncertainty of a dy- 
namic system, nonlinear fault diagnosis has recently be- 
come an active research topic. There have been many  
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observer-based residual-generation methods for fault 
diagnosis in nonlinear dynamic system. Frank in [7] first 
proposed a nonlinear identity observer approach for fault 
diagnosis, followed by a survey on diagnostic observers 
[8] and a survey on robust residual generation and 
evaluation methods used in observer-based fault detec- 
tion [9]. Later, Isermann [10] presented the status and 
applications of model-based fault detection and diagnosis. 
Observer-based fault-diagnosis was applied to robot ma-
nipulators using a mathematical technique called algebra 
of functions to design the nonlinear diagnostic observer 
[11]. Adaptive observers [12] and nonlinear robust-based 
observer schemes [13,14] both developed an algorithm to 
adjust the gain matrix of observer to track the fault pa- 
rameters of the system online have been applied to prac- 
tical processes successfully. Additionally, a new concept 
of practical optimality using disturbance estimation for 
health monitoring has been proposed [15]. However, the 
common drawback of these observer-based fault diagno- 
sis methods is the dependency on detailed knowledge of 
the process represented by its mathematical model.  

This study is focused on diagnosing process faults that 
affect the plant of a nonlinear dynamic system. The sen- 
sors and actuators are assumed healthy when process 
faults occur. More specifically, the presented fault diag- 
nosis technique aims at a nonlinear dynamic system with 
uncertain system model and un-modeled or incorrectly 
modeled dynamics combined with unknown external 
disturbances. 

To extend FDI to the processes beyond the scope of 
existing methods, consider a nonlinear dynamic system 
that can be described by  

   , , , ,ny f t y y    1 ,ny d bu 

 ny

  1, ,n

       (1) 

where  denotes the nth time derivative of y, f, short 
for  

, , ,f t y y y d

 
1 2

2 , , ,

, 

is a lumped nonlinear time- varying function of the plant 
dynamics and the unknown external disturbance d, u is 
the system’s input and b is a constant. In all physical 
systems, f and b are both bounded. From fault diagnosis 
point of view, the f can be thought of lumped unknown 
un-modeled or incorrectly modeled dynamics combined 
with the unknown external disturbances. Instead of sepa- 
rating un-modeled dynamics from the disturbance, the 
term f in its totality is to be estimated as an extended 
state of the system, together with the states of the system. 
Normally, an observer only provides the state estimation; 
but with what is known as Extended State Observer 
(ESO) [16-19], the term f is treated as another state and 
estimated in real time. Such additional information 
proves to be crucial for the FDI purposes, as will be  

shown in this paper. The ESO technique first developed 
by Han [16,17], however, is rather complex and its im- 
plementation requires the adjustments or tuning of sev- 
eral parameters, which can be difficult and time con- 
suming. Later, Gao [18] improved the ESO technique 
and made it more practical by using a particular parame- 
terization method that reduces the number of tuning pa- 
rameters to one. Such parameterized ESO has been suc- 
cessfully applied in many applications, particularly in the 
context of the Active Disturbance Rejection Control 
(ADRC) [19]. 

Based on the parameterized ESO, a new FDI technique 
is proposed in this paper, which is organized as follows. 
Section 2 describes the design of the improved ESO and 
its estimation error convergence. Section 3 presents a 
case study on a MIMO nonlinear dynamic system. Sec- 
tion 4 describes fault detection by means of the ESO, 
while Section 5 describes fault isolation, fault identifica- 
tion and degree-of-fault determination. Section 6 gives 
conclusions about the presented technique. 

2. Extended State Observer 

In this section, the design of the improved extended state 
observer (ESO) is described, followed by the proof of the 
observer’s estimation error convergence. 

2.1. Extended State Observer Design 

The main idea of ESO is to use an augmented state space 
model of Equation (1) that includes f as an additional 
state. Thus, Equation (1) can be represented in state 
space form as  

x x bu f bu

x f x u d d

   
  


 

x x u

y x

             (2) 

where both f and η are assumed unknown. 
Alternatively, in the case of single output (i.e. y = x1), 

Equation (2) can be written in matrix form as 

  
 

A B E

C



 0 1 0
; ; 1 0 ;

0 0 0 1

b

              (3) 

where 

     
        
     

A B C E

 ˆ

ˆ

z z u y y

y z

   




A B L

C



 

 
1 2 1 1 1

2 2 1 1

z z l x z bu

z l x z

 

The ESO can be expressed in matrix form as 

         (4) 

or 

   


 




         (5) 
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where 
can be ob
pole

 T1 2l lL  is the observer gain vector which 
tained using any known metho

 placement technique. When it is properly selected, 
 provides an

d such as the 

the ESO  estimate of the state in Equation (3) 
(i.e. zi estimates xi, where i = 1, 2), where y


 is the es-

timate of system output y. More specifically, z1 tracks the 
system output, while z2 tracks f which includes system 
internal dynamics and external disturbance. The choice 
of the observer gain vector L, originally consisted of a set 
of nonlinear gains [16,17], was simplified with linear 
gains so that it can be parameterized by solving the char- 
acteristic equation of the observer [18]. For instance, if 
gains are chosen as  T2 o o L , then the character- 
istic polynomial of Equation (4) becomes 

   2

0 s s                (6) 

where ωo is the observer bandwidth, which needs to be 
tuned in practice to ensure that the ESO operates e

o

ffect- 
tively, and this is a complex argume

matically prove that, with 
plant dynamics largely unknown, the ESO can accurately 

turbances with 

1 2 ed as  

,l

nt (Laplace’s vari- 
able). In comparison with the original extended state ob- 
server, this is regarded as the improved extended state 
observer since the observer bandwidth is the only pa- 
rameter needs to be tuned. The analysis of ESO was 
briefly given in [18]; a more elaborate account is given in 
[19]. For practitioners, however, perhaps it is just as in- 
teresting to see the various applications of ESO and their 
success in providing a practical solution in dealing with 
uncertainties [18,20]. The estimation error of the ESO is 
described in the next section. 

2.2. Estimation Error Convergence 

In this section, we will mathe

estimate the unknown dynamics and dis
upper-bounded estimation error. Let 

      , 1, 2i i it x t z t i             (7) 

From Equations (2) and (4), the observer estimation 
error for states x ad x  can be describ

1 2 1 1

2 2 1.l

  

    
          (8) 

   

Now let us scale down the observer estimation error 
 t  by 1i

oi   , i.e., let 

   1
, 1,2.i i

o

t i
    

Equation (8) can be written 

i t

Then, as 

 , , ,
o

o

x u d 
         (9) 

where 

2 1 0
,

1 0 1 

   
       

A B  

Hurwitz for  

  TT 2
1 2 2 o ol l      L .  

Theorem 1: Assuming  , , ,

d
A B    



here A is 

x u d d   is bounded, then 
0ithere exists a constant    and a finite time 1 0T   

such that   1,   1, 2,  0i it i t T       and 0.o    
Note that 

1
i

o


k

O



10

w  function representing the order of the re- 
ciprocal of bandwidth to the order of a positive integer k. 
The boundedness of 


  

 
         ( ) 

here O is a

 , , ,x u d d   (i.e. f ) means that 
the rate of change of the combined effect of internal dy- 

es

namics and external disturbances is finite, which leads to 
an assumption that the combined effect and the control 
input are continuous. Here  is sentially the derivative 
of acceleration. In a typical motion system,  being 
bounded means that the force applied to the body does not 
change infinitely within a very short period of time. In 
other words, the jerk (i.e. time derivative of acceleration) 
is finite. This is a reasonable assumption for a typical 
motion. 

Proof: Solving (9), gives 

       
0

, , ,
e 0 e d .oo

t A tA t
x u d d

t B  




o

  


  


 (11) 

Let 
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0
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o
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p t B 


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


 


  

e  

 (12) 

 , , ,x u d d    is bounded, that is,  

 
Sinc

 , , ,x u d d   , 

where  is a positive constant, for 1, 2,i  then 

 



   1 1 o A t 
2

e .i i i
o
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
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,

1 2 1 
 

With

   
       

A B  

th ing can be written 
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e follow
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2

1  
.

2
i

i
i

A B 



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      (14)     

Since A  is Hurwitz, there exists a finite time 1 0T   
such that  
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2

1
o A t

ij
o
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          (15) 

for all 1, , 1,2t T i j . Hence 
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d
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(17) 

for all 1.t T  Equation (13) can be expressed in terms 
of Equations (14) and (17) as follows. 

 

   

2 4

2 3

o o
ip t

 
 

                (18) 

1,T for all 1, 2.t i  Let  
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it follows that 
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
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Substituting 

   
1i i

o

t
   

and Equation (18) into (20) leads to a conclusi
ab ion error is, indeed, upper-bounded. 

i t

on that the 
solute estimat

   sum 0
i 2 3 5
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o o o

t


i
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


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Theorem 1 has been mathematically proved that, in the 
absence of the plant model, the estimation error of the 
ESO as described in Equation (4) is bounded 
perbound monotonously decreases with the observer 
bandwidth. As long as the bandwidth is sufficiently large, 

n be used to estimate the state as well as the 
ex

nsists of three tanks (T1, T2 and 
em has two 
measurable 



for all 1, 1, 2.t T i   

and its up- 

the ESO ca
tended state f which includes system internal dynamics 

and external disturbance. The ESO’s ability to estimate 
and track the system’s output state, y and the extended 
state, f provides foundation for the proposed fault detec- 
tion and isolation schemes. Since the extended state f, 
which includes system internal dynamics and external 
disturbances, is estimated by the ESO in real time and 
cancelled in the control law in real time, the ESO achi- 
eves high disturbance rejection performance and strong 
robustness performance. 

3. Case Study: Three-Tank System 

To illustrate how the presented ESO can be used to track 
a nonlinear dynamic system. A three-tank nonlinear dy- 
namic system [3] as shown in Figure 1 was chosen for a 
case study. The system co
T3) that are connected by three pipes. The syst
controlled inputs (pump flow rates), three 
outputs h1, h2 and h3 (water levels), and three possible 
faults (pipe blockages). It is, indeed, a strongly coupled 
multi-inputs multi-outputs (MIMO) system. 

Using the Torricelli’s law, the following three dy- 
namic system equations can be obtained 
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1
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d
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A s a h h g h h



t

s a gh Q

    

   

h
A s a h h g h h
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 (22) 


  


   

where AT is the circular cross-sectional area of eac
(assumed same for all); a1, a2, a3: the circular cross-sec-  
 

h tank 

Pump2 Pump1

h1

h3 
h2 

Block s13 Block s32 Block s20
 

1 3 2 

 

Figure 1. Schematic diagram of the three-tank system. 
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tion area of each pipe; s13, s32, s20: pipe blockage; Q1, Q2: 
pump’s flow rate; h1, h2 and h3 denote the water level of 
tanks T1, T2 and T3, respectively. 

The blockage is in terms of degree of fault between 0 
and 1, where 0 and 1 correspond to complete blockage 
and no blockage, respectively. Equation (22) can be re- 
written as 

1 1 1

1
h f Q

A
 

2 2 2

1

T

h f Q
A

h f


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
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3 3


where 

T





 1 13 1 1 3

1
sign

T

f s a h
A

   1 32 ,h g h h    

 2 32 3 3 2 3 2 20 2 2

1
sign 2 2 ,

T

f s a h h g h h s a gh
A

      

 

 

3 13 1 1 3

32 3 3 2

1
sign 2

sign

T

f s a h h
A

s a h h

 

 

Let y(t) and u(t) be the system’s o

1 3

3 22 .

g h h

g h h



 
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tor, respectively, 

 T1 2, 0Q Q  (24

1 2 3 el of tanks T1, T2 
and T3, respectively, and Q1 and Q2 denote the flow rate 
of pumps 1 and 2, respectively. Essentially, the water 
levels are the system output variables and the flow rates 
are the system input variables. Combining Equations (23) 
and (24), gives 
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can be represented in state space form as 
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The f1, f2 and f3 are called the Generalized System Dy- 
namics of tank T1, T2 and T3, respectively, and u(t) is the 
system’s inputs. o
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s the measured or actual output,  

T

1 2 3
ˆ ˆ ˆŷ h h h

 

and I is a three-by-three identity matrix. Note that the 
expression for C in Equation (27) is for three

single output. 
ons (2)-(6)), deno- 

ting y a

      

as the estimated output, and incorporating the difference 
between the two outputs, the ESO of E ation (26) can 
be rewritten as 

1 1

ˆ

z Az Bu L x z

y Cz





        (29) 

23

) shows that three-tank system consists of 
three simultaneous first-order differential equ
the observer gain matrix, L can be expressed

2

2

2

0 2 0

0 0 2

0 0

0

0

o

o

o

o



qu

 
 

1 2 1 1 1 0

2 2 1 1

z z l x z b u

z l x z

   


 




       (28) 

The state space observer can be constructed as 

    

where  T1 2z zz   (i.e.  T1 11 12 13z z z z  and  

 T2 21 22z z z z ). 
Equation (22

ations. Thus, 
 as 

2 0 0o

0

0 o

 
 
 
 






  
 

L     

 
 
  

With a chosen bandwidth ωo, the z vector can be used 
to estimate the system outputs and the system dynamics 

        (30) 
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in real time. As proved in Sec. 2.2, the ESO’s estimation 
error is upper-bounded and monotonously decreases with 
the bandwidth. With a sufficiently large bandwidth and 
as time proceeds, z1 quickly approaches y (i.e. h1, h2 and 
h3), and z2 approaches f (i.e. f1, f2 and 
z1 tracks the system’s outputs, and z2 t
eled system dynamics combined with external distur- 
bance. More specifically, as stated in Equation (29) 

 Tz z   estimates the state variables x (i.e. 

 noise (with sam
eness o

ics of the
o SO tracks 

the system. As the ωo increases, the ESO tracks the 
tem more quickly, but it also becomes more sen
 

f3). In other words, 
racks the un-mod- 

1 1z z
th

1 12 13 1 

e water level h1, h2 and h3), and  T2 21 22 23z z z z  
estimates the extended state f (i.e. f1, f2 and f3). 

11 1 1 12 2 2 13 3 3

21 1 22 2 23 3

ˆ ˆ ˆ; ;

; ;

z h h z h h z h h

z f z f z f

      


  
   (31) 

The value of the bandwidth ωo affects the system’s 
tracking speed and the state estimation’s sensitivity to 
measurement noise. Figures 2 and 3 show the simulation 
results on the sensitivity of the ωo value to the measure-
ment pling time, Δt = 0.01 sec). 

The simulation results demonstrate the effectiv f 
the ESO in tracking the outputs and the dynam  
system. The smaller the ω  is, the slower the E

sys- 
sitive to  
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Figure 2. System dynamics tracking with ωo = 1 and 5% 
noise. 
 

0 10 20 30 40 50
-0.015

-0.01

-0.005

0

0.005

0.01

z21 

z22 

f1 

f2 

f3 

st
e
m
 D
yn
am

ic
s 
(m

/s
ec
) 

Time (sec.)

z23 

 

Figure 3. System dynamics tracking with ωo = 5 and 5% 
noise. 

the measurement noise. Choosing the appropriate ωo is a 
trade-off between the tracking speed and sensitivity to 
noise. 

4. Fault Detection by Means of ESO 

This section presents how faults can be detected by 
means of the Extended State Observers based on real- 
time estimation of the system dynamics. 

4.1. Basic Fault Detection Scheme 

As mentioned earlier, the faults to be detected are n ther 

s faults possibly caused by structural deteriora- 

, faults are considered detected when the outputs 
exceed the expected values by a preset tolerance. This 

open-loop 

ment the inputs 
, the health does 
apses. Using the 

pr

Sy

ei
the sensor faults nor the actuator faults. Rather, they are 
the proces
tion. The process faults, in this case, are the pipe block- 
age faults, s13, s32 and s20 as shown in Figure 1. Tradi- 
tionally

approach, however, has some drawbacks in 
and closed-loop controls. When using the ESO for 
closed-loop control, observing the system’s output does 
not provide useful information about the health of the 
system because the controller tries to aug
in an effort to stabilize the system. Thus
not surface until the system finally coll
ESO for open-loop control also encounters a problem 
before the system reaches its steady states. In other 
words, an abrupt change on the system output does not 
necessarily mean the system is becoming faulty. Thus, 
solely relying on monitoring the system output could 
trigger a false alarm or miss detection of possible faults. 

It is worthwhile to note that the ESO’s unique feature 
is its ability to estimate the general system dynamics (i.e. 
the un-modeled system dynamics and unknown external 
disturbance) in real time, which provides crucial infor- 
mation for the presented fault detection technique. Our 
study found that the system outputs and the general sys- 
tem dynamics both exhibit abrupt changes as soon as a 
fault occurs. However, the rate of change on the general 
system dynamics is more profound. Furthermore, the 
system outputs potentially contain the process faults 
(such as the pipe blockage faults) as well as the actuator 
faults (such as the actuating faults in the pumps), while 
the general system dynamics contains solely the process 
faults. Since the goal of this study was to diagnose the 

ocess faults, our proposed fault detection scheme is 
based on the general system dynamics, f. More specifi- 
cally, a fault is considered detected when the rate of 
change of general system dynamics, f f  exceeds the 
predetermined threshold value. 

4.2. Fault Detection without Exact Knowledge of 
the Plant Model 

As mentioned earlier, the ESO estimates the states of z , 21
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z22 and z23 which track the system dynamics f1, f2 and f3. 
The only information need for fault detection is to esti-
mate the value of bo. Our study found that the value of bo 

is, indeed, not critical to fault detection. Figure 4 shows 
the simulation result of successfully detecting two se-
quential faults using the exact bo values of 127. Figure 5 
further indicates the same faults can be detected even 
with bo value of 635, which is five times as much as the 
exact one. The simulation assumes that the first blockage 
fault s13 = 0.8 (i.e. 80% blocked) in the pipe connecting 
tanks 1 and 3 occurs at t = 10 sec., followed by the sec- 

pipe  and 2 occurring at t = 20 sec. 
f

 

ond blockage fault s32 = 0.6 (i.e. 60% blocked) in the 
 connecting tanks 3

The first fault affects the dynamics of tanks 1 and 3 ( 1 
and f3), which reflects the abrupt changes in the estimated 
states z21 and z23. The second fault affects the dynamics 
of tanks 3 and 2 (f3 and f2), which reflects abrupt changes
in the estimated states z23 and z22. 

Note that ESO’s estimated z21, z22 and z23 closely track 
the system dynamics, f1, f2 and f3, respectively. The bo 
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Figure 4. Detection of multiple faults (s13 = 0.8 at t = 10 sec 
and s32 = 0.6 at t = 20 sec) with bo = 127 (the exact value). 
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igure 5. Detection of multiple faults (s13 = 0.8 at t = 10 sec 
and s32 = 0.6 at t = 20 sec) with bo = 635 (Rough estimated 
value). 

value is associated with the physical system, which is the 
cross-sectional area of the pipes connecting tanks. Fig- 
ures 4 and 5 clearly demonstrate that the bo value is not 
critical to fault detection, which suggests that knowledge 
of the exact system model is not required. 

The presented ESO-based fault detection technique 
suggests that the accuracy of bo is not critical to fault 
detection. It should be noted that although faults can be 
detected without exact knowledge of the plant model, 
some knowledge about the model, such as the order of 
the system, is needed. 

The changes of these three extended states are worth 
of observing. For instance, as shown in Figure 4, wh  
the first fault just occurred, ∆z  was negative, ∆z  was 

 in 
the 

 can be extracted as follows. 

F

en
23 22

close to 0, and ∆z21 was positive. But, when the second 
fault was added 10 seconds later, the ∆z23 became posi-
tive and the ∆z22 became negative, but the ∆z21 remained 
positive but smaller. The changing signs of the states and 
the levels of the state values (i.e. low, medium and high) 
provide useful information for fault isolation. 

5. Fault Isolation and Fault Identification 

The fault isolation to be presented here is based on the 
assumption that the exact system model is unknown. 
However, in order to verify the effectiveness of the pre-
sented technique, the referenced system outputs need to 
be generated first. 

5.1. Generation of Reference Values 

The outputs, in the case of the three-tank system, can be 
obtained by using such as piezo-resistive pressure sen- 
sors with resolution of 0.1 mm to measure the water lev- 
els. With sufficient input-output correspondence, a back- 
propagation neural network can be trained. The trained 
network can then be used to predict the outputs with rea- 
sonably good accuracy. 

Alternatively, the system outputs can be estimated
real-time using the ESO based on the assumption that 
exact plant model is known. With this alternative ap- 
proach, the first step for identifying faults is to associate 
all faults with the system dynamics. First of all, Equation 
(22) containing the pipe dynamics (the dynamics be- 
tween two outputs)

 

 
 

 

13 1 1 3 1sign 2P a h h g h   
 3h

where z11, z12 and z13 are the ESO’s system outputs, the 

1 11 13 11 13

32 3 3 2 3 2

3 13 12 13 12

20 2 2 2 12

sign 2

sign 2

sign 2

2 2

a z z g z z

P a h h g h h

a z z g z z

P a gh a gz

   


  

   

  

  (32) 
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water level in each tank as shown in Equation (29). Sub- 
stituting Equations (32) into (23), gives the expressions 
for the general system dynamics f as follows:  

 

 

2 32 32 20 20

3 13 13 32 32

1
T

T

1 13 13

1

1
T

f s P
A

f s P s P
A

f s P s P
A




 


   (33) 

where AT is the circular cross-sectional area of ea
(assumed same for all). Note that bo is reciprocal of the 
AT. 

Furthermore, if the exact plant model were known, the 
degree of each fault for the three-tank system could be 


 


         

ch tank 

easily determined by 

 

21
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ˆ Tz A
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

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21 22 23
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21 23
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ˆ

ˆ

T

T

z z z A
s

P

z z A
s

P

   

   


       (34) 

In the case of uncertain plant model, not only fault 
isolation becomes more difficult, degree-of-fault deter- 

g the system outputs, the system 
dynamics, f, used for fault detection can be used for fault 
isolation. Referring to Figure 4 when the first fault oc- 
curs at t = 10 sec., if Δz21 (the ESO’s estimated ∆f1) is 
positive, Δz22 (the ESO’s estimated ∆f2) is negative, and 
Δz23 (the ESO’s estimated ∆f3) is negative, t
age fault between tanks 1 and 3 (i.e. s13) likely has oc- 
curred. When the second fault occurs at t = 20 sec., if 
Δz21 is positive, Δz22 is negative and Δz23 is positive, then 
a bl

ists of input mem- 
 
 

prop bership functions is critical, and can be 

inputs variables are Δz21, Δz22 and Δz23 which are nor- 

re first fuzzified and then processed by the 
fu

32 is Normal) and (s20 is 
N

 essentially gives the confidence in a fault oc- 
cu

5.

ter- 

s

mination also becomes a major task. These will be ad- 
dressed in the following two sections. 

5.2. Fault Isolation by Means of Fuzzy Inference 
and ESO 

In addition to monitorin

hen a block- 

ockage fault between tanks 3 and 2 (i.e. s32) likely has 
occurred. The observations suggest some intuitive logic, 
better known as fuzzy logic can be employed to classify 
the faults. 

A fuzzy inference system (FIS) cons
bership functions, output membership functions and the
if-then fuzzy logic rules. Among them, constructing the

er input mem
most difficult if there is no prior knowledge about how 
input data are distributed. The best way to determine data 
distribution is through the use of histograms. The FSI’s 

malized to the range of [–1,1]. The output variables are 
the degree of fault for s13, s32, s20, which are normalized 
to the range of [0,1], where “0” represents no fault, and 
“1” represents complete fault.  

The input membership functions for Δz21, Δz22 and 
Δz23 are the same, which are LNG (Large Negative), 
SNG (Small Negative) and POS (Positive). The output 
membership functions for faults s13, s32 and s20 are also 
the same, which are Normal and Faulty. The crisp input 
variables a

zzy logic rules. Afterward, they are defuzzified into the 
range between 0 and 1, which indicates the fault occur- 
rence confidence between 0% and 100%. The six if-then 
fuzzy rules for a single fault are 

Rule 1: If (Δz21 is POS) and (Δz22 is SNG) and (Δz23 is 
LNG) then (s13 is Faulty) and (s32 is Normal) and (s20 is 
Normal) 

Rule 2: If (Δz21 is POS) and (Δz22 is LNG) and (Δz23 is 
LNG) then (s13 is Faulty) and (s32 is Normal) and (s20 is 
Normal) 

Rule 3: If (Δz21 is POS) and (Δz22 is LNG) and (Δz23 is 
SNG) then (s13 is Faulty) and (s

ormal) 
Rule 4: If (Δz21 is POS) and (Δz22 is LNG) and (Δz23 is 

POS) then (s32 is Faulty) and (s13 is Normal) and (s20 is 
Normal) 

Rule 5: If (Δz21 is POS) and (Δz22 is SNG) and (Δz23 is 
POS) then (s32 is Faulty) and (s13 is Normal) and (s20 is 
Normal) 

Rule 6: If (Δz21 is POS) and (Δz22 is POS) and (Δz23 is 
POS) then (s20 is Faulty) and (s13 is Normal) and (s32 is 
Normal) 

POS: Positive; SNG: Small negative; LNG: Large 
negative. 

The FIS
rrence. A component is considered faulty when the 

confidence exceeds or equal to 80%. 

3. Fault Identification via Neural Networks 

With the given three-tank system, incipient faults are 
lik  oely to ccur, which will require monitoring and de
mining the degree of fault at all time. However, degree of 
fault, in theory, cannot be determined unless the exact 
plant model is known. The only alternative is to use ex- 
perimental data. In absence of experimental data, simula- 
tion data using Equation (2) were generated. 

Table 1 show  examples of single fault in which the 
fuzzy inference system was able to isolate all the faults 
with 96% confidence which was the maximum output 
value by design. The error of each predicted degree of 
fault was extremely small. In this simulation, the system 
input variables are the pump rates: Q1 = 6 liters/min and 
Q2 = 4 liters/min. To demonstrate the ESO’s effective- 
ness in filtering noise, 5% white noise was added to each  
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ble 1. Result of fault identif
 

Ta ication and isolation. 

Confidence in  
fault occurrence 

NN predicteddegree  
of fault 

Degree-of-fault  
error % 

Pump 1  
flow rate: Q1 

Pump 2  
flow rate: Q2 

Assumed  
degree of fault 

6.5 8.25 s13 = 0.17 s13/96% 0.1700 0 

7 9 s13 = 0.38 

10 6.75 s13 = 0.63 

6.5 8.25 s32 = 0.12 

7 9 s32 = 0.44 

10 6.75 

s13/96% 0.3802 0.05 

s13/96% 0.6306 0.10 

s /96% 0.1200 0 23

s23/96% 0.4403 0.07 

0.5704 0.07 

0.  

s32 = 0.57 s23/96% 

6.5 

7 

8.25 

9 

s20 = 0.23 

s20 = 0.45 

s20/96% 

s20/96% 

0.2301 

0.4503 

0.04 

0.06 

10 6.75 s20 = 0.70 s20/96% 0.7009 13

 
input va le. 

With t e given three-tank system, incip lts are 
likely t which will require monito  deter- 
mining t degree of fault  all time. How  of 
fault, in eory, cannot etermined u  exact 
plant m l is known. Th ly alternativ
perime a. In absen  experiment imula- 
tion data sing Equation ( ere generate

To do so, a back-propagation neural network for each 
ult us  randomly selected inputs an rre- 

ts was trained via Matlab Neural Network 

ty in the plant dynamics as well as disturbances. 
The parameterized ESO that requires tuning of only a 

 makes it easy 
to be implemented in fault diagnosis. The bandwidth 

aff he system’s tr speed and se ity to 
measurement noise can be y tuned to meet e indi- 
vid d for diagnosis

e model-based int of view, t sue of 
ho  knowledge ab onlinear dyna ystem 
is neede  has been of great terest to researchers for 
ye s study concl at the ESO- ult 
de uires little kn ge about the p odel, 
not ond the orde stem. 

The ESO-based fuzzy inference proved to be an effect- 

n 

riab
h ient fau

o occur, ring and
he  at ever, degree
 th
ode

be d
e on

nless the
e is to use ex- 

ntal dat ce of al data, s
 u 2) w d. 

fa ing d their co
sponding outpu
Toolbox. The input variables of each neural network are 
the pump flow rates, while the output variable is the de- 
gree of fault between 0 and 1. As soon as the fault is iso- 
lated, the respective neural network (NN) is fired to in- 
stantly predict the degree of fault. 

Table 1 shows examples of single fault in which the 
fuzzy inference system was able to isolate all the faults 
with 96% confidence which was the maximum output 
value by design. In this simulation, the system input va- 
riables: the pump rates Q1 and Q2 are liters/min. To 
demonstrate the ESO’s effectiveness in filtering noise, 
5% white noise was added to each input variable. More 
studies on model-free fault diagnosis can be found in 
[21-23]. 

6. Conclusions and Future Work 

This study mathematically proves that the ESO’s estima- 
tion error is upper-bounded and its upper-bound mo- 
notonously decreases with the observer bandwidth. This 
important proof allows for applying the improved Ex- 
tended State Observer (ESO) to be an effective means for 
fault detection and isolation (FDI). The main advantage 
of the presented FDI technique is its robustness against 
uncertain

single parameter (the observer bandwidth)

ecting t acking 
 easil

nsitiv
 th

ual nee . 
From th  FDI po he is
w much

d
out a n

in
mic s

ars. Thi udes th based fa
tection req owled lant m
 much bey r of the sy

tive mean for fault isolation. The fuzzy inference is par- 
ticularly good at handling uncertainty in the plant model. 
Furthermore, this study went beyond the traditional FDI 
by adding the capability of determining the degree of 
fault via neural networks. Such capability is particularly 
important for diagnosis of incipient faults.  

The contributions of the presented process fault diag- 
nosis technique are summarized as follows: 

1) The improved ESO made it easy to tune only a sin- 
gle parameter, the observer’s bandwidth. The selection of 
an appropriate bandwidth could effectively filter the 
measurement noise and control the desired tracking 
speed. 

2) In addition to tracking and estimating the system 
outputs, the extended/augmented state of the ESO could 
be used to track and estimate the un-modeled or incur- 
rectly modeled system dynamics in real time, which pro- 
vides useful information for the fault detection. 

3) The ESO’s estimation error was mathematically 
proved to be upper-bounded. This proof was critical for 
enabling the ESO to accurately track and estimate the 
system dynamics. 

4) Combining the ESO with fuzzy inference for fault 
isolation is a new attempt, which is particularly useful 
when the exact plant model is unknown. 

5) Unlike sensor faults or actuator faults, process faults 
such as the blockage faults in the three-tank system affect 
only the system dynamics, f, which can be detected whe
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an
 faults are in 

fu

11. doi:10.1016/S0098-1354(02)00160-6

 abrupt change in the system dynamics is observed. 
The simulation result shows the identified
ll agreement with the assumed faults. In the future, we 

plan to conduct an experimental study to verify the pre- 
sented technique. 
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