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ABSTRACT 

This paper considers the optimal control problem for the bilinear system based on state feedback. Based on the concept 
of relative order of the output with respect to the input, first we change a bilinear system to a pseudo linear system 
model through the coordinate transformation. Then based on the theory of linear quadratic optimal control, the optimal 
controller is designed by solving the Riccati equation and introducing state feedback with state prediction. At last, the 
simulation results in CSTR Chemical reactor show the effectiveness of the method. 
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1. Introduction 

Bilinear system is a special nonlinear system, during the 
processes of the engineering, social economy and eco- 
logy, there are so many objects can be described by bi- 
linear systems. Bilinear system is close to linear system 
in the aspects of form, so some theory of linear systems 
can be used for bilinear systems. Meanwhile, because of 
bilinear systems can be approximated as many nonlinear 
systems, it is more accurate than the traditional linear 
approximation. Therefore, the study of bilinear systems 
is becoming particularly important. At present, some re- 
search results about the bilinear systems have been ob- 
tained. For example, Aganovic proposed a method of 
global successive approximation about bilinear system 
[1,2]; DISOPE approximate algorithm based on bilinear 
model is presented by Li [3]; Tang has studied the opti- 
mal control of the discrete bilinear system [4-6]. Hofer 
and Tibken obtained the optimal solutions in terms of a 
sequence of the differential Riccati equation [7]. The 
optimal iterative algorithm based on quadratic perform- 
ance index about bilinear system is given in the reference 
[8], etc. 

This paper concentrates on the solution of the optimal 
control problem for bilinear systems with a quadratic 
criterion based on state feedback. Firstly, the model of 
the bilinear system is given in this paper and changed to 

the nonlinear system model; Secondly, a complex non- 
linear system model is changed to an easy pseudo linear 
system model by the differential homeomorphism; Then 
the optimal control law is designed by solving the Riccati 
equation; Finally, performance of the obtained optimal- 
control for bilinear systems with a quadratic criterion is 
verified in the CSTR Chemical reactor example. 

The paper is organized as follows. Section 2 states the 
optimal control problem for bilinear systems. The solu- 
tion to the optimal control problem and the proof of the 
obtained results, based on the maximum principle are 
given in Section 3. Section 4 presents an example illus- 
trating the efficiency of control provided by the obtained 
optimal regulator for bilinear systems. Simulation graphs 
demonstrating better performance of the obtained opti- 
mal regulator are included. 

2. Problem Statement 

Consider bilinear systems described by the following dif- 
ference equations 
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where,  tx  is the state vector;  is the control 
vector; 

 tu
 ty  is the output vector; A , , B jN  are 

scalar matrixes of appropriate dimensions; jx  the j-th is 

Copyright © 2012 SciRes.                                                                                  ICA 



D. X. GAO  ET  AL. 275

component of state vector; Nx s the bilinear term; 
 is the scalar function of 

u  i
 h x x . 
Assumption 1. The relative degree of the output with 

respect to the input  is , that is 
y

 u t r  x1 0r
g fL L h  . 

Through exact linearization, we can change the bilin- 
ear system (1) to an easy pseudo linear system (2). 
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Then we can get the optimal control law base on the 
pseudo linear system (2). 

3. State Feedback Exact Linearization 

Transform bilinear system (1) into the general expression 
of nonlinear system as follow 
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where,  f x Ax ,  g x Nx B , ,f g  are continu- 
ously differentiable functions. 

Consider the nonlinear systems described by the dif- 
ference equation, according to Assumption 1, then get 
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where  x  is the partial differential homeomorphism. 
We can change system (3) to a new standard form as 
follow 
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In the expression (7),  and 
 are the nonlinear scalar functions. 

From the first to the 
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 1r   expressions are linear equa- 
tions, only an equation which contains the control vector 
 u t  is nonlinear. In order to make expression (7) lin- 

earizing, let 
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Expression (9) can be obtained 

1 2

2 3

r r

z z

z z

z v


                 (9) 

Expression (8) can be written as: , where, 1 1z v A z B
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Then the expression of control variable u is obtained. 
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4. Optimal Controller Design 

Nonlinear system (3) is transformed into equivalent 
pseudo linear system (2), where v is the control variable 
of the  standard form, the linear systems 
described by the following difference equation 

Brunovsky

1 1  B vA z  

where, z is the new state vector; v is the new control 
vector; 1  is the state coefficient matrix: 1A B  is the 
control coefficient matrix; system (2) is completely con- 
trollable.  

Select the quadratic performance index of system (2) 
as 


0

1
d

2
T T J z z v v t


  Q R        (11) 

where, Q is a positive-semi definite matrix; R is a posi- 
tive definite matrix.  

Lemma 1. The optimal control problem of system (2) 
with the quadratic performance index (11) is unique ex- 
istence if the system is completely controllable and ob- 
servable. It can be expressed as 

   1
1
Tt Pz t    v R B K  z t     (12) 

where v  is the optimal control vector, K is the optimal 
feedback gain matrix, that is 

1
1
TK R B P             (13) 
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P is the unique positive semi-definite solution of the 
 matrix equation Riccati 1
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The optimal control law of the system (2) can be found 

from the following equation where, the state vector 1  and 2  represent the tem- 
perature and density of initial production in the chemical 
reactor respectively. The control vector u represents the 
flow rate of cooling in the chemical reactor.  

x x
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where,  can be obtained by Equation (13). 1 2

Take Equation (6) into Equation (15), get 
, , rk k k

Through computing, we have 
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Compare (10) with expression (16), the optimal con- 
trol law of the nonlinear system (3) is obtained as follow 

       
 

1
1 2

1

r r
f f r

r
g f

u

L h x k h x k L h x k L h x

L L h x









   




  1

2

1 2

1 2

2.13 0.42

16.67 2.67

2.13 0.42

16.67 2.67

f x Ax
  

       
 

    

x

x

x x

x x

     (19) 

  1 1 2 2

1 20.2 0.125

0

g x Nx B N N B

x

    

   
  
 

x x

x       (20) 
f   (17) 

Then the optimal control law of the bilinear system (1) 
is 2r  , 
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According to the state feedback exact linearization ap- 
proach of optimal control for bilinear systems, we can 
get: 

The structure diagram is shown as Figure 1. 

5. A Simulation Example  
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Figure 1. The structure diagram of bilinear system. 
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Figure 2. The simulation curve of state vector x1(t).  
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Figure 3. The simulation curve of the state vector x2(t). 
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Figure 4. The simulation curve of the control vector u(t). 

Simulation results are presented in Figures 2-4. 

6. Conclusion 

We have presented a state feedback exact linearization 
approach of optimal control for bilinear systems. The 
precise optimal controller is designed by solving the 
Riccati equation and introducing state feedback with 
state prediction. At last, the simulation results in chemi- 
cal reactor show that the proposed approach is valid and 
easy to implement, the controller has a good convergence 
effect. 
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