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ABSTRACT 

Control of multi-agent autonomous swarms is studied for targeted flocking exercises. The desired decentralized control 
takes into account robustness against modeling uncertainties as well as bounded unknown forces. In this analysis, we 
consider the task of driving multiple agents to a moving “target region”, as inter-agent repulsive forces help spread out 
the agents within the region. An unconventional form of sliding mode control is implemented to provide the robust at-
traction towards the region’s center. For robustness a finite “boundary layer” is conceived, which corresponds to the 
desired target region. The flocking control forces are intentionally softened inside this target region, allowing agents to 
create a uniformly spaced formation guided by the inter-agent repulsion forces. Examples are given for moving circular 
and elliptical regions which illustrate the effectiveness of the proposed strategy. 
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1. Introduction 

Recently, decentralized control of multiple robotic agents 
has become an active area of research [1]. Mostly origi- 
nating from biological inspiration [2-4], the mathematical 
modeling and control of these “swarms” have advanced 
to tackle a multitude of problems, such as flocking [5-10], 
formation flight [11], area coverage [12-15], and even 
hostile interactions with other swarms [16]. This paper 
discusses a hybrid procedure for flocking and area co- 
verage. 

The specific act of “flocking”, where agents attempt to 
retain some proximity to their neighbors while aggregate- 
ing into a stable formation, has received significant at- 
tention. In 2003, Gazi and Passino proposed a first order 
model [5,6], in which agents were driven to stable flock- 
ing behavior by biologically inspired momenta structures. 
In 2007, Yao et al. extended this concept to a second 
order model using a sliding mode controller [11]. The 
controller ensures that the agents’ velocities follow the 
gradient descent of some desired momenta profiles. 

Olfati-Saber handled flocking for a second order model 
[7] where each agent’s motion is determined by artificial 
potential energy components. A virtual leader is intro- 
duced to prevent fragmentation into smaller groups by 
creating a common attractive target for all agents. The 
assumption of universal knowledge of the virtual leader 
by all the agents is shown to be unnecessary in 2009 by 
Su et al. [8]. 

Tanner et al. [9] demonstrates stability of a swarm 
with no leader for arbitrarily quickly switching network 
topologies, provided that the swarm remains connected. 
Zavlanos and Tanner [10] enforce the connectivity of the 
swarm through a hybrid control. This controller uses lo- 
cal estimates of the network topologies. 

Controlled distribution of agents over a wide area 
(called “coverage control”) is studied by Cortes et al. 
[12-14]. The majority of these approaches analyze static 
convex regions. The motion of the agents is determined 
using gradient descent of some artificial potential. 

A hybrid of “flocking” and “area coverage” control of 
agents inside a moving region is studied in Cheah [15] 
again using some artificial potential fields. The potential 
fields are described point wise in the space of the motion, 
including the inter-agent forces. Our work attempts to 
solve a similar problem, flocking and area coverage 
within a target region, but using a completely different 
approach. We extend the traditional sliding mode con- 
troller (SMC) [17] and introduce a new boundary layer 
concept to achieve the task. This controller competes 
against modeling uncertainties and bounded unknown 
forcing functions. The SMC robustly draws all agents 
towards the target region’s center. However when the 
agents are inside the region the control is softened al- 
lowing the inter-agent repulsive forces to determine the 
spacing between agents. The region’s perimeter is shown 
to be upheld successfully by properly selecting the con- 
trol gains. 

Copyright © 2012 SciRes.                                                                                  ICA 



M. BACON  ET  AL. 99

Classically, SMC is used for robustizing the control 
within a desirably small boundary layer [18]. Our novelty 
lies in performing SMC with a relatively large boundary 
layer which corresponds to the target region. When the 
steady state occurs, the swarm will be entrapped within 
that region. Another critical departure from the tradi- 
tional SMC is at the deployment of the boundary layer. 
As described in the text, this leads to a new and desirable 
feature: sliding occurs at the same time in all spatial di- 
mensions, instead of separate instants. 

,i j i j YY r i j  x : x x Yr

Y
uf

The resulting decentralized control guides the agents 
to achieve area coverage within the moving target region. 
The approach to the target by the agents is asymptotic, 
and collisions are avoided. Discussions on stability of the 
controlled dynamics, as well as the disturbance rejection 
capabilities are included. 

The paper is organized as follows: Section 2 covers the 
governing dynamics of the system and outlines the spe- 
cific objective. The third section develops the SMC and 
illustrates its robustness properties for a circular target 
region. We also provide an analysis of the pessimistic 
upper bounds for the inter-agent repulsive forces. The 
effectiveness of such a controller is demonstrated in Sec- 
tion 4. Section 5 expands the analysis to elliptical regions, 
and the results of this expansion are presented in Section 
6. Finally, conclusions are given in Section 7. As a 
common notation within the text, we denote vectors and 
matrices with a boldface font, and scalars with italics. 

2. System Dynamics and Problem 
Formulation 

In this paper we consider an M-agent swarm in a 2-D 
environment. Each agent’s dynamics are governed by the 
following equation 

  2r u
i i i i i i i im b Y    x x u f f  1, 2,i M 

2
i x thi

m

  (1) 

where  is the position vector of the  agent.  

i  and ib  are the mass and drag coefficients of that 
agent. They are assumed to be uncertain modeling pa- 
rameters with nominal values, m  and b , and bounded 
uncertainties, 
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m
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ui is the control force on the i-th agent and i i  is the 
inter-agent repulsion force which is unknown to the con-  
troller, except its conservative upperbound max

r r
i ff

Y

.  

These forces are directly linked to the geometric distribu- 
tion of the agents at any given moment. A focused effort 
on the formation of these forces and determination of 
their upperbounds are presented later in the text. The set 

 contains the positions of neighbors of agent i, defined i

by , where  is the radius  

of the neighborhood. We call it the radius of interaction. 
Only those agents that are in i , influence the dynamics 
of agent i. The i  term in (1) represents a friction-like 
unknown force (indicated by the superscript “u”) which 
opposes the motion. It is assumed to be smoothly varying  
and upperbounded, maxi

u uf f . 
The objective of the control is to drive all agents from 

a set of arbitrary initial conditions to within a moving 
circular target region. This region is defined by  

d circ , of which d  is the center and 

circ  is the radius. The control should be robust against 
modeling uncertainties (the mass and the drag constants) 
as well as the uncertain repulsion and disturbance forces. 
Initially, we will consider the target region to be a circle, 
and later the concept will be extended to an ellipse. 

r x x   2t x
r

rf

Inter-Agent Repulsive Force 

The intent of the repulsive forces is to create “personal 
space” for each agent i, as well as to avoid collision of 
the agents, by pushing the neighbors away. The resultant 
of such inter-agent forces on agent i is denoted by i . 
These forces come from those agents within the neigh- 
borhood of i and they meet the following criteria:  

0,i j Yr x x1) The force is continuous along  
and attains its maximum at 0 x xi j

2) They diminish at the edge of the neighborhood: 
. 

0
i j Y

r
i r x x

f . 

In this study, we take the formation of these forces as 
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        (3) 

They are, however, unknown to the agents except their 
pessimistic aggregate upperbound. As such, in the con- 
trol logic they are treated as part of the bounded uncer- 
tainty. 

3. Sliding Mode Controller (SMC) 

The objective of the control is to bring the agents to 
within the target region, which is taken as a circle for the 
first part of the paper. Following the traditional SMC 
formulations [17-19] one starts with the definition of 
error to be minimized, 

  e x x

x

2
i i i

              (4) 

which is the vector connecting an individual agent to the 
center d  of the target region. The sliding function is 
then defined as a Hurwitz combination of the error 

  s e e              (5) 

The sliding mode controller first reduces is  during 
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the “approach phase”, then it maintains i  within a 
confinement in the pursuant “sliding phase”. In both 
phases we utilize LaSalle’s theorem [20], to enforce the 
attracttivity to this confinement. A positive definite Lya- 
punov candidate for agent i is proposed as  

s

1
2 0V  

T
i iV  

T
i i is s

0is s

               (6) 

of which the derivative is forced to be negative 

                (7) 

Combining (1), (4) and (5), results in 
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The control, , is selected such that the  dynamo-  i

ics behave according to 1 2
i

i i
i

K K 
s

s s
s

s

 

 

 , fulfilling 

the condition in (7). 
The proposed i  dynamics, ignoring the uncertainties 

can be achieved with the deployment of a control as 

1 de x 2
i
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i
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x
s
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Substituting (9) into (8), but including the uncertain 
terms  
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        (10) 

Considering the worst case contributions of the uncer- 
tainties;  

, 1i worst case iK K    s s 2 max max
r u i

i

f f
s

s

2 m
r

    (11) 

Selecting ax max
uK f  1sef  makes ,i worst ca iK s s

0 2
 , 

which forces i  at all times. Notice that iV s  is 
a vector. For small i  values, the s i i  term in the 
control (9) generally brings undesirable control chatter, 
i.e., small departures of 

s s

i  from zero may result in 
large swings in ui. These swings (chatter) can be allevi- 
ated using a saturation function approximation [17-19] 
within a boundary layer 

s

i s

 
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i i

sat r


  
 

   

s
s
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The treatment up to this point is conventional except 
the large boundary layer expression  . The system’s 
behavior is robust outside this boundary layer, and the 
controller (9) is designed to drive the system towards 

i s . Notice the selection of (12) for  , at the steady 
state (i.e. ), the error  remains bounded within 0ie ie

i d i circr



   x x e           (13) 

This constitutes the critical departure from the conven- 
tion and the essence of the novel contribution in this pa- 

per.   is not a small boundary width, but large, and it 
compares to the target region rcirc. Robust controller (9) 
is softened by the saturation function (12) replacing 

i i . The objective of this softening is to let the in-
ter-agent repulsion forces, i , take charge in the distri-
bution of the agents within the target region. Notice that 
the boundary layer defined in (12) is circular in (s1, s2) 
space, and so is the respective (x1, x2) counterpart, as per 
(13). This feature points us to circular target regions most 
naturally. 

s s
rf

In summary, our implementation of the boundary layer 
is novel and substantially different from the traditional 
usage. The concept is usurped here to enforce a desired 
“target state” as opposed to “control chatter abatement”. 
Thus,   is selected as a finite quantity here, by defini- 
tion, as opposed to a small number in the conventional 
deployment, where the size of the boundary layer also 
influences the control chatter cut-off frequency. We bring 
a novel philosophy by using the “boundary layer” con- 
cept to bound the final distribution of the agents. This 
provides not only the intended chatter abatement [18,19], 
but also softens the attraction of the target region’s center. 
Outside this region, the robustizing term is in full effect 
and drives the agents towards the region. Inside the re- 
gion however, it is tolerant towards the inter-agent spac- 
ing forces (i.e., repulsion). The control expression in (9) 
becomes 

 1 2 , i
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where the known nominal values of im  and i  are 
also included. Substituting (14) into (8), the -dyna- 
mics become 

 

 1 2

1

,

i i i d i i
i

r ui
i i i i

i

m b
m

m K K sat





  

 
           

s e x x

s
s s f f

s

   

  (15) 

1) When is   , the dynamics is in the approach 
phase,  , 1sat i s . The agents are likely to be distant 
from each other, as per the definition of si given in (5), 
therefore the repulsive forces are expected to be small. 
The derivative of the Lyapunov function is 

   

1 2
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i i i i d i i
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i
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In order to ensure  , we select 

 2 max

1 u
i d iK f m b

m
     e x x         (17) 
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which guarantees the attractivity of the boundary region 

i s . 
2) When  , ,sati i i   s s s

uf
, the agents are 

more compactly positioned and the i  term grows to be 
more pronounced. Equations (7) and (15) yield 
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to enforce i , at the border of the boundary layer, 
that is, where i , we consider the most pes- 
simistic case for uncertainties and select the robustizing 
gain as 

 i d ib   x 2 max max

1 r uK f f m
m

    e x     (19) 

This yields the attractivity of the swarm to within the 
target circle. Once within the boundary layer, the con- 
trolled dynamics would comply with 
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Equation (20) represents a low pass filter against the 
perturbation,   (self evident from the previous equa- 
tion) which entails the uncertainties. This filter attenuates 
high frequency components of the is  dynamics ema- 
nating from perturbations with a cutoff frequency at 

2
1

i
i

Km
K

m



   
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              (21) 

This strategy is borrowed from [19], which also con- 
tains experimental validation of the concept. Entrapment 
of the agents within the boundary layer makes the ro- 
bustizing part of the controller, 2 iK s

f uf

2

, less effective. 
Then, the agent distributions are primarily influenced by 

, as well as i  (which is small as velocities are ex- 
pected to be small). This yields the desired “area capture”. 

r
i

Notice that (19) suggests a more conservative feed- 
back gain, K , than (17). In order to maintain continuity 
at the i s

r

 boundary, we use (19) throughout. 

Evaluation of the Repulsive Force Bound 

The upper-bound, maxf , used in (19) represents the larg- 
est resultant force exerted on an agent due to the inter- 
agent repulsions and it is assumed known a priori. We 
present here a numerical procedure to assess that value. 
When the agents are forced within the target circle, they 
are expected to space out in a nearly uniform manner. 
Consequently, those agents at the periphery would be 
exposed to larger net repulsion forces than those inside. 

rTo estim , we 

ed a
within the circular target region. This formation is cre- 
ated by positioning the agents over nested circles with 
roughly uniform spacing (i.e., 1 2 r

create a model distribution of uniformly spac gents 

     in Figure 1 
for 30 agents.). We then numerically determine the re- 
sultant repulsion forces, using (3), on agents at the pe- 
riphery (e.g., A in Figure 2) due to agents in the 
neighborhood (shaded in the figure). Considering iso- 
tropic and uniform distribution of agents within a circle, 
all peripheral agents should be exposed to similar calcu- 
lated max

rf  values. Target geometries other than a circle 
would bring anisotropic max

rf  analysis. This point alone 
confines this scheme to circular targets. We will show 
the complications even for the elliptical case in latter 
sections. 

4. Case Studies for Circular Targets 

In order to demonstrate the effectiveness of the proposed 
control strategy, we present some case studies. The pa- 
rameters in Table 1 are common to all cases considered. 
The circular target is again defined by its center, 

  2
d t x , and radius, circr . 
Case study 1 is on a group of 30 agents aggregating 

within a non-moving circular region with 2circr  , using 
the aforementioned evaluation of max

rf . The parameters  
 

1

A 
2

r

circr  

 

Figure 1. Model distribution of 30 agents. 
 

circr

r
Af  A 

 

Figure 2. Neighborhood of agent a. 
 

Table 1. Simulation parameters. 

= 0.05 Yr = 3 

ate an extremum for these i.e., maxforces, f

m = 1 m

= 0.05  b = 1 b

 = 1 1K = 5  
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im  and ib  are fixed but randomly selected based on a 
uniform probability distribution within the known bounds 
of uncertainty ( m  and b ). We also consider an un- 
known, time-varying friction-lik

  20 5sin 2u
i i it  f x x   which is only known to 

the controller by its upperbound max 25uf  . 
Figure 3 shows the time-lapsed frames of the dynamo- 

ics. The agents inside the region remain almost evenly 
distributed, which indicates that our prediction of supre- 
mum of repulsion forces, max

rf , is appropriate. The first 
two fr s do not have as many agents due to their se- 
lected remote starting positions. 

We introduce a numerical metric for a quantitative  

ame

co n

d b

mpariso  among various agent distributions vis-à-vis 
the target region to be occupied. It is called the coverage 
index and define y: 

minC r A M                (22) 

where minr  is the average of the m distances  minimu of 
each agent 

min ,min1

M

ii
r r M


               (23) 

ri, min is the distance of agen  its nearest neighbor; A is 
the area of the target region, and M is the number of 
agents. This dimensionless quant

t i to

ity, C, is close to 1 for a 
uniformly spaced distribution within the target region. C 

 

  
 

  

ud  agents driven to a fixed target circle. Figure 3. Case st y 1: 30
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> 1 and C < 1 would imply dispersion outside the target 
region and bunching up within the target region cases 
respectively. 

The variation of C in time is 
this case study. The values marked

age fully describes the slightly bunched cov- 
rage in the last frame sec.), 0.7C   simply in- 

dicates that the determ max
r

shown in Figure 4 for 
 correspond to the 4, 6 

and 8 sec. snapshots depicted in Figure 3. The measure, 
C, of cover
e  (i.e., 8 

ination of f  was over conser- 
vative. 

Case study 2 (Figure 5) shows 60 agents tracking a 
moving circular region of radius 2, the center of which is 
moving accor    3cos 2

T
t t    which 

. All of the agents again 
aggregate inside the region despite the parameter uncer- 
tainties, upper-bounded unknown forces, and inter-agent 
repulsion forces. 

Following the quantitative discussion on Case study 1 
we present the coverage index variations for this example 
(see Figure 6). Again, the corresponding points of 4, 5, 6 
and 10 sec. snapshots in Figure 5 are displayed in this 
figure. 

One ca  that 0.93C   declares a uniform and 
desirable filling of the circular target at 10 sec. This is 
achieved despite the uncertainties in the dynamics and 
moving target region, which shows a very effective con- 
trol. 

2
i s  are shown in Figure 7. The 

agent rs the sliding phase within 0.8 seconds, which 
roug esponds to 4 times the time constant  

Expected from the trajectories, the d
π/2 and π sec., in x  and x  direction, respectively. The 

sliding and the entrapment of the agents within the target 
circle. 

5. Analysis for Elliptical Targets 

The ability to manage a swarm in different shapes has 
many applications, such as squeezing agents through a 
narrow strait. As a natural extension from the circular 
distribution previously presented, we expand the analysis 
to an elliptical flocking. Cheah et al. [15] also treat this 
type of target region, as mentioned, using potential func- 
tions for control. The approach is completely different in 
this paper. While we study the operation in 2-D, the con- 
cepts can be easily extended for an n-D system. 

We define the target region, by its center 

ding to 3sin 4d  x
is shown as a trace in Figure 5

n notice

Time traces of 
 ente

hly corr

11 0.2  
ote the slidi

K seconds of (15) starting from large values of 

is . N d of ng manifol 2i s  is unnoticeably 
sma gure. 

Figure 8 shows the control force, repulsive forces and 
the uncertain force on the same agent. The resultant of all 
forces on the agent at the steady state is periodic in na- 
ture, corresponding to the motion of the moving region. 
 

ll in the fi

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time

ominant periods are 
1 2

general features of Figure 8 remain the same for all the 
agents with some small numerical variations. Another 
point of interest is that the oscillatory behavior starts at 
about 0.8 sec., which corresponds to the initiation of 

  2
d t x , 

and the oblique ellipse by     1
T

d d  x x T x x , where 
2 2xT  is a symmetric matrix. This matrix contains 

information on the scaling factors of major and minor 
axes (from here on denoted by 1r  and 2r ), as well as 
the angle of the major axis  . In the interest of space we 
depict these features in a later figure. 

5.1. Modifications to the Controller 

We again define a boundary layer, but this time as an 
elliptical region such that it becomes the target ellipse. 
We adopt a new vector norm for this process 

T

T
y y Ty               (24) 

where the subscript T stands for transformed state. Then 
the development of Section 3 is repeated, to deploy the 
boundary layer concept. The goal is to ensure robust 
attraction towards the boundary layer (i.e., the target 
region) i T

s . That means at the steady state, when 
the dynamics settle, we expect 

C

 

Figure 4. Variation of the coverage index C in Case study 1. 

1i T




 e               (25) 

which implies an entrapment within the elliptical target. 
In order to achieve this, we use the same robust control 
logic as in Equation (14), except the new definition of 

 ,sat y  as 

 
1 for 

,
for 

T

T T

sat



 

 y

in the same sense as before, i.e., assisting 

  
y

y y
       (26) 

Notice that in (14) the robustizing force with K2 is still 
acting 

T 0i i s
 

s . In summary, introducing the norm definition of 
(24) the circular target can be converted into an ellip-   
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Figure 5. Case study 2: 60 agents tracking a moving circular region.  
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Figure 6. Variation of the coverage index C in Case study 2. 
 

 

Figure 7. Sliding functions of an agent from Case study 2. 
 

 

Figure 8. Forces exerted on an agent from Case Study 2. 

tical one. The remainder of the control operation stays 
the same, except the determination of max

rf . 

5.2. Estimating the Upperbound of the Repulsion 
Force for an Elliptical Configuration 

As proposed in Section 4, max
rf  quantity is needed as 

the a priori knowledge in the control. A conservative 
upperbound for this quantity can be obtained if we con- 
sider bunching of the agents within a circle of radius r2, 
the minor axis radius, (Figure 9), instead of evenly dis- 
tributing them inside the target ellipse. We evaluate the 
repulsive forces in this distribution using the similar 
arguments as in Figures 1 and 2. 

In an elliptical distribution, however, the directional 
isotropy of the maximum repulsive forces is lost. There- 
fore we divide the domain into 4 separate zones (Figure 
10) during the approach phase. These areas are deter- 
mined by the aspect ratio of the target ellipse, and are 
used to schedule the gains, compensating for the lack of 
isotropy. Figure 11 shows how the repulsive forces vary 
when agents are distributed evenly within the entire el- 
liptical region (with 1 4r   and 2 2r  ). Typically, the 
outside agents (i.e., those which are on the periphery) 
receive the highest repulsion forces. Furthermore, the  

 

 

Figure 9. 80 agents in a worst-case distribution inside the 
target ellipse. 
 

 

Figure 10. Areas of scheduled control gains. 
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Figure 11. Repulsive force variation along the perimeter o

ution of these forces is expected to be symmetric 
with respect to the major (or minor) axis. The slight 
asymmetry present in this Figure 10 is due to the se- 
lected distribution of the agents (not shown) which is not 
perfectly symmetric. However, the maximum repulsive 
forces in regions I and III are very close (as well as those 
in II and IV), and they are taken as equal. That is, the 
values at p1 and p2 are used for the zones II and IV, and I 
and III respectively. 

To accommodate the difference in repulsive force 
bounds in different regions, we utilize a more conserva- 
tive strategy using Figure 7 in zones II and IV, and scale 
the outcome down for zones I and III according to the 
ratio of the forces at p1 and p2 (Figure 11). The precise 
value of this ratio for a given ellipse and radius of inter- 
action is unnecessary and a simple approximation can be 
used instead. Figure 12 shows the ratio of the force at p2 

noted as 2
r

f 
an ellipse. 
 
distrib

(de f ) to the fo p1 (i.e., 1
rrce at f ) for config

r and minor axes, with the aspect ratios varying be- 
tween 0.3 and 1. This figure was created using sample 
elliptical configurations and evaluating the maximum of 
repulsive forces in the different regions. This was per- 
formed for 100, 200, 300, 400 and 500 agents, and Fig- 
ure 12 illustrates the average of these evaluations just to 
reduce its dependence on the agent count M. Aspect ra- 
tios smaller than 0.3 were not considered due to numeri- 
cal and coding complexities arising in these thin ellipses. 

A closer look at Figure 12 reveals an almost constant 

- 
urations with varying interaction radii and different ma- 
jo

1 2
r rf f  ratio, which averages to 0.83 for aspect ratios 

between 0.3 and 0.1. This ratio is adopted for the robust 
control formation here. Bear in mind that we are reduce- 
ing an already overly-conservative value from Figure 7, 
and so the exact ratio for a specific geometry is not nec- 
essary to determine a further conservative value for 

1 2

 

Figure 12. Ratio of force at p2 to p1 for varying ellipse geo- 
metry. 
 

We should state, however, that the impact of the limi- 
tation of 2 10.3 1r r   is left for future research. The 
deployment of this routine for very thin elliptical forma- 
tions requires different procedures in non isotropic SMC. 
We also whish to extend the similar needs for target re- 
gions that are not elliptical, and further, non convex. The 
proposed logic which stems from the SMC philosophy 
fails, as such regions t have a ter of symmetry. 
Even if they do, the anisotropy can be so strong that it 
precludes the creation of the equivalent of Figure 12. 

do no  cen

Note also that both 1  and  K si 2 ,i i iK sat  s s s  
terms in (14) are the forces pointing the center of the 
target ellipse. Because of the sizable boundary layer, the 

1 iK s  term is non-negligible at the border of the region. 
In order to create the elliptical distribution, the 1K  term 
is also scheduled in the four regions (I-IV) based on the 
proportionality of the max

rf  selections for the respective 
regions as described above. 

ase Study 3, illustrated in Figure 13, uses an elliptical 
region with major axis 1 4r

6. Case Studies for Elliptical Targets 

C
, minor axis 2 2r  , and 

obliqueness 

r rf f . 

π 6 . The matrix 

0.1094 0.0812

0.0812 0.2031



 

 
   

T            (27) 

contains this information, and the target region again 
follows a similar desired trajectory (shown by a trace) 

   3sin 4 3cos 2
T

d t t   x . We use 80 agents, and  

again add a drag force   20 5sin 2u
i i it  f x x   of  

which only the upper bound max 25uf   is known to the 
controller. 

After 10 seconds, all the agents are collected inside the 
region. The area near the end of the major axis is not 
fully occupied, and agents are somewhat bunched near 
the middle due to the formation of estimated max

rf  which    
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s tracking a moving elliptical target. Figure 13. Case study 3: 80 agent 
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is over-conservative along the major axis (regions I and 

les , c
esi e  with th

We again use the quantitative repres
age index, C, for this case. It is shown in

 an outcome due to the ove rvative max
r

III in Figure 10) than it is in the transverse direction (re- 
gions II and IV). Neverthe s  the agents are attra ted to 
within the d r d target region together eir 
neighbors. 

entation of cover- 
 Figure 14, with 

the marked values at 4, 5, 6, and 10 sec. Notice 
the  10 0.65C t   , which represents a somewhat 
bunched up distribution inside the target region. This is, 

fagain, r conse  
n along the major axis. 

Figures 15 and 16 show the time variations of the slid- 
ing function and the control forces respectively. We no- 
tice similar dynamics to those in Case study 2: the sliding 
occurs after approximately 0.8 seconds. The net force at 
the steady state is again periodic in nature, related to that 
of region’s motion. Same argument can be made here for  
 

selectio

 

Figure 16. Forces exerted on an agent during in Case study 
3. 
 
the fluctuation of the x1 and x2 directional forces, as we 
presented over Case study 2. 

7. Conclusions 

In this article we present a decentralized, scalable, sliding 
mode controller capable of driving individual agents of a 
swarm into desired circular or elliptical regions, hile 
maintaining a roughly uniform distribution. This con- 
troller uses a novel large boundary layer concept and 
ensures that the agents reach the target region. The out- 
look of this distribution has direct relation to the form of 
inter-agent repulsion forces and their a priori known 
upperbounds. A way of estimating these upperbounds is 
also presented. 

The controller is robust against parametric variations 
in the model and bounded uncertain forces. It is decen- 
tralized, with the agents only knowing the desired target 
region and the behavior of other agents present in their 
neighborhood. 

Although the assumed distributions were all calculated 
in a 2-D space, the controller logic is scalable for higher 
dimensions. This treatment could find applications of 
swarm aggregation, area coverage, and herding of an- 
other swarm. 
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