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ABSTRACT 

Power transformer outages have a considerable economic impact on the operation of an electrical network. Obtaining 
appropriate model for power transformer top oil temperature (TOT) prediction is an important topic for dynamic and 
steady state loading of power transformers. There are many mathematical models which predict TOT. These mathe-
matical models have many undefined coefficients which should be obtained from heat run test or fitting methods. In this 
paper, genetic algorithm (GA) and particle swarm optimization (PSO) are used to obtain these coefficients. Therefore, a 
code has been provided under MATLAB software. The effects of mentioned optimization methods will be studied on 
improvement of adequacy, consistency and accuracy of the model. In addition these methods will be compared with the 
Multiple-Linear Regression (M-L R) to illustrate the improvement of the model. 
 
Keywords: Top-Oil Temperature (TOT); Genetic Algorithm (GA); Particle Swarm Optimization (PSO); Multiple  
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1. Introduction 

Large power transformers are the most valuable assets in 
electrical power networks. In order to improve trans-
former utilization without thermal criteria violation such 
as top oil temperature (TOT), and hottest spot tempera-
ture (HST), TOT and HST need to be predicted accu-
rately in dynamic loading of transformer and maximum 
steady state loading (SSLmax) [1,2]. Accurate TOT and 
HST prediction allows system planners to plan optimally 
for transformer purchases. Planners can save millions of 
dollars if even two or three percent improvement can be 
achieved in TOT and HST prediction [3]. Some mathe-
matical models are introduced for predicting TOT. Un-
defined coefficients of these mathematical models can be 
obtained from heat run experiment or fitting methods 
through experimental data such as multiple linear regres-
sion method and optimization methods like PSO and GA 
which will be studied in this paper. Other choices for 
TOT modeling are Neural Networks (NN) [4] and neuro- 
fuzzy systems [5,6]. Neural Networks methods are not 
based on mathematical expression between TOT and 
other variables but only are used for an appropriate map-
ping among inputs and outputs. 

In this paper, three models are introduced for predict-
ing TOT. Then, GA and PSO are used so to define coef-
ficients of models through experimental data. One of the 
main challenges of power transformers thermal modeling 

is the instability of obtained coefficients from similar 
experimental data. In this paper, the objective is propos-
ing appropriate methods in order to attain consistence 
coefficients. To prove the efficiency of PSO and GA in 
decreasing the range of coefficients changes metrics in-
troduced in [7] are used to assess adequacy, consistency, 
and accuracy of the model. Therefore, a code has been 
provided under MATLAB software. The organization of 
the paper is as follows; mathematical models are studied 
in Section 2, algorithms used for defining coefficients 
through experimental data are discussed in Section 3, 
Section 4 illustrates coefficients obtained from algori- 
thms and finally, the model is evaluated in Section 5. 

2. Mathematical Models 

2.1. Top-Oil Temperature Rise over Ambient 
Temperature 

This is a classical model for predicting TOT of power 
transformer. TOT rise over ambient temperature is de-
fined in a differential equation as below [8]: 

0
0 0

d

d uT
t


               (1)    

where 0 is top-oil temperature rise over ambient tem-
perature, T0 is time constant at nominal load and u is 
ultimate top-oil temperature rise due to load and is ex-
pressed as the following equation: 
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where fl is top-oil temperature rise over ambient tem-
perature at nominal load, R is the ratio of load loss at 
rated load to no-load loss, I is ratio of the specified load 
to rated load and n is oil cooling state exponent. Assum-
ing n ≈ 1, applying Euler discretion rule and after sim-
plifying, TOT rise over ambient temperature is given in 
below equation: 
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And by substituting coefficients k1, k2 and k3: 

     2
0 1k k I k k    2 0 31k k          (4) 

This simplified model does not take dynamic variation 
of ambient temperature on TOT into account and in addi-
tion model accuracy is not acceptable.  

2.2. Nonlinear Top-Oil Model 

Nonlinear Top-Oil Model proposed in [9,10] explains 
dynamic variation in ambient temperature and is defined 
as below equation: 

0
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d
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In fact, this model is the correlated form of the model 
proposed in IEEE. To use Euler discretion method and n 
≈ 1 we have: 
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2.3. Swift Model 

Swift model proposed in [11] is the change in exponen-
tial coefficient of oil in nonlinear model: 
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After discretion of Equation (7): 
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Because of the form of nonlinearity in Equation (9), 
top[k] appears implicitly on both sides of the equation 
which makes training much difficult [7]. None of these 
models perform adequately when using parameters ach- 
ieved from test report. However, all of these models per-
form adequately when their parameters are selected to 
optimally fit measured data [7]. When exponential coef-
ficient of oil is one, it means that pumps and fans are 
working at rated condition; in this situation swift model 
is equal to the nonlinear top-oil model. Since fans and 
pumps are ON during the experiment, both of the models 
would have the same discrete model. The performance of 
first model is not acceptable due to excluding variations 
of environmental temperature. It was mentioned that 
Swift model and nonlinear model are equal so Equation 
(6) is used as final model and coefficients will be ob-
tained through experimental data.  

3. Optimization Algorithms 

In this paper, three methods are used so to obtain the 
coefficients of Equation (6). Our target is comparing the 
results of proposed methods as well as the improvements 
in the limiting of variations in the coefficients. 

3.1. Multiple-Linear Regression (M-L R) 

The method used for multiple-regression is an extension 
of which used for single regression. For a model with 
three independent variables and in scalar form, output is 
rewritten as: 

               (10) 

where: 
x1: Load value;  
x2: Ambient temperature;  
x3: TOT(k − 1); 
y

: Predicted TOT(k); 

y: Actual TOT(k);  
: Error of prediction; 
k1, k2, k3: Coefficient to be determined. 
In vector form, Equation (10) can be written 

0Y Y X K K


          (11)        

where Y is a 3  1 vector, X is a 3  k matrix of sampled 
variables, K is a k  1 vector of the coefficients, K0 is a 3 
 k vector of constant scalar values and E is a 3  1 vec-
tor of random errors. In order to determine coefficients, 
those values are selected when the squared error between 
the actual TOT and the predicted TOT is minimized. 
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This criterion can be expressed as: 

 2 2mini imin y y    
          (12) 

The least-squares estimate coefficients as below: 

    1T TK X X X Y

               (13) 

In order to find the coefficients that minimize the 
squared error, Equation (12) can be solved with optimi-
zation algorithms such as GA and PSO. 

3.2. Genetic Algorithm 

The genetic algorithm (GA) is an optimization and search 
technique based on the principles of genetics and natural 
selection. GA allows a population composed of many 
individuals to evolve under specified selection rules in a 
state that maximizes or minimizes the fitness function 
[12,13]. N data-sets are selected in specific domain. 
Data-sets are substituted in fitness function and they are 
scaled and then all of them are scored. Children of the 
next generation can be produced from parents in the cur-
rent generation according to the following methods: 
 Selection of parents (Elite). 
 Cross over.  
 Mutation. 

The procedure will continue until one of the stopping 
criteria is met. Some of the stopping criteria are dis-
cussed in below: 
 A solution is found that satisfies minimum criteria. 
 Allocated budget (computation time) reached. 
 Fixed number of generations reached. 
 Successive iterations no longer produce better results. 

In this paper, fitness function is defined as the follow 
equation: 
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where, N is the number of data used for finding of the 
coefficients.  

3.3. Particle Swarm Optimization (PSO)  
Algorithm 

In the PSO algorithm each individual is called a particle, 
and it is subjected to a movement in a multidimensional 
space that represents the belief space. Particles have 
memory and thus retain part of their previous state. There 
is no restriction for particles to share the same point in 
belief space, but their individuality is preserved in any 
case. Each particle’s movement is the composition of an 
initial random velocity and two randomly weighted in-
fluences [14]:  
 Individuality: the tendency to return to the particle’s 

best previous position. 
 Sociality: the tendency to move towards the neighbor-

hood’s best previous position. 
The velocity of each particle in the swarm is updated 

by using the following equation: 
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where, 
vi(t): the velocity of particle i at time t; 
xi(t): the position of particle i at time t; 
w, c1, c2: user-supplied coefficients; 
r1, r2: random values regenerated for each velocity 

update; 
ˆ ( )ix t : the individual best candidate solution for parti-

cle i at time t; 
g(t): the best swarm’s global candidate solution at time 

t. 
The objective function is the same function in GA 

method.  

4. Coefficients Calculation 

In order to increase precise of the model, all experimen-
tal data is converted to per unit values. Nominal values 
are: 

P = 5 (MVA) 

TOT = 55 (˚C) 

ambient = 35 (˚C) 

Using per unit values is an essential fact which is 
sometimes forgotten. For example, if values are not con-
verted to per unit, load will have greater value comparing 
to temperature. In this case, changes of load would be 
greater comparing to thermal changes which results in-
appropriate effect of temperature on the model. In addi-
tion, using per unit values would decrease the range of 
coefficients changes. Coefficients obtained from PSO, 
GA and linear regression in five time intervals are given 
in Table 1. k1 is the most important coefficient since it 
shows the effect of load on temperature. The range of 
coefficients changes is limited in an appropriate model. 
In order to obtain global coefficients, all data is used. 
Results are given in Table 2. In order to show the per-
formance of the model as well as its precision and accu-
racy in TOT modeling, limited data numbers are used to 
predict TOT in all ranges and then results are compared 
with the original values. Estimated and actual values of 
TOT are compared in Figure 1. Table 3 shows error of 
predicted TOT. 

The load range used for testing the model is wide and 
results show that PSO has a good performance. Mean 
relative error is not the only parameter which evaluates   
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Table 1. Coefficients of the model. 

 No. Data-set k4 k3 k2 k1 k1 Tolerance 

1 0.05293951 0.04059169 0.39459100 0.51542845 

2 0.05306756 0.04860554 0.39221286 0.50906984 

3 0.05158763 0.10697031 0.36450539 0.48447931 

4 0.05382795 0.04260348 0.39145473 0.51444735 

PSO 

5 0.05185671 0.04227057 0.39546324 0.51368205 

2.99% 

1 0.05112283 0.15620790 0.34168280 0.45287547 

2 0.04491779 0.14171454 0.35643632 0.46037598 

3 0.01939867 0.20874699 0.34582685 0.43172918 

4 0.04911735 0.11572956 0.36144769 0.47483254 

GA 

5 0.04426151 0.19501470 0.33340073 0.42992850 

3.75% 

1 0.05293929 0.04059931 0.39458796 0.51542408 

2 0.05306770 0.04860280 0.39221415 0.50907125 

3 0.05161140 0.06322293 0.39779668 0.47171893 

4 0.05382795 0.04060303 0.37145499 0.52544759 

Multiple  
Linear-Regression 

5 0.05185801 0.04225393 0.39546972 0.51369082 

5.7% 

 

 

Figure 1. Comparison between predicted TOT and actual TOT. 
 

Table 2. Obtained coefficients from all of data. Table 3. Error of predicted TOT. 

 k1 k2 k3 k4 

PSO 0.53233 0.40959 0.00514 0.05289 

GA 0.60565 0.47455 –0.14152 0.06259 

M-L R 0.53705 0.44082 0.00671 0.03300 

 Mean Relative Error (%) Max Relative Error (%)

PSO 0.0247 1.0803 

GA 0.3962 2.5172 

M-L R 1.1355 1.9361 
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performance of the model. High value of error in predic-
tion causes a mistake in choosing the load of transformer 
and in many cases this mistake raises the oil temperature 
dramatically to a high degree and causes harmful effects. 
Predicting TOT higher than its real value makes the op-
erator to reduce loading which is not harmful for trans-
former. However, if the predicted value of TOT is fewer 
than its original value, operator would increase load and 
it may cause actual TOT to become higher than its per-
mitted value while the predicted TOT is in permitted 
range. Repeating this action would accelerate the aging 
process. 

5. Model Assessment 

5.1. Adequacy 

Adequacy measure whether the model has an appropriate 
structure to capture the features of the process being 
modeled. Residual versus fitted value diagrams are used 
to examine the adequacy of the model [7]. A typical dia-
gram of residual versus fitted value is shown in Figure 2. 

Figure 2(a) shows example of a good adequacy but 
Figure 2(b) means nonlinearity in the model and there 
will be the need for having other variables. On the other 
hand, some variables have not been considered in the 
model. R(i) verses TOT(i) is illustrated in Figure 3. It is 
obvious that the model is adequate and does not need 
additional variables. 
 

 
(a)                           (b) 

Figure 2. Typical residual vs fitted value. 
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Figure 3. Achieved residual vs fitted value. 

5.2. Consistency 

Consistency is a quantitative measuring of the model’s 
ability and solution method to produce the same model 
parameter when training to use similar data. A standard 
deviation (STD) of parameters is used to examine con-
sistency. For this purpose, “p” independent but similar 
data-sets are used for calculating coefficients. The STD 
of the model coefficients is calculated with Equation 
(16): 

 2

1

p

p ii
k k


 s              (16) 

Table 4 shows STD for each coefficient. It is clear that 
standard deviations of coefficients obtained from opti-
mization algorithms have smaller values. 

5.3. Accuracy 

The typical metric used for assessing model accuracy is 
R2. The R2 metrics measure how well the predicted val-
ues (i.e., TOTpredicted) capture the variation of measured 
values (i.e., TOTactual): 
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where, SSR is the sum of residuals square and measures 
the variation of predicted values. The variable SST is the 
total variation of measured values. The R2 value close to 
1 indicates that values of the model closely match those 
which are measured. Table 5 shows the values of R2 for 
three models.  

6. Conclusion 

In this paper, three models are introduced for predicting  
 

Table 4. STD of achieved coefficients. 

STD 
Coefficient 

PSO GA M-L R 

k1 0.02611 0.03833 0.04129 

k2 0.02608 0.02258 0.02145 

k3 0.05708 0.07648 0.01923 

k4 0.00184 0.02565 0.00183 

 
Table 5. Obtained value of R2 from three models 

Model R2 

PSO 0.92609 

GA 0.92638 

M-L R 0.92133 
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top oil temperature (TOT) in power transformers. GA 
and PSO are used so to define coefficients of models 
through experimental data. PSO algorithm leads to the 
best performance with considering the achieved results. 
The main success is limited ranges of coefficients espe-
cially for k1 (effect of load on temperature). In addition, 
mean relative error becomes near zero. In the paper was 
shown that nonlinear model is a good model itself, but 
obtaining the coefficients with traditional method cause 
inappropriate performances of the nonlinear model. New 
optimization algorithms improve performances of this 
model related to multi-linear regression. Additionally, it 
was depicted that using optimization algorithms im-
proves the model adequacy, consistency as well as accu-
racy. 
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