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Abstract 
 
The real-time fault diagnosis system is very important for steam turbine generator set due serious fault re-
sults in a reduced amount of electricity supply in power plant. A novel real-time fault diagnosis system is 
proposed by using Levenberg-Marquardt algorithm related to tuning parameters of Artificial Neural Network 
(ANN). The model of novel fault diagnosis system by using ANN are built and analyzed. Cases of the diag-
nosis are simulated. The results show that the real-time fault diagnosis system is of high accuracy and quick 
convergence. It is also found that this model is feasible in real-time fault diagnosis. The steam turbine is used 
as a power generator by SONELGAZ, an Algerian company located at Cap Djinet town in Boumerdes dis-
trict. We used this turbine as our main target for the purpose of this analysis. After deep investigation, while 
keeping our focus on the most sensitive parts within the turbine, the weakest and the strongest points of the 
system were identified. Those are the points mostly adequate for failure simulations and at which the de-
signed system will be better positioned for irregularities detection during the production process. 
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1. Introduction 

The first role of the industrial diagnosis is to increase the 
availability of the industrial installations to reduce the 
direct and indirect maintenance costs of the production 
equipments. The direct costs of this maintenance are 
mainly those related to the various spare parts. On the 
other hand, the indirect costs are essentially due to the 
off line production [1,2]. The increase repair time influ-
ences negatively on the indirect maintenance costs. 

The objective of this paper is to minimize this waiting 
time for detecting the failure in the industrial installa-
tions. The proposed model will supervise the system, 
detect and localize any faulty in real time. An important 
characteristic of the proposed model is that it has the 
possibility of detecting and locating several failing points 
at the same time. For example: an increase in the vibra-
tion level in the four landings of the turbine. The data 
vectors for the training in the Artificial Neural Network 
(ANN) model are intervals limited by two values, mini-
mum and maximum. The used symbol “1” represents a 
normal functioning and the symbol “–1” represents a 
failure situation. The training algorithm used for the 
network is the Levenberg-Marquardt algorithm, the choice 

of this algorithm is that it gives a fast training of the 
ANN compared to the other algorithms of decent of gra-
dient [3,4]. The programming was completely developed 
under MATLAB 7.5. 

2. Steam Turbine Presentation 

The study case concerns a steam turbine of an Algerian 
electrical production thermal plant SONELGAZ located 
at Cap-Djinet, Boumerdes. The turbine transforms the 
thermal energy contained in the vapor coming from the 
boiler into a rotation movement of the tree. Mechanical 
work obtained is used to actuate the alternator. It is 
composed of three bodies, HP body (High Pressure), MP 
body (Average Pressure) and BP body (Low Pressure). It 
has a power and a nominal number of revolutions of 176 
MW and 3000 rpm respectively. The line of tree rests on 
four landings, each one of these landings thus carries two 
relative vibration sensors, it is the total of eight sensors 
on all the line of tree, but for model simplification we 
consider only four sensors. The maximum value of rela-
tive vibrations that can be supported by the system is 120 
μm. Figure 1 represents the supervision and placement 
sensors site in the landings turbine. 
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Figure 1. Sensor vibrations site in the turbine landings C1, 
C2, C3 and C4 are respectively the supervision sensors of the 
tree relative vibrations compared to landings 1, 2, 3 and 4. 

3. Calculation of the Optimal Neural 
Network Architecture 

There exist many applications of ANN in industry par-
ticularly in data analysis, model and command identifi-
cation [4,5]. Among various types of ANN, the most 
used is the multi-layer perceptron (MLP) which is re-
tained in our application as a powerful tool. A network 
MLP is generally composed by one neural entry layer, 
one or more hidden in the intermediate layers and one 
output layer. Figure 2 shows the proposed architecture 
model where the input vector is , 
with M = 951, the hidden layer neurons varies from j to 
N with N = 15 and then the output vector  
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f1, f2 are respectively the sigmoid activation (3) and 
linear functions (4). 
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The network training MLP implies to find connection 
weights values w1

i,j  and w2
l,k, which reduce to the 

minimum the average error function (MSE) between the 
measured value and the theoretical (desired) value cor-
responding in the training step. The network training by 
the Levenberg-Marquardt algorithm is constructed di-
rectly using Matlab neural network toolbox [6,7]. 

The optimal architecture, after several trials, was found 
by this configuration “951-12-04” which gives the small-
est error of 1.90756e−005, after 111 iterations, during 
113.86 sec. 

 

Figure 2. Proposed network structure. 
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n: number of examples. 
1) Flowchart for the Calculation of Optimal Archi-

tecture  
W, b: are the weight matrix and the bias vector (the 

initialization of the weight and bias values is taken ran-
domly between [–1, +1]). The following symbols are 
used, 

“it”: iterations number, 
Ei:(internal excitation) desired error, 
µ: training rate (between 0 and 1), 
f1: activation function of the hidden layer, 
f2: activation function of the output layer, 
Aap: training algorithm, 
NNS: neurons number in the output layer, 
p: the step, 
Ni: desired number, 
R: correlation coefficient, 
RG: generalized network coefficient, 
MSE: mean square error, 
Tap: training time,  
Ti: training desired time. 
To obtain optimal architecture we must firstly vary the 

neurons number of the hidden layer (N) to 1 until reach-
ing the desired number (Ni) to satisfy condition MSE ≤ 
Ei. 

(Quadratic average error ≤ desired error), if there is no 
value of N which satisfies this condition, we must return 
to the network parameters to fix another initials values. 
In the second step we observe the behavior of the net-
work and identify all the correlation factors which should 
be at “1”. If it is not we should increase the desired error 
(Ei). The last step is the generalization phase. It consists 
of calculating the correlation coefficient of the general-
ized network RG which must be close to “1” as shown 
by the developed flowchart in Figure 3. 
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Figure 3. General flowchart for the choice of an optimal 
architecture. 
 

2) Network Training  
The training graph (Figure 4) converges towards an error 

of the order of 10–4 after 111 iterations during 113.86 sec. 
3) Output Network Simulation  
We observe in Figure 5, the network graphs in con- 

tinuous line, superpose with the desired functions graphs 
in dashed line. This allows us to say that it is an accept- 
able architecture since the error is of the order of 10–4. 

Vrp1: relative vibrations for landing 1,  
Vrp2: relative vibrations for landing 2, 
Vrp3: relative vibrations for landing 3, 
Vrp4: relative vibrations for landing 4, 
Svp1: desired output of the relative vibrations of land-

ing 1, 
Svp2: desired output of the relative vibrations of land- 

ing 2, 
Svp3: desired output of the relative vibrations of land- 

ing 3, 
Svp4: desired output of the relative vibrations of land- 

ing 4. 

 

Figure 4. Training of the founded neural network. 
 

 

Figure 5. Output network simulation. 
 

4) Fault Detection and Localization (Test of the 
Network) 

To be sure that the proposed network will detect any 
faulty we will try to inject a known faulty and see the 
behavior of the network. This is presented in the follow- 
ing examples. 

Example 1: We consider 3 correct values and 1 incor- 
rect value, for landing 1 is 160 μm, for landing 2 is 110 
μm, for landing 3 is 100 μm and 90 μm for landing 4. 

Figure 6 shows the unacceptable value test, where the 
curve does not superpose the learned one. 

Example 2: In this example we will generalize our test 
to give random intervals which do not belong to the ac- 
ceptable interval. Instead of considering value, now we 
consider a set of values. We test by set values [120 μm - 
239 μm] for Vrp1, [300 μm - 419 μm] for Vrp2, [120 μm 
- 239 μm] for Vrp3 and by [400 μm - 519 μm] for Vrp4. 
The network output detects four alarms in the four points 
of measurement as shown in Figure 7 due to an unac- 
ceptable vibrations values given to the network. 
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Figure 8. Performance of the proposed network. Figure 6. Unacceptable value test. 
  
work maintenance operations by reducing both the time 
and cost of troubleshooting. 
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Figure 7. Unacceptable vibrations under a set of values test. 
 

5) Performance Evaluation 
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The suggested network system will help the mainte- 
nance team to better localize and automatically identify 
the sources of failures. This way, all they will have to do 
is to fix the defective parts, which will improve the net- 
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