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ABSTRACT 

This paper presents a new closure to slice models for evaluating slopes. The discussion is based on the minimal inter- 
slice action (MIA) hypothesis, which results in a new slice model without including artificially adjustable parameters. It 
has been realized that the new slice model predicts the minimum value of the safety factor, while all other slice models 
available always overestimate the value of the safety factor. Moreover, the gravity moment of each slice is found to be 
opposite to the overturning moment, which is different from the existing knowledge. In particular, the new slice model 
overcomes the situation where different assumptions of the inter-slice force function will give different safety factors to 
the same slope. The related numerical examples indicate that the new slice model can serve as a reliable tool for inves- 
tigating geotechnical slope stability. 
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1. Introduction 

An accurate model for evaluating slope stability can pro- 
vide considerable help for mitigating slope geological 
hazards [1]. However, existing models based on the me- 
thods of slices are statically indeterminate under the limit 
equilibr- ium state [2,3]. For a deformable body, we have 
a constitutive relationship between stresses and strains 
[4]. But as for the slice with its slight deformation ig- 
nored, we have to seek an implicit relationship between 
the unknowns [5,6]. Commonly used approaches assume 
the thrust line of the slope, as well as the location of the 
normal force on the slice base, resulting in a closure of 
the equilibrium equations [7]. However, the selection of 
the inter-slice force function depends heavily on intuition 
and experience [3,5,8-12]. Moreover, these assumptions 
are inconsistent with the experimental observations due 
to the fact that the normal and shear stresses are both 
non-uniform on the interface of blocks in contact [13]. 
Up to now, the closure to the slice model, despite over 60 
years of study, remains an open question. For example, 
Ref. [1] clearly stated that: “Extensive engineering and 
research studies performed over the past 70 years provide 
a sound set of soil mechanics principles with which to 
attack practical problems of slope stability. Despite the 
advances that have been made, evaluating the stability of 
slopes remains a challenge.” 

In this paper, we propose the minimal inter-slice action 
(MIA) hypothesis, which embodies an optimal closure to 
the slice model. With this new closure, the slice model 

has no artificially adjustable parameters for the selection 
of inter-slice force functions. In addition, the gravity 
moment of each slice is found to be in the opposite direc- 
tion to the overturning moment. The numerical results 
show that the new slice model predicts the minimum va- 
lue of the safety factor, while all other existing slice 
models commonly overestimate the stability of slopes. 

2. Existing Slice Models 

When investigating the stability of slopes in soil or rock, 
the slice model is always employed [1,14,15]. In this 
method, the sliding mass above the potential slip surface 
is divided into a number of vertical slices, as shown in 
Figure 1(a). 

The actual number of slices used dependents on the 
slope geometry and soil or rock profile. For a curved slip 
surface, the slice base can be assumed as a straight line, 
with a negligible loss in accuracy. Adjoining slices in- 
teract and transfer inter-slice forces. The role of the inter- 
slice force is twofold: 1) to support the slices on its right 
side, and 2) to thrust the ones on its left side. In contrast, 
the forces on the slice base always prevent the slice from 
sliding. A typical slice is shown in Figure 1(b). 

Here only the known gravity and surface forces are 
considered. Additional known forces such as seismic for- 
ces, reinforcement forces, and pore water pressures can 
however be easily included. When the slice is just about 
to slide, the following force equilibrium equations can be 
obtained by summing forces in each direction perpen- 
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dicular or parallel to the slice base (discuss moment equi- 
librium will be considered later): 

   0 0sin sin cos 0R T T G            (1) 

   0 0 cos cos sin 0S T T G            (2) 

where R and S are the normal and shear forces on the 
slice base; T and β are the unknown magnitude and in- 
clination angle of the inter-slice force; T0 and β0 are the 
known magnitude and inclination angle of the surface 
force on the slice; G is the gravity force of the slice, and 
α is the inclination angle of the slice base. 

In addition to these equilibrium considerations, accor- 
ding to the Mohr-Columb failure theory [16], the critical 
shear force on the slice base can be represented by the re- 
duced shear strength: 

S = (c + μR)/fs                (3) 

where c is the cohesion coefficient and μ is the friction 
coefficient (for the drained shear strength, the effective 
values of  and c   replace the parameters c and μ in 
Equation (3)), fs is the safety factor, by which the shear 
strength must be reduced to bring the slice into a state of 
limiting equilibrium. 

Equations (1) to (3) contain four unknowns (R, S, T, 
and β), indicating that the number of unknowns is greater 
than that of equations. To make a balance between the 
number of equations and the number of unknowns, most 
researchers assume that the thrust line of the slope, or the 
inclination of the inter-slice force, is in the form of tan β 
= λf(x), where λ is a scaling factor [3,5,7-9,11,12]. The 
commonly used inter-slice force functions include f(x) = 
1, the half-sine, trapezoidal and error functions [17]. 
However, different assumptions have produced different 
values of the safety factor [1-2,6]. 

3. Minimum Inter-Slice Force 

In this study, we propose a new hypothesis that provides 
an optimal condition for the slice model. For this purpose, 
it is assumed that interaction between the slices is re- 
duced to a minimum under the limit equilibrium state. 
The newly-proposed hypothesis states that, among all the 
admissible inclination angles of the inter-slice force, 
there is one and only one inclination angle that mini- 
mizes the magnitude of the inter-slice force, so that it can 
be used to determine the normal force on the slice base. 
Based on the newly-proposed hypothesis, we substitute 
Equations (1) and (3) into Equation (2) and obtain the 
following equation: 

   
   

0 0

0 0

cos sin sin

cos cos sin 0s s

G T c T

f T f T G 
      

    

       

    




 (4) 

Upon rearranging, we obtain the following more con- 
cise equation: 
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Figure 1. (a) Slope with noncircular slip surface and inter- 
action slice model; (b) Typical vertical slice with both known 
and unknown variables (the unknowns are shown in red 
color); (c) Interaction between the unknowns of each slice. 
 

 T g F                  (5) 

where functions g(β) and F can be expressed as 

    cos sinsg f                (6) 
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 (7) 

With a trial value of the safety factor, if function F re- 
mains constant, then inter-slice force T will be inversely 
proportional to function g(β) in Equation (5). In fact, the 
slice automatically selects inclination angle β to mini- 
mize interslice force T, and results in an efficient way to 
prevent the slice from sliding. Function g(β) reaches the  

maximum of  2 2
sf   when β satisfies the following  

relationship: 

 tan sf              (8) 

At the same time, inter-slice force T arrives at a mini- 
mum: 

  0.52 2
sT F f


            (9) 

At first glance through Equation (8), the inclination 
angle of the inter-slice force seems to be only locally 
related to the physical parameters of each slice. In fact, 
as the safety factor is defined globally, the inclination 
angle of the inter-slice force is also affected by other 
slices. With fs known in Equation (8), the newly pro- 
posed hypothesis indeed provides a closure for the slice 
model. Furthermore, the new closure contains no artifi- 
cially adjustable parameters, which is different from the 
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commonly assumed force functions [1,3,17]. With this 
closure used, it is straightforward to solve the equilib- 
rium equations of the slice model. 

4. Minimum Moments 

After the force equilibrium is considered, we now turn to 
consideration of the moment equilibrium of the slice 
shown in Figure 1(b). Summing the moments for the left 
corner of the slice base gives the following moment 
equilibrium equation: 

    0 0 0cos  , cos  0.5T z x y T z x G x   a

n

   (10) 

where x and y are the location coordinates of the normal 
force on the slice base and inter-slice force, respectively, 
a is the width of the slice, and  
  , tan taz x y y x    

 
  

and  0 0 0 tan tan 0tanz x y a x      are two 
equivalent moment arms, respectively. On the right-hand 
side of Equation (10), although the gravity moment (the 
second term) can be included in the overturning moment 
(the first term), we keep it separate to show its excep-
tional effect (see below). 

Once again, the number of equilibrium equations is 
less than the unknowns (x and y). To obtain a statically 
determinate solution, the value of unknown x has been 
assumed explicitly or implicitly, such as the midpoint of 
the base of the slice [1,5,8]. With this assumption, Equa- 
tion (10) can be solved explicitly for the location of the 
inter-slice force. In addition, this assumption is equiva- 
lent to the uniform distribution of the normal stress on 
the slice base. However, past laboratory experiments 
have shown that both the distributions of normal and 
shear stresses are non-uniform over the slice base [13]. In 
particular, the strong nonuniformity of normal force ex- 
ists near the block edges to compensate for the overturn- 
ing moment. 

Based on the newly-proposed hypothesis, we expect 
that among all the admissible locations of the normal 
force on the slice base, there is one and only one location 
that minimizes both the external and inter-slice moments, 
so that the location of the inter-slice force can be 
uniquely determined. Through examining the external 
moments on the right-hand side of Equation (10), we find 
out that the gravity moment increases with an increase in 
unknown x, and that the overturning moment decreases 
with an increase in unknown x. In the case of the over-
turning moment being zero, the gravity moment will 
reach zero at x = 0.5a, which is coincident with the 
common assumption mentioned above. For a positive 
overturning moment, letting x < 0.5a would minimize the 
external moments, resulting in a negative gravity mo-
ment. On the other hand, letting x > 0.5a would minimize 
the external moments to a negative overturning moment,  

resulting in a positive gravity moment. Therefore, the 
gravity moment is always in the opposite direction to the 
overturning moment, which is different from our existing 
knowledge [1]. In addition, the gravity moment can reach 
a value as high as 0.5 Ga. If the overturning moment is 
less than this value, the gravity moment can sufficiently 
balance it, with no inter-slice moment induced. Other-
wise, the overturning moment will induce an inter-slice 
moment. Figure 1(c) represents schematically a whole 
interaction relationship among the unknowns of any 
slice. 

The left dashed block consists of three elements of the 
inter-slice force, while the right is the supporting force 
on the slice base. FE denotes the force equilibrium con-
ditions, MC the Mohr-Columb criteria, ME the moment 
equilibrium conditions, MF the minimum force condition, 
and MM the minimum moment condition. Following the 
red arrows the unknown forces can be determined, while 
following the blue ones the unknown locations of the 
normal force on the slice base and the inter-slice force 
can be determined. 

5. Numerical Examples 

We employed the trial-and-error procedure to solve 
Equations (1) to (10) [1]. With the value of a given safety 
factor, the trial-and-error procedure starts from the up- 
permost slice and then deals recursively with one slice at 
a time until the last slice is reached. This process is re- 
peated with the fs values adjusted, until the locations of 
all inter-slice forces always lie within the sliding mass 
and no inter-slice force acting on the left boundary of the 
last slice. Once the convergence conditions are satisfied, 
the magnitude, inclination angle and location of each 
inter-slice force are simultaneously obtained. So do the 
forces on each slice base.  

We consider three typical slope models (Model 1, 
Model 2, and Model 3) shown in Figure 2, with the same 
slope of 1:2 and the same material parameters: c = 20 kN, 

3 3   and 318 kN m  . The coordinates of key 
points A to K of each model are listed in Table 1. Figure 
3 shows the typical thrust lines found by the new slice 
model. 

Also shown in Figure 3 are the results obtained by 
three existing slice models. Hereafter, the M-P method, 
which denotes the Morgenstern-Prince method, employs 
a half-sine shape of the inter-slice force function, while 
the Spencer method uses a constant as the inter-slice 
force function. As shown in Figure 3(a), the new slice 
method produces both the positive and negative inclina- 
tion angles of the thrust, but in contrast, both the M-P 
and Spencer methods only provide the positive inclina- 
tion angles. The distributions of the thrust magnitudes are 
similar in shape for all the three slice methods, as shown  
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Table 1. Coordinates of the key points in the models shown 
in Figure 2. 

Node x (m) y (m) 

A 4.287 6.100 

B 10.000 6.100 

C 34.400 18.300 

D 38.719 18.300 

E 11.480 3.491 

F 30.236 7.562 

G 12.120 5.020 

H 15.270 4.670 

M 21.130 5.710 

N 29.450 9.320 

K 41.270 18.300 

O 16.100 27.450 
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Figure 2. Three typical slope models. (a) Model 1 with a 
circle slip surface at the point O is divided into 32 vertical 
slices; (b) Model 2 with a curvilinear slip surface is divided 
into 41 slices; (c) Model 3 with a polygonal slip surface is 
divided into 31 slices. 
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Figure 3. (a) Inclination angle distributions of the curvilin-
ear slope shown in Figure 2(b); (b) Distributions of the 
thrust magnitudes of the curvilinear slope shown in Figure 
2(b); (c) Distributions of the thrust locations of the curvi-
linear slope shown in Figure 2(b). 
 
in Figure 3(b). Compared with the values of thrust pre- 
dicted by the M-P and Spencer methods, those predicted 
by the present method are smaller throughout the whole 
sliding mass. 

Since the locations of thrust predicted by the present 
method are different from those obtained by both the 
M-P and Spencer methods, the present method does not 
produce inter-slice moment within the sliding mass, ex- 
cept in the anticline region, as shown in Figure 3(c). 

Within the anticline slices, the location of the inter- 
slice forces moves upward until the top boundary of 
slope is reached, which qualitatively agree with the ex- 
perimental observations [13]. This result shows that the 
inter-slice moment has been produced when the normal 
and shear forces on the inter-slice boundary are no longer 
non-uniformly distributed. In addition, the upward loca- 
tion of the thrust can counter the overturning moment. 

Table 2 lists the values of the safety factor for three  
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Table 2. Comparison of the calculated values of the slope 
safety factors. 

Model Present 
method 

GLE 
method 

M-P  
method 

Spencer 
method 

Model 1 1.986 
2.085 
(5.0%) 

2.087 
(5.0%) 

2.096 
(5.5%) 

Model 2 2.106 
2.179 
(3.5%) 

2.181 
(3.6%) 

2.237 
(6.2%) 

Model 3 1.977 
2.024 
(2.4%) 

2.028 
(2.6%) 

2.074 
(4.9%) 

 
typical slope models predicted by the new slice method 
and three existing methods. 

The percentage shown in the parentheses indicates the 
overestimating ratio of the safety factor obtained by three 
existing slice models to that of the present slice model. 
Although both the GLE method, which denotes the gene- 
ralized limit equilibrium method with a half-sine shape 
of the inter-slice force function, and the M-P method 
produce nearly identical results, the Spencer method 
yields lager safety factor values. For each case, the pre- 
sent model results in the minimum value of the safety 
factor. For the three slopes investigated, all the three ex- 
isting methods employed overestimate the stability 
slopes as much as 6.2%.  

The reason for the three existing slice models to over- 
estimate the safety factor is that the statically indetermi- 
nate slice or slope has an infinite number of possible in- 
clination angles and locations for the inter-slice force. 
The three existing slice models provide less flexibility in 
the assumptions for the inter-slice force, which leads to 
the slopes being reinforced. Thus, it is very difficult, if 
not impossible, for the existing slice models to seek the 
real inclination angle and location of the thrust line with 
the minimum value of safety factor. 

6. Conclusion 

The newly-proposed hypothesis can provide a complete 
closure for the slice model. The new slice model natu- 
rally satisfies all the conditions of static equilibrium, 
producing the minimum value of the safety factor, while 
the existing slice models commonly overestimate the 
stability of slopes. The new slice model mainly concerns 
the global limit equilibrium of slopes, although its slight 
deformation is ignored. In future we aim to extend the 
2D slice model to a 3D block model. The accurate model 
prediction, in combination with systematic observation 
and testing, would significantly increase the confidence 
in evaluating slope stability. 
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