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Abstract 
 
An analytical method is derived for the thermal consolidation of a saturated, porous, hollow cylinder with 
infinite length. The solutions in Laplace transform space are first obtained and then numerically inverted by 
Stehfest method. Two cases of boundary conditions are considered. First, variable thermal loadings are ap-
plied on the inner and outer pervious lateral surfaces of the hollow cylinder, and a variable mechanical load-
ing with time is applied on the outer surface; while the displacement of the inner surface remains fixed. Sec-
ondly, variable thermal and mechanical loading are applied on the outer pervious surface, and the inner sur-
face remains fixed, impervious and insulated. As two special problems, a solid cylinder with infinite length 
and a cylindrical cavity in a half-space body are also discussed. Finally, the evolutions of temperature, pore 
pressure and displacement with time along radial direction are analyzed by a numerical example. 
 
Keywords: Porothermoelastic Media, Hollow Cylinder, Variable Thermal Loading, Consolidation Solutions, 
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1. Introduction 
 
The studies on the thermo-hydro-mechanical responses 
of saturated porous materials are widely used in various 
engineering fields such as the disposal of high-level nu-
clear waste, extraction of geothermal energy, storage of 
hot fluids, biomechanics to materials sciences, concrete 
resistance against fire, reliability of airfield.  

There exists a substantial and growing literature to 
account for non-isothermal consolidation behavior of 
fluid-saturated porous materials [15]. Up to now, some 
analytical solutions to boundary and initial value prob-
lems have been developed under various scenarios. 
Booker and Savvidou [6] have presented solutions for 
the temperature, pressure and stress fields arising from a 
spherical heat source buried in a thermally consolidating 
material of infinite extent. McTigue [7] presented resolu-
tion methods and established exact solutions for a semi- 
infinite porous medium subjected to a constant surface 
temperature or heat flux with either drained or undrained 
boundary conditions. Smith and Booker [8] presented the 
Green’s functions for a system of fully coupled linear 
equations governing thermal consolidation in a homoge-
neous isotropic material, and later gave a boundary inte-
gral method of numerical analysis. Giraud et al. [9] ana-

lyzed the case of a heat source that decreases exponen-
tially with time by considering a low-permeability clay for 
nuclear waste disposal. Wang and Papamichos [10,11] 
discussed solutions for a cylindrical wellbore and a 
spherical cavity subjected to a constant temperature 
change and heat flow rate. Blond et al. [12] developed a 
closed-form solution for a porothermoelastic half-space 
submitted to a cyclic thermal loading, and a pressure- 
diffusion equation that governs the fluctuation of the 
interstitial pressure was established. Bai [13] developed a 
solution approach for a planar thermal loading with 
variable intensity with time on the surface of a semi- 
infinite space. Bai [14] later derived an analytical method 
for the responses of saturated porous media subjected to 
cyclic thermal loading by using the Laplace transform 
and the Gauss-Legendre method of Laplace transform 
inversion. Abousleiman and Ekbote [15] presented the 
analytical solutions for an inclined hollow cylinder in a 
transversely isotropic material subjected to thermal and 
stress perturbations. Kanj et al. [16,17] applied an ani-
sotropic porothermoelastic solution to an unjacketed 
hollow cylinder in a triaxial set-up. Bai [18] derived an 
analytical method for the thermal consolidation of lay-
ered, saturated porous half-space to variable thermal 
loading with time. 
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In previous studies, the most concerned domains are 
the geometries such as a half-space body, a cylindrical 
cavity in a semi-infinite space and a cylindrical body, etc. 
In fact, hollow cylindrical geometries are also widely 
used in the laboratory for measurements of material 
properties and the understanding of the subsidence phe-
nomena, formation consolidation and borehole stability. 
In this paper, analytical solutions for a hollow cylinder of 
porothermoelastic media with infinite length are derived 
aiming at experimental studies of the thermal consolida-
tion of saturated porous materials such as soil that are 
carried out under non-isothermal conditions. The solu-
tions in Laplace transform space are first obtained and 
then numerically inverted by Stehfest method. As two 
special problems, a solid cylinder with infinite length and 
a cylindrical cavity in a half-space body are also dis-
cussed. Based on the proposed solutions, numerical 
analyses are carried out to demonstrate the evolutions of 
temperature, pore pressure, displacement as well as ra-
dial and tangential stresses with time. 

 
2. Governing Equations 
 
For saturated, homogeneous, isotropic porous materials, 
the equilibrium equation of thermo-hydro-mechanical 
coupling consolidation may be written as [8,10,12,14] 

0222   pM v        (1) 

where M=+2G is the confined drained isothermal 

modulus;  and G are Lamé constants;  is the 
Laplace operator; v is the volumetric strain; p is the ex-
cess pore pressure; =TT0 is the increment of tempera-
ture above the ambient temperature, T0 is the ambient 
absolute temperature, T is the current absolute tempera-
ture; =1Cs/C is Biot’s coefficient, C and Cs are the 
coefficients of volumetric compression of the solid 
skeleton and grains respectively;  =3s/C is the thermal 
expansion factor, and s is the linear thermal expansion 
coefficient of solid grains. 

2

According to Darcy’s law and the continuity condition 
of seepage, the equation of mass conservation can be 
written as [12,14] 
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where k is the hydraulic conductivity; w is the unit 
weight of pore water; t is time; p=n(CwCs)+Cs; 
Y=3n(ws)3s, Cw is the coefficient of volumetric 
compression of pore water; w is the linear thermal ex-
pansion coefficient of pore water; and n is the porosity of 
the medium. 

According to Fourier’s law of heat conduction, the 
equation of energy conservation can be written as [12,14] 
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Figure 1. Mathematical model. 
 
where K is the coefficient of heat conductivity, Z=[(1n) 
scs+nwcw]/T03s is a coupling parameter, with w 

and s being the densities of pore water and solid grains, 
respectively, and cw and cs being the heat capacities of 
pore water and solid grains, respectively. 
 
3. Mathematical Model 
 
Consider the problem of a saturated, porous hollow cyl-
inder with infinite length (see Figure 1). The following 
two cases of boundary conditions are imposed here.  

Case 1: Variable thermal loading a(t) and b(t) are 
respectively applied on the inner and outer pervious lat-
eral surfaces of the hollow cylinder. At the same time, a 
variable mechanical loading pb(t) is also applied on the 
outer surface; while the displacement of the inner surface 
remains fixed. The origin O of the cylindrical coordinate 
system is selected at the center of the cylinder and the 
z-axis is the axis of rotational material symmetry, so that 

)()(),( tHtta a  , ,   (t0) 0),( tap 0),( taur

           (4) 

)()(),( tHttb b  , , 0),( tbp )()(),( tHtptb br   

   (t0)    (5) 

where a and b are the inner and outer radius of the hol-
low cylinder, respectively; a(t)=Tw1(t)T0, b(t)=Tw2(t) 
T0, with Tw1(t) and Tw2(t) are the current absolute tem-
peratures of the inner and outer surfaces, respectively; 
pb(t) is the mechanical loading of the outer surface; ur is 
the radial displacement; and H(t) means the Heaviside 
unit step function. 

Case 2: Variable thermal and mechanical loading b(t) 
and pb(t) are respectively applied on the outer pervious 
surface of the hollow cylinder. The inner surface remains 
fixed, impervious and insulated. Thus, the boundary 
conditions of the outer surface can still be expressed by 
Equation (5); while the boundary conditions of the inner 
surface are 
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It is noted that all applied boundary conditions on the 
cylinder may be time-dependent. 
 
4. Solution Approach 
 
4.1. Solutions of the Governing Equations 
 
It is assumed that the initial conditions (Figure 1) are: (r, 
0)=0, p(r, 0)=0, and ur(r, 0)=0. Then, upon Laplace 
transformation, Equations (1) to (3) become 

0222   pM v           (7) 
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where , and 2 2 2/ ( / ) /r r       r  
 0 dtLeL st  

(L=, p, v) and s is the Laplace transform variable. 
Equation (7) can be rewritten as 

0][2   pM v           (10) 

The integration of Equation (10) twice over r yields 

)(ln)( 21 shrshpM v        (11) 

where h1 and h2 are arbitrary functions of s to be deter-
mined from the boundary conditions. 

From Equation (11), one has 
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where D1=h1/M, D2=h2/M. 
Substituting Equation (12) into Equations (8) and (9) 

results in, respectively 
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where a2=k/w, a3=Y/M, a4=p2/M, b1=K/T0, 
b3=Z2/M, b4=Y/M. 

Here, c=a2/a4=k/[w(p+2/M)] is defined as the co-
efficient of thermal consolidation defined in previous 
work [8,11], =b1/b3=(K/T0wKwSw)/(Z+2/M) is de-
fined as the thermal diffusivity. In fact, the ratio c/ re-
flects the relative rate of pore pressure dissipation to heat 
conductivity. 

Using Equations (13) and (14), the elimination of term 

2  leads to 

)ln( 2132
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f
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where f1=a2/a3, f2=a4/a3, f3=/a3. 
Substitution of Equation (15) into Equation (14) re-

sults in 
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where g1=b1f1, g2=b1f2+b3f1, g3=b3f2+b4, g4=b3f3. 
It can be proved that the general solution of Equation 

(16) is 
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where A1, B1, A2 and B2 are arbitrary functions of s to be 
determined from the boundary conditions, I0 and K0 are 
the modified first-kind and second-kind Bessel functions 
of order zero, respectively,  

)2/()4( 131
2
22 ggggg    

and  

 2( g )2/()4 131
2
2 gggg  . 

Substitution of Equation (17) into Equation (15) re-
sults in 
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Substitution of Equations (17) and (18) into Equation 
(12) results in 

)]()([ 01011 rsKBrsIAEv    
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where E1=[+ (f1+f2)]/M, E2=[+ (f1+f2)]/M, E3= 
g4/(Mg3)+(f3f2g4/g3)/M+1. 
 
4.2. Displacement, Stress and Strain 
 
Introduce a displacement potential function (r, t), then 

r
ur 





                  (20) 

Using Equation (19) and v=2/r2+ (/r)/r=2, 
one has 
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                 (21) 
The general solution of Equation (21) can be ex-
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pressed as 
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where D3 and D4 are arbitrary functions of s to be deter-
mined from the boundary conditions. 
Using Equations (20) and (22) results in 
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where ur is radial displacement, I1 and K1 are the modi-
fied first-kind and second-kind Bessel functions of order 
one, respectively. 

Using Equation (23) and generalized Hooke’s law, ra-
dial stress r and tangential stress  can be obtained: 
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4.3. Inversion of the Laplace Transform 
 
Equations (17) to (19), (23) to (25) constitute the solu-
tions in the Laplace transform domain. In reality, solu-
tions in the real domain can all be obtained by inverting 

inversion schemes reported in literatures [10,17]. The 
Stehfest method has been extensively used, due to its 
accuracy, efficiency and stability. This method is based 
on sampling inversion data according to a delta series. 
The present study uses the Stehfest method. 
 

the above solutions. There are many numerical Laplace 

. Determination of the Integration Functions 

 a cylindrical coordinate system, the following equilib-

5
 
In
rium is also used to determine the unknown coefficients 
in addition to the boundary conditions: 

0
 r 


 rr

r                (26) 

Substitution of Equations (24) and (25) into Equation 
(2

cylinder with 
in

. Numerical Examples 

.1. Material Properties and Loading 

he material properties used in the analysis are given as 

ner radius 
a=

   (31) 

where 0=100C, =

6) results in D1=0. The remaining six arbitrary coeffi-
cients (A1, B1, A2, B2, D2 and D3) can be determined by 
solving Equation (A9) (see Appendix A).  

For the special case of a0 (i.e. a solid 
finite length), there are three arbitrary coefficients (A1, 

A2 and D2), which can be determined by solving Equa-
tion (A10) (see Appendix B). For the special case of 
b (i.e. a cylindrical cavity in a half-space body), 
there are also three arbitrary coefficients (B1, B2 and D3), 
which can be determined by solving Equation (A11) (see 
Appendix C). 
 
6
 
6
 
T
follows: the elastic modulus E=6.0105 Pa, the Poisson 
ratio =0.3, the bulk modulus of solid grains Ks=21010 
Pa, the bulk modulus of pore water Kw=5109 Pa, the 
thermal expansion coefficient of solid grains s= 
1.5105/C, the thermal expansion coefficient of pore 
water w=2.0104/C, the porosity n=0.4, the heat ca-
pacity of solid grains cs=800 J/(kg C), the heat capacity 
of pore water cw=4200 J/(kg C), the density of pore wa-
ter w=1.0103 kg/m3, the density of solid grains s 

=2.6103 kg/m3, the coefficient of heat conductivity 
K=0.5 W/(m C) and Biot’s coefficient =1.0. 

Geometrically, the hollow cylinder has an in
0.02m; and an outer radius b=0.08m (see Figure 1). As 

such, the thickness of the cylinder wall d=0.06m. For 
convenience, the following problem is discussed (i.e. 
Case 1): the thermal loading b(t) and mechanical load-
ing pb(t) on the outer surface remain both constant; while 
an exponentially increasing temperature variation a(t) is 
applied on the inner surface. It can be written as 

a(t)=0 [1exp(t)]      

0.00384s1. 
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Figure 2. Distributions of temperature along radial distance. 
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Figure 3. Pore pressure varying with T under therma

.2. Responses under Thermal Loading 

 this section, we assume that the thermal loading 

t

he elapsed 
tim

igure 3 that at early times (e.g. 
T=

l 
loading. 
 
6
 
In
b(t)=0, and the mechanical loading pb(t)=0; while the 
hermal loading given by Equation (31) is applied on the 

inner surface. A dimensionless time is defined as T=t/b2 
(i.e. time factor). Figures 2 to 6 present respectively the 
temperature, pore pressure, radial displacement, radial 
stress and tangential stress distributions along radial dis-
tance for various time factors (e.g. T=0.1, 0.4, 1, 2, 10, 
i.e. t=3.9, 15.6, 39.0, 78.1, 390.4min; c/=1). 

It can be seen from Figure 2 that, with t
e, the temperature is gradually conducted from the 

inner surface of the hollow cylinder to the points away 
from the surface. As the time factor T increases continu-
ously (e.g. T=10), the temperature values finally reach a 
quasi-steady state. At this time, the temperature distribu-
tion along the radial distance remains a steady tempera-
ture gradient. Certainly, the values of temperature gradi-
ent near the inner surface (e.g. r/b=0.250.4) are greater 
than those of the points in the vicinity of the outer sur-
face (e.g. r/b=0.81.0). 

It can be seen from F
0.1, 0.4) the pore pressure value in the vicinity of the 
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Figure 4. Radial displacement varying with T under ther-
mal loading. 

 

-600

-500

-400

-300

-200

-100

0

100

200

300

0 0.2 0.4 0.6 0.8 1

0.1
0.4
1
2
10

300

200

100

0

100

200

300

400

500

600

r/b r
 (

Pa
)  

T= 

 

Figure 5. Radial stress varying with T under thermal loading

inner surface takes on a rising trend, and then is con-

di

6, in the whole processes 
of

. 
 

ducted from the inner surface of hollow cylinder to the 
outer surface; while the peak value gradually moves to 
the outer surface. At later times (e.g. T=2, 10), the pore 
pressure begins to decrease quickly due to the com-
pletely pervious lateral surfaces of the hollow cylinder, 
and finally is dissipated to zero along the radial distance. 

Figure 4 shows that, at early times (e.g. T=0.1) the ra-
al displacement takes on an expanding trend (i.e. nega-

tive displacement) along the whole radial distance; how-
ever with time factor T increasing (e.g. T=0.4, 1, 2), the 
radial displacements of the points in the vicinity of the 
inner surface begin to contract (i.e. positive displacement) 
due to the strong coupling between the expansion of 
grains and the drainage of pore water. With the succes-
sive dissipation of pore pressure (e.g. T=10), the radial 
displacement eventually takes an increasing trend with 
the radial distance increasing. 

As shown in Figures 5 and 
 consolidation, the radial and tangential stress distribu-

tions are very complicated due to the coupling effects of 
pore pressure dissipation and thermal stress. In fact, at 
early times (e.g. T=0.1, 0.4, 1) the radial stress in the 
vicinity of the inner surface begins to increase (being 
negative values, i.e. stretching stress), then (e.g. T=2) 
decreases with time factor increasing, and finally (e.g. 
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Figure 6. Tangential stress varying with T under thermal 
loading. 
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Figure 7. Distributions of temperature along radial distanc

=10) takes on a positive value (i.e. compressive stress). 

.3. Responses under Thermal and Mechanical  

 
he responses of the porothermoelastic hollow cylinder 

n from Figure 7 that the developing trend 
of

e 
(c/k=1). 
 
T
On the other hand, the tangential stress in the middle part 
of the wall of the hollow cylinder initially takes a com-
pressive state (i.e. positive value), and eventually pre-
sents a stretching state (i.e. negative value). 
 
6

Loading 

T
under thermo-hydro-mechanical coupling are discussed 
in this section. Here, the thermal loading b(t)=20C, and 
the mechanical loading pb(t)=100kPa; while the thermal 
loading given by Equation (31) is applied on the inner 
surface. Figures 7 to 11 present respectively the tem-
perature, pore pressure, radial displacement, radial stress 
and tangential stress distributions as a function of the 
radial distance for various time factors (e.g. T=0.1, 0.4, 1, 
2, 10; c/=1). 

It can be see
 the temperature along the radial distance is similar to 

the temperature distributions in Figure 2 except for the 
values on the outer surface of the hollow cylinder, which 
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Figure 8. Distributions of pore pressure along radial dis-
tance (c/k=1). 
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Figure 9. Distributions of radial displacement along radia

is due to the difference of boundary thermal loading. 

, 
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ent anywhere 
in
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distance (c/k=1). 

 

Calculation results for various c/ (e.g. c/=0.1, 1, 2) 
show that the coupling effects of displacement and stress 
fields on temperature field can be generally neglected.  

By virtue of the imposed lateral boundary conditions
e pore pressure drops almost instantaneously at the 

inner and outer boundaries (i.e. r=a and r=b) as indicated 
in Figure 8. As such, there exists a peak value of pore 
pressure in the inner layers. As time progresses, the pore 
pressure peak value gradually diffuses and flattens. It 
should be noted that the pore pressure in the vicinity of 
the outer boundary seems to dissipate more quickly, 
which is due to the greater drainage surface of the outer 
boundary than that of the inner boundary. 

Figure 9 shows that the radial displacem
 the cylinder contracts (i.e. being positive value) with 

the diffusion of the pore water. However, it is noticed 
that, at early times (e.g. T=0.1, 0.4), the radial displace-
ment in the local range of the wall (e.g. 0.4r/b0.9) is 
even smaller than that in the vicinity of the inner bound-
ary (here, noting ur(a, t)=0). This may be attributed to the 
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Figure 10. Distributions of radial stresses along radial dis-

consolidation deformation (i.e. shrinkage of the cylinder) 

om Figure 10 that the evolution of radial 
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. Conclusions 

) An analytical method is derived for the thermal con-

elastic hollow cylin-
de

tance (c/k=1). 
 

caused by the rapid dissipation in the vicinity of the per-
vious inner and outer surfaces. Obviously, this phe-
nomenon vanishes as time progresses (see Figure 9). 
Furthermore, the radial displacement ur will take on a 
linear relation with radial distance r at time factor T 
tends to infinity. 

It can be seen fr
ress is very complicated. At early times (e.g. T=0.1, 0.4), 

the radial stress in the local range of the wall (e.g. 
0.3r/b0.4) is even greater than the applied mechanical 
loading pb on the outer surface (i.e. r/pb1). Obviously, as 
time factor T increases, the radial stress takes on a mono-
tonically increasing trend with radial distance, and finally 
reach a steady state at time factor T tends to infinity.  

Figure 11 presents a tangential stress concentratio
ch of the boundaries of the cylinder. These stresses are 

generated as a result of the hoop effects that accompany 
the inner and outer diffusion fronts. Moreover, this stress 
concentration is more severe at early times. With diffu-
sion, the tangential stress concentrations at the lateral 
surfaces weaken and diminish in magnitude while higher 
compressive tangential stresses (/pb1) are noted to 
form inside the cylinder. 
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1
solidation of a saturated, porous, hollow cylinder with 
infinite length. The solutions in Laplace transform space 
are first obtained and then numerically inverted by 
Stehfest method. As two special problems, a solid cylin-
der with infinite length and a cylindrical cavity in a 
half-space body are also discussed. 

2) The responses of a porothermo
r subjected to exponentially increasing thermal loading 

with time on the inner surface are discussed. Calculations 
show that, as the temperature is gradually conducted from 
the inner surface to the points away from the surface, 
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Figure 11. Distributions of tangential stresses along radial 
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and then begins to decrease quickly due to the pervious 
lateral surfaces. In addition, the radial displacement ini-
tially increases with the increase of temperature and then 
contracts with the diffusion of pore water, which is due 
to the strong coupling effects of the expansion of grains, 
the drainage of pore water, and the radial and tangential 
stress varying with time under thermal loading.  

3) The responses of a porothermoelastic hollow
r under thermo-hydro-mechanical coupling have also 

been analyzed. Numerical results indicate that the tem-
perature difference generates both pore pressure and 
stress distributions in the cylinder. A pore pressure field, 
as well as a radial displacement, a radial and tangential 
stress fields, are created as a result of the compaction of 
the cylinder and the heating of the borehole wall. Corre-
spondingly, this results in the complicated evolution 
processes of all the variables, and can be explained by 
the consolidation deformation due to the thermal stress 
and the rapid dissipation of pore pressure in the vicinity 
of the pervious inner and outer surfaces. 
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Appendix A 

For the first case of boundary conditions (i.e. Case 1), 

from Equations (4) and (5), when t0, ata  ),( , 

0),( tap , 0),( taur , btb  ),( , 0),( tbp  and 

br ptb ),( , which yields 
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where 21 ffr   , 21 ffq   , , 

, . 
34 / ggu 

342 / ggf w3fv  3EGM 
For the second case of boundary conditions (i.e. Case 

2), from 0),( taur  and Equation (5), the Equations 

(A3) to (A6) can be obtained easily; while using Equation 

(6), when t0, 0/),(  rta  and 0/),(  rtap , 

which yields 
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Hence, the following equation is obtained: 
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  (A9) 

where the coefficients d11, d12, …, d65 and d66 can be 
given correspondingly by Equations (A1) to (A6) (for 
Case 1) or Equations (A7), (A8) and (A3) to (A6) (for 
Case 2). 
 
Appendix B 
 

Due to )(1 asK  =, )(1 asK  = and 1/a= at 

a0 in Equations (A7), (A8) and (A3), one has B1=0, 
B2=0 and D3=0. This implies that all variables must be 
finite. Hence, Equations (A7), (A8) and (A3) are satis-
fied automatically (noting I1(0)=0). The remaining three 
arbitrary coefficients (A1, A2 and D2) can be determined 
by solving Equtions (A4) to (A6) simultaneously. At 
this time, Equation (A9) reduces to the following ex-
pression: 
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where the coefficients d41, d43, …, d63 and d65 can be 
given correspondingly by Equations (A4) to (A6). 

 
Appendix C 

 

Due to )(0 bsI  = and )(0 bsI  = at b in 

Equations (A4) to (A6), one has A1=0 and A2=0. Noting 
K0()=0 and K1()=0, for the satisfaction of Equations 
(A4) to (A6), one must let D2=0. The remaining three 
arbitrary coefficients (B1, B2 and D3) can be determined 
by solving Equations (A1) to (A3) simultaneously. At 
this time, Equation (A9) reduces to the following expres-
sion: 
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where the coefficients d12, d14, …, d34 and d36 can be 
given correspondingly by Equations (A1) to (A3). 
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