
Circuits and Systems, 2011, 2, 139-144 
doi:10.4236/cs.2011.23021 Published Online July 2011 (http://www.SciRP.org/journal/cs) 

Copyright © 2011 SciRes.                                                                                   CS 

Linearized Phase Detector Zero Crossing DPLL       
Performance Evaluation in Faded Mobile Channels 

Qassim Nasir1, Saleh Al-Araji2 
1Department of Electrical and Computer Engineering, University of Sharjah, Sharjah, UAE 

2Communication Engineering Department, Khalifa University of Science, Technology and Research, Sharjah, UAE 
E-mail: nasir@sharjah.ac.ae, alarajis@kustar.ac.ae 

Received February 13, 2011; revised April 15, 2011; accepted April 22, 2011 

Abstract 
 
Zero Crossing Digital Phase Locked Loop with Arc Sine block (AS-ZCDPLL) is used to linearize the phase 
difference detection, and enhance the loop performance. The loop has faster acquisition, less steady state 
phase error, and wider locking range compared to the conventional ZCDPLL. This work presents a Zero 
Crossing Digital Phase Locked Loop with Arc Sine block (ZCDPLL-AS). The performance of the loop is 
analyzed under mobile faded channel conditions. The mobile channel is assumed to be two path fading 
channel corrupted by additive white Gaussian noise (AWGM). It is shown that for a constant filter gain, the 
frequency spread has no effect on the steady state phase error variance when the loop is subjected to a phase 
step. For a frequency step and under the same conditions, the effect on phase error is minimal. 
 
Keywords: Non-uniform Sampling, Digital Phase Locked Loops, Zero Crossing DPLL, Mobile Faded  

Channels 

1. Introduction 
 
Phase Lock Loops (PLLs) are used in a wider range of 
communication applications such as carrier recovery 
synchronization, and demodulation [1]. A PLL is a clo- 
sed loop system in which the phase output tracks the 
phase of the input signal. It consists of a phase detector, 
filter, and voltage controlled oscillator. Digital Phase 
locked Loops (DPLLs) were introduced to minimize 
some of the problems associated with the analogue 
counter part such as sensitivity to DC drift and the need 
for periodic adjustments [1,2]. Conventional Zero Cros- 
sing DPLL (ZCDPLL) is the most widely used due to its 
simplicity in modeling and implementation [3,4]. 

In this paper an Arc-Sine ZCDPLL is analyzed under 
mobile faded channel. The purpose of including the Arc- 
-Sine in the loop is to linearize the phase difference de-
tection. The peak detector guarantees the input amplitude 
to the Arc-Sine block to remain between –1 and +1. It 
has been shown that the AS-ZCDPLL loop offers im-
proved performance in the lock range and acquisition 
with reduced steady state phase error [5]. The proposed 
ZCDPLL-AS can be characterized by a linear difference 
equation in module (π/2) sense. 

The mobile radio channel is characterized by fast Ray- 

leigh fading and random phase distribution. This consid-
erably degrades the tracking performance and increase 
the jitter of the loop. In this paper, the performance of 
ZCDPLL-AS with phase and frequency step inputs in the 
mobile radio environment is studied. The ZCDPLL-AS, 
in this work is considered as part of a mobile receiver. 
The mobile channel is assumed to be a two path fading 
channel corrupted by additive white Gaussian noise 
(AWGN). The fading in each path of the channel follows 
Rayleigh distribution and has power spectral density as 
given by Jakes [6]. 
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where fm = vfc/c is the Doppler frequency that depends 
on the speed of the vehicle v and carrier frequency fc. 
The performance of the proposed algorithm will be 
evaluated for Doppler frequencies of 6 Hz, 100 Hz and 
222 Hz, corresponding to a pedestrian (3.5 km/hr) and 
vehicular channels with speeds of 54 km/hr and 120 km/hr 
respectively. 

The stochastic difference equation describing the ZC- 
DPLL-AS loop operation is derived in Section 2. Finally, 
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the probability density function (pdf) of the steadys- 
tate phase error is derived and calculated numerically in 
Section 3. Experimental simulation results are presented 
in Section 4 and finally conclusion are given, in Section 
5. 
 
2. ZCDPLL-AS System Operation in Mobile 

Faded Channels 
 
The ZCDPLL-AS is composed of a sampler as a phase 
detector, inverse sine block, a digital loop filter, and a 
Digital Controlled Oscillator (DCO) as shown in Figure 
1 [5]. The input signal to the loop is taken as x(t) = s1(t) + 
n(t) , where s1(t) is the noise free input signal to the loop 
after passing through the mobile channel. If s(t) = 
Asin(ω0t + θi(t)), n(t) is Additive white Gaussian Noise 
(AWGN); θi (t) = θ0+Ω0t , from which the signal dynam-
ics are modeled; θ0 is the initial phase which we will 
assume to be zero; Ω0 is the frequency offset from the 
nominal value ω0. Then s1(t) = r(t)sin(ω0t + θi(t) + φch(t)), 
r(t) is Rayleigh faded envelope and φch(t), is a uniform 
distribution channel phase. 

The input signal is sampled at time instances tk deter-
mined by the Digital Controlled Oscillator (DCO). The 
DCO period control algorithm as given by [7-10] is 

0 1k k kT T c t t                (1) 

where 0 2πT 0  is the nominal period, 1kc   is the 
output of the loop digital filter D(z). The sample value of 
the incoming signal x(t) at  is kt

     1k k kx t s t n t                (2) 

or 

k k kx s n                        (3) 

where k  0sink k i s t t    , The sequence kx  is 
passed through the Arc-Sine block with output 

. The output is passed through a digital 
filter D(z) whose output  is used to control the period 
of the DCO. 
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The phase error is defined to be [5] 
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Figure 1. Block diagram of the ZCDPLL-AS. 

 
Taking the difference of (7) and (8) results in 

1 1 , 1 ,k k k k ch k ch k w c0 k                  (8) 

The Arc-Sine ( 1sin ) block has been added to lin-
earize the equation and avoid the nonlinear behaviour of 
the systems [5]. The output of the Arc-Sine block can be 
expressed as  1

k kxsiny k
  ,  and 1 1kx   

π 2 y π 2k    . The z transform of the output of the 
digital filter is 

    C z D z Y z                (9) 

where  Y z  is the z transform of  y t . The order of 
the loop is determined by the type of the digital filter. 
For first order, the digital filter is simply a gain block 
 D z 1G , where  is the block gain. However, for 

second order loop, 
1G
   1

1 2 1 zD z G G 

k

. 
Let us consider a first order AS-ZCDPLL loop, then 

the digital filter output which controls the DCO is given 
by  

1kc G y                  (10) 

Then the stochastic difference equation describing the 
loop behaviour is given by 

 1 1 , 1 , 0 1k k k k ch k ch k k k kw r G n               (11) 

For phase step input where 1k k    for , (11) 
becomes 
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And for frequency step  and for 
, (12) becomes 
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In practical mobile communication systems and in the 
800 MHz band, an IF frequency of 10.7 MHz is usually 
used; therefore, the sampling period T is on the order of 
0.1 ps. The maximum Doppler frequency shift is on the 
order of 100 Hz (at vehicle velocity, about 60 mph). In 
other words, the , 1ch k   and ,ch k  are equal, then (12) 
and (13) are reduced to 

Copyright © 2011 SciRes.                                                                                   CS 



Q. NASIR  ET  AL. 
 

141

1 k1 0 1 0k k k k kw r G w r G n               (14) 

   1 1k k k k kwr G n T          0

k

  (15) 

For both cases, the probability density function of 
steady state phase error became a function of two inde-
pendent random variables r(k) and n(k). 
 
3. Phase Error Probability Density Function 

(pdf) 
 
3.1. Phase Step without Noise 
 
In steady state 1k   , (14) can be rewritten as 

1 0 11k kr G  k                   (16) 

If the expected value of 0 1 k  is 1, then the ex-
pected value of k

w G r
  is zero for all values of k. This will 

lead to rapid convergence of the steady state. Since the 
probability density function of  is Rayleigh then kr
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which has an average of π 2 s . Therefore, the opti-
mum value of the gain is  01 2 πopt sG   . Let b = 

, where , n is integer. Then the tran-
sition pdf can be shown as to be 
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3.2. Phase Step plus Noise 
 
Let 0 1 ky Z G n   be a Gaussian random variable 
with a mean of z and variance 2 2 2

0 1 nG   ,where 2
n  is 

the variance of the noise n(t). Then the pdf of y is given 
by 
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So 

 1 0, sink k 1y br b w G z              (20) 

When 10, kz  
π, kz n

 will be zero mean Gaussian. Also 
when 1    will be Gaussian with mean of z. 
The transition pdf can be rewritten as [4] 
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Given k z  , then 
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Define a random variable Y as 
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Since k  is a discrete time continuous variable Mar-
kov process, its conditioned on an initial condition error 

0  satisfies Chapman-Kolmogrov equation, then 

1 1
0

d
k k k k

z
P P P

z   
 
  

        
    

z          (26) 

Equation (23) is valid whether k  and 1kr  are mutu-
ally independent or not. This is solved numerically as 
was done in [4]. The transition pdf 

r
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1 0k

P  


 

is calculated from  0k
P    with k = 1,2,···, until the 

values of successive k differ by a prescribed small 
amount. 
 
4. Simulation Results 
 
The performance of the loop was evaluated in simulation 
by subjecting it to phase as well as frequency steps. The 
input signal s(t) = sin(2000_t) is considered as modula-
tion free and the DCO center frequency is 1000 Hz. In 
the simulation process, the Signal to Noise Ratio is de-
fined as SNRdb = 10  2log 1 n , where 2

n  represents 
noise variance. The loop is studied under phase step in 
the presence of noise. It is noticed from Figure 2, and as 
derived in section (2), that the steady state phase error 
variance depends on the value of the filter gain, as shown 
in Figure 3. The increase in gain causes the phase error 
to increase sharply which results in degradation in sys-
tem’s performance. The effect of SNR on the phase error 
variance is shown in Figure 4. This variance is directly 
proportional to SNR as shown in Figure 5. As shown 
from the figure, the loop performance due to phase jitter 
improves as SNR increases. The frequency spread has no 
direct effect on the steady state phase error variance if 
the filter gain is kept constant, as shown in Figure 6. 
However, if the loop input signal is subjected to a fre-
quency step, then the loop jitter is slightly affected by the 
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step size if the filter gain is kept constant. The Doppler 
spread will increase the jitter if the spread is increased as 
shown in Figure 6. The loop probability density function 
of the phase performance when subjected to a frequency 
step is shown in Figure 7 for different frequency offsets, 
while Figure 8 is for different wireless channel Doppler 
spreads. It is seen from the figures that the impact of 
frequency offset and channel speed of variations (Dop-
pler spread) on the system performance is minimal. The 
loop performance, when a frequency step is applied to 
the loop, is also affected by the channel SNR as shown in 
Figure 9. The variance of timing error in the loop is in-
creased as the loop gain G1 is increased and this primary-  

 

 

Figure 2. Probability Density Function (pdf) of DCO Period 
when SNR = 10 dB and when Phase step is applied with 
different values of filter gain G1. 

 

 

Figure 3. Variance of DCO period against filter gain G1. 

 

Figure 4. Probability Density Function (pdf) of DCO period 
for SNR = 10, 20 dB and when phase step is applied. 
 

 

Figure 5. Variance of DCO period versus input signal SNR. 
 

 

Figure 6. Probability Density Function (pdf) of DCO period 
for SNR = 20 dB with phase step with different doppler 
spreads. 
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Figure 8. Probability Density Function (pdf) of DCO period 
for SNR = 20 dB with frequency step with doppler spread of 
6 and 100 Hz. 

Figure 7. Probability Density Function (pdf) of DCO period 
for SNR = 20 dB with Frequency step with different fre-
quency spreads. 
 

  
Figure 9. Probability Density Function(pdf) of DCO period 
for SNR = 10 and 20 dB with frequency step of frequency 
offset of 0.01. 

Figure 10. Variance of DCO period versus the loop gain G1 
for different frequency offsets. 

 
ly depends on the value frequency step input as shown in 
Figure 10. 
 
5. Conclusions 
 
The ZCDPLL-AS loop is studied under phase and fre-
quency steps in the presence of noise. It is shown that the 
frequency spread, under phase step condition, has no 
direct effect on the steady phase error variance if the 
filter gain is kept constant. For frequency step, the error 
is slightly affected under the same conditions. From the 
results, it has been shown that the variance of the DCO 
period increases with the Doppler spread. The system 
was tested with Doppler spreads of 6 Hz, 100 Hz, and 

222 Hz. ZCDPLL-AS loop has been tested and has 
shown to give improved locking and acquisition per-
formance. 
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