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Abstract 
Part II-B of our work continues the factorizational theory of asymptotic expansions of type (*)
( ) ( ) ( ) ( )( )n n nf x a x a x o x�1 1= + + +φ φ φ , x x0→ , n 3≥  where the asymptotic scale  

( ) ( ) ( )nx x x�1 2φ φ φ� � � , x x0→ , is assumed to be an extended complete Chebyshev system on a 
one-sided neighborhood of x0. The main result states that to each scale of this type it remains as-
sociated an important class of functions (namely that of generalized convex functions) enjoying 
the property that the expansion (*), if valid, is automatically formally differentiable n − 1 times in 
the two special senses characterized in Part II-A. A second result shows that formal applications of 
ordinary derivatives to an asymptotic expansion are rarely admissible and that they may also 
yield skew results even for scales of powers. 
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7. A Brief Introduction 
This is a continuation of a previous paper [1], about the factorizational theory of asymptotic expansions in the 
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real domain. 
• §8 contains the main result in the paper: to each Chebyshev asymptotic scale ( ) ( ) ( )( )1 2, , , nx x xφ φ φ�  it 

remains associated an important class of functions enjoying the property that an asymptotic expansion ac-
cording to this scale, if valid, is automatically formally differentiable 1n −  times in the two special 
senses characterized in §§4,5 in Part II-A. Under the regularity assumptions of the factorizational theory, this 
class is characterized by an nth-order differential inequality whereas in the yet-to-be-developed geometric 
theory it will be the class of generalized convex functions as in the special case of polynomial expansions 
([2], §4). 

• In §9, discussing formal application of standard derivatives to an asymptotic expansion, we characterize the 
existence of certain polynomial expansions at an endpoint where derivatives may fail to exist and such that 
the growth-order estimates of the remainders of the differentiated expansions follow unexpected algebraic 
rules. 

• §10 contains the proofs and §11 contains a few remarks about our theory.  
Whereas the results in Part II-A show that “formal differentiation of asymptotic expansions” is usually ad-

missible only if suitable operators linked to the given scale are used, the results in this Part II-B shed further 
light on this classical problem by exhibiting a meaningful and not too special case wherein suitable formal dif-
ferentiations are automatically admissible and by showing that standard derivatives are admissible in very spe-
cial cases only and that they may yield formulas algebraically skew from a classical viewpoint. 

We continue the numbering of sections and formulas in [1], but we adopt an independent numbering of the 
references in the bibliography. In order to agree with some classical terminology about the matter in this paper, 
it is convenient to specify the signs of certain Wronskians, so we list the fundamental properties of the scale we 
shall use taken from ([1], Def. 2.1 and Prop. 2.3): 

[ [1
0, , 1 ;n

i AC T x i nφ −∈ ≤ ≤                                (7.1) 

( ) ( ) ( )1 2 0, ;nx x x x xφ φ φ −→� ���                           (7.2) 

( ) ( )( ) [ [1 0, , 0 on , , 1 ;iW x x T x i nφ φ > ≤ ≤�                         (7.3) 

( ) ( ) ( )( ) [ [1 0, , , 0 on , , 1 ;n n iW x x x T x i nφ φ φ− ≠ ≤ ≤�                      (7.4) 

( ) [ [ ( ) 1
00 on , , namely sign 1 , 1 .i

i ix T x i nφ φ −≠ = − ≤ ≤                     (7.5) 

The operator 

( ) ( )( ) ( ) ( )( )1 , , 1 1: , , , , , ,
n n nL u W x x u W x xφ φ φ φ φ φ=� � �                    (7.6) 

is the unique linear ordinary differential operator of type (2.1)1,2, acting on the space [ [1
0,nAC T x−  and such 

that ( )
1 , , 1ker span , , .

n nLφ φ φ φ=� �  Expansions we are studying are of type 

( ) ( ) ( )( )1 1 0( ) , , 3,n n nf x a x a x o x x x nφ φ φ −= + + + → ≥�                   (7.7) 

and we are supposing 3n ≥  as the two-term theory has been thoroughly studied in [3]. Operators kL  and kM  
are defined in formulas (3.1) to (3.4) in Part II-A; properties of the kL ’s are reported in the first few lemmas in 
§4 and properties of the kM ’s are to be found in Proposition 3.1 with the signs specified by (3.19), due to our 
present assumption (7.3). We recall the acronym C.F. for “canonical factorization” ([1], Prop. 2.1). 

8. Absolute Convergence and Solutions of Differential Inequalities 
The theory developed in Part II-A becomes particularly simple when the involved improper integrals are abso-
lutely convergent and still more expressive for a function f satisfying the nth-order differential inequality 

( ) [ [
1 , , 00 a.e.on , .

n
L f x T xφ φ ≥  �                             (8.1) 

Under the assumptions (7.1) and (7.3) this is a subclass of the so-called “generalized convex functions with re-
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spect to the system ( )1, , nφ φ� ”. The nice result stated in the next theorem claims that: if such a function admits 
of an asymptotic expansion (7.7) then this expansion is automatically differentiable ( )1n −  times in the senses 
of both relations (4.31) and (5.6). 

Theorem 8.1 (Complete asymptotic expansions). If [ [1
0,nf AC T x−∈  satisfies (8.1) then the following are 

equivalent properties: 
1) There exist ( )1n −  real numbers 1 1, , na a −�  such that 

( ) ( ) ( ) ( )( )1 1 1 1 0, .n n nf x a x a x O x x xφ φ φ −
− −= + + + →�                      (8.2) 

2) There exist n real numbers 1, , na a�  such that 

( ) ( ) ( ) ( ) ( )( )1 1 1 1 0, .n n n n nf x a x a x a x o x x xφ φ φ φ −
− −= + + + + →�                  (8.3) 

3) The following set of asymptotic expansions holds true: 

( ) ( ) ( ) ( )1 1 0

constant

1 , , 0 1; see (4.31).k k n k k n kL f x a L x a L x o x x k nφ φ −
− −= + + + → ≤ ≤ −          �
�������

      (8.4) 

4) The following set of asymptotic expansions holds true: 

( ) ( ) ( ) ( )( )1 1

0

,

, 0 1; see (5.5)-(5.6).

k k k k n k n k nM f x a M x a M x o M x

x x k n

φ φ φ+ +

−

= +…+ +              

→ ≤ ≤ −
              (8.5) 

5) The following integral condition is satisfied: 

( )
( )

0 0 0 1

2 1

, ,

1 1

1 1 d ; see (4.32).n

n n

x x x

T t t
n n

L f t
t

p p p t
φ φ

− −
−

   < +∞∫ ∫ ∫ ��                     (8.6) 

6) The following integral condition is satisfied: 

( ) ( )0

1, ,
1 d , see (5.9) and (5.19).

n

x

T
n

L f t t
q t φ φ < +∞  ∫ �                      (8.7) 

To this list we may obviously add the other properties in Theorem 5.1 and if this is the case the remainder 
( )0R x  of the expansion in (8.3) admits of both representations: 

( ) ( )
( )

( )
( )

( )
( )

( )
( ) [ [

0 0 0 1

2 1

0 0 0 1

2 1

, ,
0

0 1 1

, ,
0

0 1 1

1 1 1 d

1 1 1 d , , ,

n

n n

n

n n

n
x x x

x t t
n n

n
x x x

x t t
n n

L f t
R x t

p x p p p t

L f t
t x T x

q x q q q t

φ φ

φ φ

− −

− −

−

−

 −  =

 −  = ∈

∫ ∫ ∫

∫ ∫ ∫

�

�

�

�

               (8.8) 

whence it follows that 

( ) ( ) [ [0 01 0 , .n R x x T x− ≥ ∀ ∈                              (8.9) 

The above equivalence “1) ⇔ 2)” simply means that, under condition (8.1), a relation “ ( ) ( )( ) ,nf x O xφ=   

0x x−→ ,” implies the existence of a finite “ ( ) ( )
0

lim n nx x
f x x aφ−→

≡ ”. 

In addition to the equivalence “3) ⇔ 4)” there is another remarkable circumstance wherein the two types of 
formal differentiations are simultaneously admissible namely when the convergence of the pertinent improper 
integrals is absolute. 

Theorem 8.2. For [ [1
0,nf AC T x−∈  the following three integral conditions are equivalent: 

( )
( )

0 0 0 1

2 1

, ,

1 1

1 1 d ;n

n n

x x x

T t t
n n

L f t
t

p p p t
φ φ

− −
−

   < +∞∫ ∫ ∫
�

�                       (8.10) 
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( ) ( )

( ) ( ) ( ) ( ) ( )

0

1

3 2

, ,

1 2 1

1 1 2 2 1 1

d ,

d d d1where : ;

n

x
nT

t t tn
n T T T

n n n

P t L f t t

t t tP t
p t p t p t p t

φ φ

−

− −

< +∞  

=

∫

∫ ∫ ∫

�
�

� �
                 (8.11) 

( )
( )

( ) ( )( )
( ) ( )( ) ( )0 01

1

, , 1 1
, ,

1

, ,
d d .

, ,
n

n

x x n

T T
n n

L f t W t t
t L f t t

q t W t t
φ φ

φ φ

φ φ

φ φ
−   ≡ < +∞  ∫ ∫

�
�

�

�
            (8.12) 

Hence each of these three conditions implies both sets of asymptotic expansions (4.31) and (5.5)-(5.6) (here 
the signs of the Wronskians are immaterial). 

An indirect brief proof of the equivalence “(8.11) ⇔ (8.12)” can be based on Theorem 8.1, but it also follows 
from the following remarkable relation valid for any signs of the Wronskians in (7.3), (7.4): 

( )
( ) ( )( )
( ) ( )( )

1 1
0

1

, , 1 , .
, ,

n
n

nn

W x x
P x x x

qW x x
φ φ

φ φ
− −∼ ≡ →

��
�

                     (8.13) 

Using Theorems 4.4 and 5.2, we can also get the analogues of Theorems 8.1-8.2 for incomplete asymptotic 
expansions and here is a concise statement, all asymptotic relations referring to 0x x−→  of course. 

Theorem 8.3 (Incomplete asymptotic expansions). Let [ [1
0,nf AC T x−∈  satisfy (8.1) and let { }1, , 1i n∈ −�  

be fixed. Then the following are equivalent properties: 

( ) ( ) ( ) ( )( )1 1 1 1 ;i i if x a x a x O xφ φ φ− −= + + +�                      (8.14) 

( ) ( ) ( ) ( ) ( )( )1 1 1 1 ;i i i i if x a x a x a x o xφ φ φ φ− −= + + + +�                  (8.15) 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

1 1

1 1 1

, 0 ;

1 , 0 1,

k k i k i k i

n i h n h i h n i h i h

L f x a L x a L x o L x k n i

L f x a L x a L x o h i

φ φ φ

φ φ− + − + − − + −

 = + + + ≤ ≤ −               


= + + + ≤ ≤ −           

�

�
       (8.16) 

(which last relations are written in (4.28) in an expanded form); 

( ) ( ) ( ) ( )( )

( ) ( )
( )

( ) ( )
( )

1 1

1

1 1

, ,

1

, ,
1

, 0 1;

1 d , 2;

d ;

n n

n

k k k k i k i k i

x t
k T T

k n

x
n T

n

M f x a M x a M x o M x k i

L f t
M f x O t i k n

q q t

L f t
M f x O t

q t

φ φ

φ φ

φ φ φ

−

+ +

+

−




= + + + ≤ ≤ −               


    = ≤ ≤ −         


    =      
 

∫ ∫

∫

�

�

�

�       (8.17) 

( )
( )

0 0 0 1

1 1

, ,

1 2

1 1 d ;n

n i n

x x x

T t t
n i n i n

L f t
t

p p p t
φ φ

− + −
− + − +

   < +∞∫ ∫ ∫
��                    (8.18) 

( ) ( )

( ) ( )

0

1

2

, , ,

1 1
,

1 1

d ,

d d1where : if 2;

n

n i

x
n iT

t tn n i
n i T T

n n n i

P t L f t t

t t
P t i

p t p p

φ φ

− +− − +

− − +

< +∞  

= ≥

∫

∫ ∫

�
�

� �
                  (8.19) 

( )
( )

0 1 1 , ,1

1

d d
d .i n nx t ti i

T T T
i i n

L f tt t
t

q q q t
φ φ−+

+

   < +∞∫ ∫ ∫
��                       (8.20) 

To the foregoing list we may obviously add property 2) or property 5) in Theorem 4.4 and properties 2)-3) in 
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Theorem 5.2. For 1i =  relation (8.14) reads ( ) ( )( )1f x O xφ=  and the first group of expansions in (8.17) 
reduces to relation in (5.26). 

Notice that relation (8.13) and the definition of ( )nP x�  in (8.11) imply that ( ) ( )
0

lim 1 1n nx x
q p−→

= +∞ ,  

hence (8.18) does not in general imply the convergence, as 0x x→ , of any of the inner integrals appearing in 
(8.20); it is the stronger condition (8.10) which implies the convergence af all the integrals in (8.20) (remember 
that, by (2.38) and (2.45), np  and nq  are not subjected to any integrability constraint). 

Moreover each of the “O”-estimates in (8.17) is meaningful whenever the involved integral diverges as 
0x x→  i.e. whenever the asymptotic expansion in (8.15) cannot be improved by adding more meaningful terms 

of the form ( )i j i ja xφ+ + . As soon as one of these integrals converges to a real number as 0x x→  then we may 
apply the theorem with a greater value of i. And in the case of divergence, under the present assumption of  
one-signedness, it is possible to infer from condition (8.20) sharper estimates not depending on 

1, , n
L fφ φ� . 

Theorem 8.4 (Sharper estimates for ( )kM f x   , 1i k n≤ ≤ − ). Under the assumptions in Theorem 8.3 let 
3n ≥ , 1 2i n≤ ≤ −  and suppose that all the integrals appearing in the “O”-estimates in (8.17) diverge as 

0x x→ , i.e. 

( )
( )

( )
1 , ,11

1 0
1

d
: d , ; 1.nx tnk

k T T
k n

L f tt
Q x t x x i k n

q q t
φ φ− −+

+
+

  = → +∞ → ≤ ≤ −∫ ∫
��           (8.21) 

Then the estimates in (8.17) for ( )kM f x    can be replaced by: 

( ) 0
1

01 , ;
x

i ix
M f x o q x x

−
−  = →        

∫                        (8.22) 

( ) 0 0 0

1

1
1

0
1

d d d
, ; 1 1.

k i

x x xk k i
k x t t

k k i

t t t
M f x o x x i k n

q q q+

−

−−

−

  
 = → + ≤ ≤ −        
∫ ∫ ∫�           (8.23) 

In the present context the above estimates are by no means obvious or “natural”: they have been obtained by 
adapting the standard calculations in the proof of the Abel-Dirichlet’s test for convergence of weighted improper 
integrals (Lemma 10.1 below). As a simple check of their validity we reobtain classical estimates for the deriva-
tives of nth-order convex functions, and to be consistent with the meaning of n in the present series of papers, 
namely “n = dimension of the Chebyshev system ( )1, , nφ φ� ”, we state the result for convex functions of order 

1n −  according to a standard terminology. 
Corollary 8.5 (Rates of increase of derivatives of higher-order convex functions). Assume that:  

[ [1
0,nf AC T x−∈ , 0x ∈ , 2n ≥  and 

( ) ( ) [ [
( ) ( )( ) { }

0

0 0

0 a.e. on , ;

, , for some 0,1, , 1 .

n

i

f x T x

f x O x x x x i n−

 ≥


= − → ∈ −
�

               (8.24) 

Then the following asymptotic relations hold true as −→ 0xx : 

( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( )( )

0 0

0 0

, for a suitable constant ,

, 1 1.

i i

i i kk k

f x a x x o x x a

f x aD x x o x x k n−

 = − + −

 = − + − ≤ ≤ −


              (8.25) 

Here the asymptotic scale is: ( ) ( ) 1
0 0 01 ,nx x x x x x−− − →� ��� ; d dk k

kM x≡ ; and 1iq ≡ . The special 
case 0i =  asserts that if an ( )1n − th-order convex function f on [ [0,T x  is bounded at 0x  then as 0x x−→ : 

( ) ( ) ( ) ( ) ( )( )01 for some constant ; , 1 1.kkf x a o a f x o x x k n−= + = − ≤ ≤ −          (8.26) 

The case ( ) ( )0: if x x x += −   shows that the estimates in Theorem 8.4 are the best possible, generally speaking. 
The estimates in Corollary 8.5 also follow from old results by Landau, Hardy and Littlewood about differen-
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tiation of asymptotic relations involving real powers, under assumptions of monotonicity on the derivatives, re-
sults that were discussed in [4] and then extended in [5] to asymptotic expansions in real powers. The special 
case 0i =  has also been obtained independently by Popoviciu ([6], p. 28). Specialization of Theorems 8.3-8.4 
to the scale 1,nx x x →+∞��� � , yields analogous estimates at +∞  ([2], Th. 4.2 and Remark 1, p. 181), 
if use is made of a technical result ([2], Prop. 5.2, p. 183). 

An important remark. In Theorem 8.1 the two types of formal differentibility 1, 2, , 1n −�  times are equiva-  
lent facts whereas it is not so for a generic f such that ( )

1, , n
L f xφ φ   �  changes sign on each deleted left neigh-  

borhood of 0x . This has been proved for polynomial expansions [2] and for real-power expansions [5] in an in-
direct way by expressing the two sets of differentiated expansions as suitable sets of expansions involving the 
standard operators d dk kx ; the new sets of expansions made evident that what we called “weak formal diffe-
rentiability”, linked to the C.F. of type (I), is indeed a weaker property than what we called “strong formal dif-
ferentiability”, linked to a C.F. of type (II). This will be also proved true in Part II-C, §15, for a special class of 
expansions including the real-power case. The same circumstance occurs for a general two-term expansion ([3]; 
Remarks, p. 261) but is not a self-evident fact. In each of these three cases direct proofs could be also provided 
working on the corresponding integral conditions. Hence in these cases the locutions of “weak or strong formal 
differentiation” are legitimate. But in the general theory for 3n ≥  we face a nontrivial situation and state 

Open problem. For 3n ≥  consider the two types of formal differentiability characterized in Theorems 4.5 
and 5.1. Investigate whether or not the property in Theorem 5.1 always implies the one in Theorem 4.5, the two 
properties being equivalent in the case of absolute convergence described in Theorem 8.2. 

We shall not dwell on this marginal aspect of the theory though it leaves unsolved whether or not we may use 
representation formula (14.38), in alternative to (15.12)-(15.13), under condition (15.10). 

9. Asymptotic Admissibility of Standard Derivatives 
9.1. Asymptotically-Admissible Operators  
Before investigating cases wherein standard derivatives d dk kx  are formally applicable to an asymptotic ex-
pansion it is good to give a rigorous definition of the involved concept, cursorily treated in ([1], §3) and ([7], §3), 
with a few examples. 

Definition 9.1 (Asymptotically-admissible operators). Let   be a linear operator acting between two linear 
spaces of real- or complex-valued functions of one real variable, 1 2: →   , and let ( )1, , nφ φ�  be functions 
in 1  forming an asymptotic scale at 0x , possibly 0x−  or 0x+ : 

( ) ( ) ( )1 2 0, ,nx x x x xφ φ φ →� ���                            (9.1) 

without any further regularity assumptions. 
(I) (A definition valid in special cases but highlighting the concept).   is said to be asymptotically admissi-

ble with respect to a given asymptotic expansion 

( ) ( ) ( ) ( )( )1 1 0, ,n n nf x a x a x o x x xφ φ φ= + + + →�                      (9.2) 

if its formal application to both sides of (9.2) yields a new asymptotic expansion 

( ) ( ) ( ) ( )( )1 1 0, ,n n nf x a x a x o x x xφ φ φ= + + + →              �                  (9.3) 

This implicitly implies that 1f ∈  and that the operator   changes the asymptotic scale (9.1) into a new 
asymptotic scale 

( ) ( ) ( )1 2 0, .nx x x x xφ φ φ →          � ���                        (9.4) 

Put in these terms the definition is well-posed if none of the functions ( )i xφ    is the zero element 0 of 
2  which means the function identically zero on some neighborhood   of 0x  if ( )0

2 C⊂  . In general, 
to avoid inconsistencies, the definition must be modified as follows. 

(II) (A general definition). First, if ( ) 2i x iφ = ⊂ ∀   0  , that is if keri iφ ∈ ∀ , then the concept in ques-
tion is not defined. If this is not the case then we put 
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{ } ( ){ }2: max 1, , : im i n xφ= ∈ ≠ ⊂   0�                          (9.5) 

and say that   is asymptotically admissible with respect to (9.2) if 

( ) ( ) ( )1 2 0, ,mx x x x xφ φ φ →          � ���                       (9.6) 

( ) ( ) ( ) ( )( )1 1 0, ,m m mf x a x a x o x x xφ φ φ= + + + →              �                  (9.7) 

after suppression of all the zero terms. An alternative locution for an asymptotically-admissible   is “  is 
formally applicable to the asymptotic expansion (9.2)”; and the validity of (9.6) may be expressed by saying that 
“  preserves the asymptotic hierarchy in (9.1)”. 

A first group of examples clarifies the necessity of specifying “after suppression of all the zero terms”. In 
each of the following three examples the standard operator of differentiation d dx  is asymptotically admissible 
according to Definition 9.1 only if all the identically-zero terms have been suppressed. 

( )
( ) ( )
( ) ( )

2 1
1

2 1 1
1

1 2 2
1

: log 1 e , 0,

log 1 , ,

2 , .

xf x x x x x

f x x x x o x x

f x x x x o x x

− −

− −

− − −

 = + + + + >
 = + + + + → +∞


′ = + − + → +∞

                      (9.8) 

( )
( ) ( )
( ) ( )

2 1
2

2
2

2

: 3 1 , 0,

3 1 1 , ,
2 3 1 , .

f x x x x x

f x x x o x
f x x o x

− = + + + >

 = + + + → +∞
 ′ = + + → +∞

                         (9.9) 

( )
( ) ( )

( ) ( )

2
3

3

1 1 2
3

: log 1 , 0,

log 1 , 0 ,
1 1 , 0 .
2

f x x x x x

f x x x o x x

f x x x o x

+

− − +

 = + + + >

 = + + + →
 ′ = + + →

                       (9.10) 

That the standard operator of differentiation does not preserve asymptotic hierarchies is quite elementary but a 
second group of examples shows that it may not preserve asymptotic hierarchies even when acting on an n-tuple 
forming a Chebyshev asymptotic scale (signs apart) on a neighborhooh of 0x  which, in the examples below, is 
taken as +∞ . 

1) Elementary examples showing that if 1 2φ φ�  then any asymptotic contingency may occur for the pair 
( )1 2,φ φ′ ′ : 

( ) ( ) ( )1 2

1 2 1 2

: ; : ;
, ; , .

x x x x
x x

α βφ φ α β
φ φ φ φ

 = = >


′ ′→ +∞ → +∞ � �
                         (9.11) 

( ) ( )1 1
1 2

1 2 1 2

: 1 ; : ;
, ; , .

x x x x
x x

φ φ
φ φ φ φ

− − = + =
 ′ ′→ +∞ ∼ → +∞ �

                         (9.12) 

( ) ( )2 1
1 2

1 2 2 1

: 1 ; : ;
, ; , .

x x x x
x x

φ φ
φ φ φ φ

− − = + =
 ′ ′→ +∞ → +∞ � �

                         (9.13) 

( ) ( )

( ) ( ) ( ) ( )
( ) ( )

2
1 2 1 2

1 2 2 1

1

1: sin cos ; : e ; , ;
2

none of the two limits : lim , lim ,

does exist in because of : 1 cos .

x

x x

x x x x x x x

x x x x

x x x

φ φ φ φ

φ φ φ φ

φ

−

→+∞ →+∞

 = + + = → +∞
 ′ ′ ′ ′
 ′ = +


�



            (9.14) 
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2) Examples of Chebyshev asymptotic scales ( )1, , , 3,n nφ φ ≥�  such that suitable permutations of ( )1, , nφ φ′ ′�  
form asymptotic scales: 

( ) ( ) ( ) ( )3 1 2
1 2 3 4

1 2 3 4 1 3 4 2

: log ; : 1 ; : ; : ;
, ; , .

x x x x x x x x x
x x

φ φ φ φ
φ φ φ φ φ φ φ φ

− − − = + = + = =
 ′ ′ ′ ′→ +∞ → +∞ � � � � � �

                (9.15) 

3) Example of a Chebyshev asymptotic scale ( )1 2 3, ,φ φ φ  such that no permutation of ( )1 2 3, ,φ φ φ′ ′ ′  forms an 
asymptotic scale: 

( ) ( ) ( )

( )

2 2
1 2 3

1 2 3

1: sin cos ; : e ; : e ;
2

, ; see 13.4 .

x xx x x x x x x

x

φ φ φ

φ φ φ

− − = + + = =

 → +∞ � �

                 (9.16) 

The above examples are variations on the examples in Bourbaki ([8]; Part V, §4, pp. V.22-V.23). 
4) Example of a Chebyshev asymptotic scale ( )1, , nφ φ�  such that ( )1, , nφ φ′ ′�  is an asymptotic scale as 

well but there exists a function f such that 

( ) ( ) ( )( )

( ) ( )

1

=1

, ,

has no asymptotic expansion of type ;

n

i i n
i

n

i i
i

f x a x o x x

f x a x

φ φ

φ

=

 = + → +∞

 ′ ′


∑

∑
                  (9.17) 

and there exists a function g such that 

( ) ( ) ( )( )
( )

( ) ( ) ( )( )

1

=1

, ,

has an incomplete asymptotic expansion, say

, , with .

n

i i n
i

k

i i k
i

g x b x o x x

g x

g x b x o x x k n

φ φ

φ φ

=

 = + → +∞
 ′

 ′ ′ ′= + → +∞ <


∑

∑

                   (9.18) 

Just take 

( ) ( ) ( )1 2, ; : sinn nx x x x f x g x x x xα− → +∞ = = + +� ���                (9.19) 

with different values of 0.α >  

9.2. Asymptotic Admissibility of Standard Derivatives  
Let us ask the question: What are the natural scales granting the asymptotic admissibility of the standard opera-
tors d dk kx ? Some of the above examples show that these operators do not automatically turn a given Cheby-
shev asymptotic scale into an asymptotic scale and, so, a rash answer to our question might suggest a scale  

( )( )1, , , nφ φ φ −′�  or a scale ( )1, , nφ φ�  such that ( ) ( )( )1 , ,k k
nφ φ�  is again an asymptotic scale but this is glaringly  

disproved even for the familiar scale at +∞ , 1n nx x x−� ��� , by a function such as ( ) ( ): sinnf x x xα= + , 
nα ≥ ; here we have that f, but not f ′ , admits of an asymptotic expansion with respect to the mentioned scale. 

Of course a special case occurs when one of the sets of operators either kL  or kM , 1 1k n≤ ≤ − , coincide 
with d dk kx ; then our operator, which we denote by the special symbol nDφ , admits of the factorization 

( )

, 2,
n

n u uD u nφ φ φ
φ φ

′ ′ ′     ≡ ≡ ≥            

� �                         (9.20) 

for some function 0φ >  and of class 1nAC −  on some interval; and the kernel of nDφ  is spanned by 

( ) ( ) ( )1, , , .nx x x x xφ φ φ−�                               (9.21) 
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For 0x ∈  or 0x = +∞  we have respectively the associated Chebyshev asymptotic scales: 

( ) ( ) ( ) ( ) ( )1
0 0 0, ;nx x x x x x x x xφ φ φ−− − →� ���                  (9.22) 

( ) ( ) ( )1 , .nx x x x x xφ φ φ− → +∞��� �                       (9.23) 

Here the operators d dk kx  are to be applied not to the function f whose expansion is given but to the ratio 
f φ . From formulas (2.7), (2.8) in Part II-A, we get the C.F.’s of nDφ . 

Lemma 9.1. (I) If 0x ∈  then (9.20) is a C.F. of type (II) at 0x  whereas “the” C.F. of type (I) at 0x  is 

( )
( )

( ) ( )
( ) ( )

2 2
0 01 1

0 0

.n
n n

x uD u x x x x
x x x x x

φ

φ

φ− −

′ ′ ′  ′       ≡ − −     − −        

� �             (9.24) 

(II) If 0x = +∞  then (9.20) is “the” C.F. of type (I) at +∞  whereas a C.F. of type (II) at +∞ , associated to 
(9.23), is 

( )
( )

2 2
1 1 .n

n n

x uD u x x
x x xφ

φ
φ− −

′ ′ ′  ′     ≡                

� �                       (9.25) 

The reader must not think that we are now filling a few pages with trivialities about Taylor’s formula; as a 
matter of fact if we apply our theory to the operator nDφ  in the case 0x = +∞  we obtain the results about 
asymptotic parabolas for the function f φ  whose theory is thoroughly studied in [2]. But for 0x ∈  the first 
factorizational appproach characterizes a set of asymptotic expansions wherein (quite surprisingly) the estimates 
of the remainders in the differentiated expansions may follow algebraic rules different from those valid both in 
the case 0x = +∞  and in the case of the standard Taylor’s formula; and the second factorizational appproach 
gives Taylor’s formula as a “limit” of Taylor’s formulas which is a classical elementary result to be commented 
on in our context. In this last case one must pay attention to the fact that formal application of the standard de-
rivative is in general permissible only a number of times related to the growth-order of the remainder in the giv-
en asymptotic expansion. See also “examples and a final comment” at the end of this section. 

Theorem 9.2. Let: [ [1
0 0; , ,nx f AC T xφ −∈ ∈ ; 0φ >  on [ [0,T x . The kth-order weighted derivative asso-

ciated to factorization (9.24) is 

( ) ( )( )
( ) ( )

2 2
0 0 1

0

: ,1 1, 2;
k

k n

uL u x x x x D k n n
x x xφ−

    = − ⋅ − ≤ ≤ − ≥ 
 −   

           (9.26) 

whereas the one associated to factorization (9.20) is the standard derivative 

( )( ): ,1 1, 2;k
kM u u k n nφ= ≤ ≤ − ≥                           (9.27) 

Consider now a generic polynomial of order 1i n≤ −  of type 

( ) ( )0
0

: .
i j

i j
j

P x a x x
=

= −∑                               (9.28) 

(I) (The continuity property of Taylor’s formula). The following are equivalent properties for a fixed  
{ }1, , 1i n∈ −� : 

1) The set of asymptotic expansions as 0x x−→ : 

( ) ( ) ( ) ( )( )
( )( ) ( ) ( ) ( ) ( )( )

0

0

,

, 1 .

i
i

i kk k
i

f x x P x o x x

f x P x o x x k i

φ

φ −

 = + −

 = + − ≤ ≤


                    (9.29) 
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As concerns the bound k i≤  when comparing with Theorems 5.1-5.2 notice that, in the present setting, the 
iφ ’s of the general theory are given by ( ) ( ) 1

0
i

i x x xφ −= − . 
2) The improper integral (involving n−i iterated integrations) 

( ) ( )( )( )0 1 1
1 2d d d converges,n ix t t n

T T T
t t f t t tφ− −

∫ ∫ ∫�                      (9.30) 

which for 1i n= −  must be read as 

( ) ( )( )( )0 d converges.
x n

T
f t t tφ∫                             (9.31) 

On account of the hypothesis [ [1
0,nf AC T xφ −∈ , condition (9.30) or (9.31) is equivalent to condition 

( )( ) ( )
0

lim ,i

x x
f xφ−→

∃ ∈                               (9.32) 

which is equivalent to condition 

( )( ) ( ) { } [ ]
0

0lim 0,1, , . . , .j i
x x

f x j i i e f C T xφ φ−→
∃ ∈ ∀ ∈ ∈� �              (9.33) 

Hence relations (9.29) are nothing but Taylor’s formula of order i of f φ  at 0x  together with the standard 
differentiated relations up to order i obtained as the “limit” of the Taylor’s formula at the point ξ  as 0xξ −→ . 

(II) (A polynomial expansion at an endpoint where derivatives may fail to exist). The following are equivalent 
properties for a fixed { }0, , 1i n∈ −� : 

3) The set of aymptotic expansions as 0x x−→ : 

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )
( )( )
( ) ( )

0

1
0

,

, 1 1 ,

1 max 1; 1 1.

i
i

k i n

k k i

f x P x x o x x x

o x x k n i
L f x L P x x

o n i k n

φ φ

φ
+ + −

 = + −



 − ≤ ≤ − − = +        − − ≤ ≤ −

       (9.34) 

4) The set of aymptotic expansions as 0x x−→ : 

( ) ( ) ( ) ( )( )

( )( ) ( ) ( ) ( )
( )( )
( )( )

0

0

1 2
0

,

, 0 1

, 1 1,

i
i

i k

k k
i n k

f x x P x o x x

o x x k n i
f x P x

o x x n i k n

φ

φ

−

− −

 = + −

  − ≤ ≤ − −  = + 
  − − − ≤ ≤ −



             (9.35) 

where the two estimates coincide for 1k n i= − − , namely 

( )( ) ( ) ( ) ( ) ( )( )2 11 1
0 .i nn i n i

if x P x o x xφ + −− − − −= + −                     (9.36) 

The nondifferentiated expansion is written differently in (9.34) than in (9.35) to correctly apply the operators 
kL  as defined in (9.26). Notice that for 1i n= −  the remainder in the second relation in (9.34) is ( )1o  for 

1 1k n≤ ≤ − , and the remainder in the second relation in (9.35) is ( )( )1 2
0

n ko x x − −−  for 0 1k n≤ ≤ − . 
5) The iterated improper integral (involving i+1 integrations) 

( ) ( ) ( ) ( ) ( )( )( )0 0 0

1

2 2 1
1 0 1 0 0d d d converges.

i i

x x x nn
i iT t t

t x t t x t t x f t t tφ
−

− − −− − −∫ ∫ ∫�         (9.37) 

We must comment on the above claims. Part (I) is a classical elementary property which may be traced back 
to Walter and Ford ([9], Lemma II, p. 350), 1911, and a proof is reported in Aumann and Haupt ([10], Ch. 8, 
§8.9.2.1, pp. 235-236) valid under weaker regularity assumptions involving only the existence of the highest- 
order left derivative of the given function and its limit as 0x x−→ . Put in geometric terms it asserts that: If the 
osculating parabola of a certain order i at a generic point ξ  admits of a limit position as 0xξ −→  then this 
last is the left osculating parabola of order i at 0x . This fact historically is the idea underlying the geometric 
theory of limit parabolas at +∞ , see ([2], §1) where the two main results characterize expansions involving re-
mainder-estimates at +∞  either of the form ( ) ( ) ( ) , 0,k i kf x o x k−= ≥  or ( ) ( ) ( )1 , 0.kf x o k= ≥  From an al-
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gebraic viewpoint the first stronger form follows the same formal rule as in Taylor’s formula (9.29) and in rela-
tions (9.35) for 0i = , whereas the second weaker form has no counterpart for 0x ∈  and 1i ≥ . The equiva-
lence “4) ⇔ 5)” is no trivial fact and let us have a closer look at the set of relations in (9.35) which may seem 
strange and even incorrect at a first sight. For simplicity we put 0 0x = . First, the powers appearing in the 
o-terms decrease with k which amounts to say that we have worse estimates for higher derivatives; and this is a 
natural phenomenon. Second, if for two functions 1f , 2f  we have 

( ) ( ) ( ) ( )1
1 2, 0; , 0;i if x o x x f x o x x+= → = →  

then the estimate for ( )
2

kf  is sharper than that for ( )
1

kf  fo each { }1, , 1k n∈ −� . This is easily checked for 
1k n i= − −  whereas for 1 2k n i≤ ≤ − −  and for 1n i k n− < ≤ −  the two estimates coincide. This fact simply 

says that the estimates in (9.35) for different values of i are consistent. What may seem unnatural, on the con-
trary, is the gap of two units between the exponents inside the last o-term in (9.35) corresponding to consecutive 
values of k. 

Examples. The following simple examples involving oscillatory functions will reassure the doubtful readers 
(and the author himself was in the number). For 2n =  and 1i =  we have the equivalence 

( ) ( ) ( ) ( ){ } ( )1 2
0 0

, , 0 d d converges,
s

f x o x f x o x x s s tf t t− −

→ →
′ ′′= = → ⇔ ∫ ∫            (9.38) 

an example being provided by 

( ) ( ) ( )1

0 if 0,
:

sin if 0, 1 2 ,

x
f x

x x xα α−

==  > < <
                       (9.39) 

which is differentiable at 0x =  but f ′  has no limit as 0x +→  and is unbounded. 
For 3n =  and 1,2i =  we have the following contingencies, assuming 2f AC∈  on a deleted neighbor-

hood of 0x = : 

( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( )

1

2

2 2
1 1

0 0

, 1 , , 0

d d converges;
t

f x o x f x o f x o x x

t t t f t t

−

−

→ →

′ ′′= = = →

′′′⇔ ∫ ∫
                   (9.40) 

( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( )

1 2

2 2

2 2 2
1 1 2 2

0 0 0

, 1 , , 0

d d d converges.
t t

f x o x f x o f x o x x

t t t t t f t t

−

− −

→ → →

′ ′′= = = →

′′′⇔ ∫ ∫ ∫
                  (9.41) 

It is obvious that in both cases f can be extended so as to be of class 1C  on a complete neighborhood of 0x =  
and an example for both contingencies is provided by the function: 

( ) ( )1: sin , 2 3,f x x xα α−= < <                             (9.42) 

for which 

( ) ( ) ( ) ( )
( ) ( ) ( )2 21

; ; ; 0 .
o

f x o x f x f x o x x
o x

− +=′ ′′= = →≠
                  (9.43) 

A final comment. The discussion in this section shows that formal applications of ordinary derivatives to an 
asymptotic expansion is not admissible generally speaking, and even for the very special asymptotic scale (9.22) 
the first (but not the second) factorizational approach can give seemingly-unnatural results. It is in principle true 
that each of the two sets of expansions characterized in Part II-A, §§4,5, can provide asymptotic information 
(not always meaningful and not necessarily expansions) for the ordinary derivatives; however this is easily 
achieved for the first-order derivative but is practically unmanageable for higher-order derivatives and yields no 
theoretical result. It is also true that for expansions in arbitrary real powers as x →+∞  two lemmas of an alge-
braic character permit to transform each set of expansions involving the pertinent operators kL  or kM  into a 
meaningful set of expansions involving the ordinary derivatives and here again the first factorizational approach 
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yields uncommon results, ([5], Lemma 7.3, p. 196, and Lemma 7.4, p. 201); but as 0x x→ ∈  a possible ana-
logue of Theorem 9.2-(II) for arbitrary powers is complicated by the fact that it is necessary to separate many a 
case for the exponents. On the contrary, the use of weighted derivatives defined by canonical factorizations 
yields a coherent and applicable theory. 

10. Proofs 
Proof of Theorem 8.1. The only thing to be proved is the inference “1) ⇒ 5) ∧ 6)”, the other properties being 
included in Theorems 4.5 and 5.1. We use a procedure already used in ([2], p. 193) and in ([5], p. 213). From 
representation in (4.15) we get (using the simplified notation 

1, , n
L Lφ φ≡ � ): 

( )
( ) ( ) ( )

( )
( )
( ) [ [2 10

1 0
1 1 1 1

1 1 11 d , , .n nx t t

T T T
n n

L f tf x p x
c o t x T x

x x p p p tφ φ
− −

−

  − + = ∈∫ ∫ ∫�            (10.1) 

By the assumption (8.2) the left-hand side has a finite limit as 0x x→ , and for the right-hand side we have: 

( )
( )

( )
( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

2 1

0

2 1

0

2 1

0 2

0

0

1 1 1

by 2.42 and 2.43
1 1

1 1 0

1 1

1

1 1

1

1 1 1lim d

1 1 d
1 lim

1 1 d
1 lim

1 1

1 lim

n n

n n

n n

n

x t t

x x T T T
n n

x t t
nT T T

n
x x

n

x t t
nT T T

n
x x x t

T T
n

x x

L f tp x
t

x p p p t

L f t p t t
p p

b P x P x

L f t p t t
p p

b
p p

b

φ
− −

−

− −

−

− −

−
−

−

→
−

−
→

−

−
→

−

→

  

  
=

  
=

= =

∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫

∫ ∫

�

�

�

�

� ,
x

nT
L p∫

              (10.2) 

after applying L’Hospital’s rule ( )1n −  times (which is legitimate as all the denominators diverge to +∞ ). By 
the positivity of the integrand this last limit exists in   and coincides with the limit of the left-hand side in 
(10.1) hence it must be a real number and (4.15) can take the form: 

( ) ( ) ( ) ( ) ( )
( )
( ) [ [2 0

1
1 1 2 2 0

0 1 1

1 1 1 d , , ,n

n

x t x
n n T T t

n n

L f t
f x a x c x c x t x T x

p x p p p t
φ φ φ −

−
−

  = + + + − ∈∫ ∫ ∫� �    (10.3) 

with suitable constants 2 , , nc c� . From this we get: 

( ) ( )
( ) ( ) ( )

( )
( )
( ) [ [2 0

1

1 1 0
2 0

2 2 1 1

1 1 11 d , , .n

n

x t x

T T t
n n

L f tf x a x p x
c o t x T x

x x p p p t
φ

φ φ
−

−
−

 −  − + = − ∈∫ ∫ ∫�        (10.4) 

Here again the left-hand side has a finite limit as 0x x→  whereas the limit of the right-hand side, by (4.1), 
equals: 

( ) ( )

( ) ( )

( ) ( )

2 0

1

0

2 0

1

0 3

0

0 1

1 1

2 2 0
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2
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1 lim

1 1 d
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1 1lim ,

n
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n
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n

x t x
nT T t

n
x x

n

x t x
nT T t
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x x x t

T T
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x x
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L f t p t t
p p
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b
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L p
b p

−

−

−

−

−

−
−

−
−

−
→

−

−
→

−

→
−

  
−

  
= −

= = −

∫ ∫ ∫

∫ ∫ ∫

∫ ∫

∫ ∫

�

�

�

�
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after applying L’Hospital’s rule ( )2n −  times. Hence this last limit, which exists in  , must be a real number 
and (10.3) can be rewritten as: 

( ) ( ) ( ) ( ) ( )

( )
( )
( ) [ [3 0 0

2 1

1 1 2 2 3 3

0
0 1 2 1

1 1 1 1 d , , ,n

n n

n n

x t x x

T T t t
n n n

f x a x a x c x c x

L f t
t x T x

p x p p p p t

φ φ φ φ

−

− −
− −

= + + + +

  + ∈∫ ∫ ∫ ∫

�

�
            (10.5) 

with suitable constants 3 , , nc c� . It is now clear how this procedure works and by induction one can prove the 
validity of representation: 

( ) ( ) ( ) ( )
( )

( )
( )
( ) [ [0 0 0 0

3 2 1

1 1 1 1

1

0
0 1 2 2 1

1 1 1 1 1 d , , ,
n n n

n n n n

n
x x x x x

T x t t t
n n n

f x a x a x c x

L f t
t x T x

p x p p p p p t

φ φ φ

− − −

− −

−

− −

= + + +

 −  + ∈∫ ∫ ∫ ∫ ∫

�

�
         (10.6) 

with a suitable constant nc . As a last step we observe that (8.2) implies: 

( ) ( ) ( ) ( ) ( )1 1 1 1 01 , ,n n nf x a x a x x O x xφ φ φ −
− −− − − = →  �                  (10.7) 

and (10.6) in turn implies: 

( )
( )

( )
( )

( ) ( )
( ) ( )

0 0 0

2 1

0 0 0

2 1

0

1 1 2 1

by 4.2

0
1 2 1

1 1 1 1 d

1 1 1 d 1 , .

n n

n n

x x x x

T x t t
n n

x x x x

T x t t
n n

L f tp x
t

x p p p p t

L f t
t O x x

p p p p t

φ − −

− −

−

−

−

  

  ≡ = →

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

�

�

                (10.8) 

By the positivity of the integrand this last relation implies (8.6) and the first representation in (8.8) for ( )0R x . 
To prove (8.7) we apply the same ideas starting from representation (5.1) and dividing by 1φ ; recalling that 

1 01 qφ =  we get 

( )
( ) ( )

( )
( ) [ [2 1

1 0
1 1 1

1 11 d , , .n nx t t

T T T
n n

L f tf x
c o t x T x

x q q q tφ
− −

−

  − + = ∈∫ ∫ ∫�                (10.9) 

which implies 

( )
( )

0 1 2 1

1 2 1

1 1 1 d ;n nx t t t

T T T T
n n

L f t
t

q q q q t
− −

−

   < +∞∫ ∫ ∫ ∫�                      (10.10) 

and (5.1) can be rewritten as 

( ) ( ) ( ) ( ) ( )
( )
( )

0 1 2 1
1 1 2 2

0 1 2 1

1 1 1 1 d ,n nx t t t
n n x T T T

n n

L f t
f x a x c x c x t

q x q q q q t
φ φ φ − −

−

  = + + + − ∫ ∫ ∫ ∫� �     (10.11) 

with suitable constants 2 , , nc c� . From this we get 

( ) ( )
( ) ( ) ( )

( )
( )
( )

0 1 11 1 1
2

2 2 1 2

1 11 d .nx t t

x T T
n

L f tf x a x x
c o t

x x q q q t
φ φ

φ φ
−  −  − + = − ∫ ∫ ∫�             (10.12) 

Evaluating the limit of the right-hand side by L’Hospital’s rule and using formula in (2.31), ( )1 2 11 q φ φ ′= , we 
get 

( ) ( )

( ) ( ) ( ) ( )

0 1 1

1

0 0

1 2

2 1 2

1 1 d
1lim lim d ,

n

n

x t t
nx T T H x t

nx x x x T T

L f t q t t
q q L f t q t t

x x qφ φ

−

−
− −→ →

−   
=   

∫ ∫ ∫
∫ ∫

�
�  
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and this last limit, which exists in  , must be a real number. This means that 

( )
( )

0 0 2 2 1

11 2 3 1

1 1 1 1 d ,n nx x t t t

T t T T T
n n

L f t
t

q q q q q t
− −

−

   < +∞∫ ∫ ∫ ∫ ∫�                    (10.13) 

and (10.11) can be rewritten as 

( ) ( ) ( ) ( ) ( )

( )
( )
( )

0 0 2 2 1

1

1 1 2 2 3 3

0 1 2 3 1

1 1 1 1 1 d ,n n

n n

x x t t t

x t T T T
n n

f x a x a x c x c x

L f t
t

q x q q q q q t

φ φ φ φ

− −

−

= + + + +

  + ∫ ∫ ∫ ∫ ∫

�

�
              (10.14) 

with suitable constants 3 , , nc c� . For the clarity’s sake we make explicit the steps in this second part of our 
proof. Assume by induction that the following two conditions hold true: 

( )
( )

0 2 1

1 1

1 1 1 d ;i n nx t t t

T T T T
i i n n

L f t
t

q q q q t
− −

+ −

   < +∞∫ ∫ ∫ ∫�                     (10.15) 

( ) ( ) ( ) ( ) ( )
( )
( )

( )
( )

0 0 0 1

1 1

1 1 1 1

0 1 2 1

1 1 1 1 1 d ,i n

i

i i i i n n

i
x x x t t

x t t T T
i i n

f x a x a x c x c x

L f t
t

q x q q q q q t

φ φ φ φ

−

−

+ +

+

= + + + + +

 −  + ∫ ∫ ∫ ∫ ∫

� �

� �
              (10.16) 

for some ,1 2i i n≤ ≤ − , and suitable constants 1, ,i nc c+ � . Dividing both sides of (10.16) by 1iφ +  and taking 
account of (8.2) we infer that the limit of the quantity 

( )
( )

( )
( ) ( )

( ) ( )
( )

0 0 1

1

0 0 1 0 0

1 1

1
0 1 1

2.34

1 1 1

1 1 1 1 d

1 1 1 1 1d

i n

i

i n

i i

i
x x t t

ix t T T
i i n

x x t t x x

x t T T x t
i i n i

L f t
t x

q x q q q q t

L f t
t

q q q q t q q

φ−

−

−

− −

+
+

+

  −   
  

   ≡  
  

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫ ∫ ∫

� �

� � …

              (10.17) 

exists in  . Applying L’Hospital’s rule i times to evaluate this limit we get the new limit 

( ) ( )1

0
1

1lim dnx t
nx x T T

i

L f t q t t
q

−
−→

+

  ∫ ∫�  

which, by the positivity of the integrand, exists in   hence it must be a real number. We infer that condition 
(10.15) holds true with i replaced by 1i +  and this implies representation (10.16) with i replaced by 1i +  and 
suitable constants 2 , ,i nc c+ � . By this inductive procedure we arrive at representation: 

( ) ( ) ( ) ( )
( )

( )
( )
( ) [ [0 0 1

2

1 1 1 1

1

0
0 1 1

1 1 1 d , , ,n

n

n n n n

n
x x t

x t T
n n

f x a x a x c x

L f t
t x T x

q x q q q t

φ φ φ

−

−

− −

−

−

= + + +

 −  + ∈∫ ∫ ∫

�

�
              (10.18) 

with some constant nc . Dividing by nφ  and using (2.2) we may now conclude that 

( )
( ) ( )0 0 1 0 0

2 21 1 1 1

1 1 1 1d 1 ,n

n n

x x t x x

x t T x t
n n n

L f t
t O

q q q t q q
−

− −
− −

    = 
  
∫ ∫ ∫ ∫ ∫� �               (10.19) 

and if we try to evaluate the limit of the ratio on the left applying L’Hospital’s rule ( )1n −  times we get the  

( ) ( )
0

lim d
x

nx x T
L f t q t t−→
  ∫ , which exists in   and must be a finite number. This is condition (8.7) which al-  

lows the second representation in (8.8) for the remainder in (8.3). The proof is over. 
Proof of Theorem 8.2. The equivalence between (8.10) and (8.11) easily follows from Fubini’s theorem by 
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interchanging the order of integrations in (8.10) whereas the equivalence between (8.11) and (8.12) is by no 
means an obvious fact. A concise proof based on Theorem 8.1 is as follows; putting 

( ) ( ) ( ) ( ) [ [2 1

1 , , 0
0 1 1

1 1 1 1: d , , ,n n

n

x t t

T T T
n n

F x L f t t x T x
p x p p p t φ φ

− −

−

= ∈  ∫ ∫ ∫ ��           (10.20) 

we have 

[ [ ( ) ( ) [ [
1 1

1
0 , , , , 0, ; a.e.on , ;

n n

nF AC T x L F x L f x T xφ φ φ φ
−∈ =      � �             (10.21) 

hence F satisfies ( )
1, , 0

n
L F xφ φ ≥  �  a.e. on [ [0,T x  and Theorem 8.1 implies the equivalence between (8.11)  

and (8.12). Now we prove relation (8.13) recalling that all the involved functions and Wronskians are strictly 
one-signed on the interval. The symbol of asymptotic equivalence is referred to 0x x−→  of course, and, when-
ever used, is granted by the hierarchies of the Wronskians in (2.14) and the divergence of the involved integrals. 
We report a classical differentiation formula used in Proposition 2.4: 

( ) ( ) ( )( )
( ) ( ) ( )( )

( ) ( )
( )

1 1 1 1 1 1 1
2

1 1 1

, , , , , , ,
, 2,

, , , , ,
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′  ⋅
= ≥ 

      

� � �

� �
          (10.22) 

valid for any ordered ( )1i + -tuple of functions ( )1 1, , ,i ig g g +�  at any point where the required derivatives 
exist. Now for 2,3n =  we have: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( )

( ) ( )( ) ( )
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       (10.23) 
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�

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












          (10.24) 

where in the last but one passage we have applied formula (10.22) to the ordered triplet ( )2 3 1, ,φ φ φ . Hence 

( ) ( )
( )

( )
( )

( )
( )

3 2 1 2 1 2
3

3 2 1 2 3 1 2 3

, , ,
.

, , , , ,
W W W

P x
W W W

φ φ φ φ φ φ
φ φ φ φ φ φ φ φ

∼ ⋅ =�                    (10.25) 

Now, for a fixed 3n ≥ , we use the procedure in (10.24) to prove by induction on i that 

( )
( )

2 1 1

1 1 1

, , ,1 1 , 2 1.
, , ,

x t n n i n i
T T

i n n i n

W
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p p W
φ φ φ
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∼ ≤ ≤ −∫ ∫
�

�
�

                 (10.26) 

As in (10.24) we can prove that (10.26) is true for 2i = ; assuming it to be true with i replaced by 1i −  we 
have: 
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( ) ( )
( )

( )
( )

( ) ( )

2

1 1

1 2 1 1 2 1
2

1 2 21 1

1 2 1 1 1

1

d 1 1 d

, , , , , , , , ,
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that is (10.26). Using this relation for 1i n= −  and the expression in (2.43) for 1 np  we, finally, get: 

( ) ( )
( )

( )
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1 2 1 1

1 1 1 2

, , , , ,
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, , , , , ,
n n n
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n n n n
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P x
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that is (8.13). 
Proof of Theorem 8.3. The only thing to prove is the O-estimates in (8.17). From representation (5.2) 

( )
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( ) ( ) ( )

( ) ( )
( )
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1
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1 1
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1 d

1by 3.13 and 3.14 d 1
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+

  = + + +          

  = = + +

∫ ∫

∫ ∫

� �

� � �

        (10.27) 

for some constant c, whence the estimate for ( )iM f x    follows. And so on for the other estimates. 
Proof of Theorem 8.4 is contained in the following lemma only valid under the stated one-signedness restric-

tions. 
Lemma 10.1 (Growth-order estimates for iterated improper integrals with nonnegative integrands). Assump-

tions: 

[ [1
0 0, , , 1 ; , ;i loch g L T x i m T x∈ ≤ ≤ ∈ ≤ +∞                      (10.28) 

[ [ [ [0 00 a.e. on , ; 0 a.e. on , ;ih T x g T x> ≥                     (10.29) 

( )0 d , 1 ;
x

iT
h t t i m< +∞ ≤ ≤∫                             (10.30) 
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m T
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∫

�
         (10.31) 

( ) ( )1 0convergent and divergent as , 2 1.iH x H x x x i m−→ ≤ ≤ +             (10.32) 

Thesis. The following estimates hold true: 
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∫

∫ ∫ ∫�
              (10.33) 
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Proof. All functions iH  are nonnegative and nondecreasing and satisfy ( ) ( ) ( )1 , 1i i iH x h x H x i m+′ = ≤ ≤ . 
For 2H  we have the simple estimate 

( ) ( ) ( ) ( ) ( ) ( )0 0
2 1 1 2 10 d d by the convergence of 1 ,

x x

x x
H x h t t h t H t t H x o≤ ⋅ ≤ = =∫ ∫ � �      (10.34) 

which implies the first relation in (10.33). To estimate ( )3H x  we integrate by parts as follows 
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Now the integral on the left is convergent by hypothesis and the first integral on the right is convergent by 
(10.34), hence the second integral on the right converges as well and we get the equality 
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1 2 2 1 1 2 3d d ,
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x x x t
h t H t t H x h h h t H t t= +∫ ∫ ∫ ∫                 (10.35) 

whence, again by (10.34), 
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x x

x t
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The nondecreasingness of 3H  implies 
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which yields the estimate for 3H . Relations (10.36)-(10.37) give the key to proceed by induction. Putting 
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− −= ∫ ∫ ∫�                            (10.38) 

we want to prove ( ) � ( ) ( )1i iH x H x o⋅ = . For the sake of simplicity, we write out the calculations for 4H  using 

(10.36), which reads ( )� ( ) ( )3 3 1H x H x o= , and integrating by parts in the integral appearing in (10.36): 
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whence 
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x
H t h t H t t o=∫                           (10.39) 

And now the nondecreasingness of 4H  implies 

( ) ( )� ( )
� ( )

( ) ( )� ( ) ( )0 0

4

4 3 3 4 3 30 d d 1 .
x x

x x

H x

H x h t H t t H t h t H t t o≤ ⋅ ≤ =∫ ∫�������
              (10.40) 

Relations (10.39)-(10.40) allow iteration of the procedure to estimate ( )5H x  and so on. 
Proof of Theorem 9.2. Part (I) is nothing but Theorems 5.1 and 5.2 applied to the present case wherein f is re-

placed by f φ  and ( ) 1i
i x xφ −≡ . The equivalence between (9.32) and (9.33) is an elementary fact under the 

tacit assumption ( ) ( ) 0:f x x aφ =  for 0x x= . In part (II) relations (9.34) are those given in Theorems 4.4-4.5 
specialized to our case and the only thing to be proved is the equivalence “3) ⇔ 4)” contained in the next lemma 
where we simplify all formulas by assuming 0 0x =  and 1φ ≡ . 

Lemma 10.2. Let f be of class 1nAC −  on some deleted neighborhood of 0x =  and let 
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( )2 2 2 1: with derivatives, 1 1, 2.n
kL u x x x x u k k n n−

′ ′ ′  ′ = ≤ ≤ − ≥       

� �         (10.41) 

For a fixed { }0,1, , 1i n∈ −�  the following set of asymptotic relations as 0x → : 

( ) ( ) ( ) ( )
( ) ( )

1 , 1 1 ,
;

1 , max 1; 1 1,

k i n
i

k

o x k n i
f x o x L f x

o n i k n

+ + − ≤ ≤ − −= =   
− − ≤ ≤ −

          (10.42) 

is equivalent to the set of asymptotic relations, as 0x → , involving only standard derivatives: 

( ) ( ) ( ) ( )
( )
( )1 2

, 1 1
;

, 1 1,

i k
ki

n k

o x k n i
f x o x f x

o x n i k n

−

− −

 ≤ ≤ − −= = 
− − ≤ ≤ −

               (10.43) 

where the two estimates coincide for 1k n i= − − , namely 

( ) ( ) ( )1 2 1 .n i i nf x o x− − + −=                            (10.44) 

For 1i n= −  in (10.42) we have ( ) ( )1kL f x o=    for all k, 1 1k n≤ ≤ − ; and in (10.43) we have  
( ) ( ) ( )1 2k n kf x o x − −= , for all k, 0 1k n≤ ≤ − . 
Proof. It is easily proved by induction that the expanded expressions of the kL ’s are 

( )
( )

3 2 5 4 3
1 2 2,1 2,0

1
, ,

0

1 ; ; ;

, 1,

n n n n n

k
jk j n

k k j k k
j

L u x u n x u L u x u c x u c x u

L u c x u c

− − − − −

+ + −

=

 ′ ′′ ′≡ + − ≡ + +



≡ =


∑

�
            (10.45) 

with suitable constants ,k jc  whose explicit values are not needed in our calculations. Let us now prove “(10.42) 
⇒ (10.43)”. First step. From the first equality in (10.45) we get 

( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

3 2
1

2 2 2

1

if 0 2,

1 1 if 1,

n n

i n i n i n

x f x L f x n x f x

o x o x o x i n

o o x o i n

− −

+ − + − + −

′ = + −  
 + = ≤ ≤ −= 

+ = = −

              (10.46) 

whence 

( )
( )
( )

1

3

if 0 2,

if = 1.

i

n

o x i n
f x

o x i n

−

−

 ≤ ≤ −′ = 
−

                         (10.47) 

Second step. From the second equality in (10.45) we infer 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

5 4 3
2 2,1 2,0

3 4 1 3 3

4 1 3

4 3 3

, 0 3,

1 1 , 2,

1 1 , 1,

n n n

i n n i n i i n

n i n i

n n n i

x f x L f x c x f x c x f x

o x o x o x o x i n

o o x o x o i n

o o x o x o i n

− − −

+ − − + − − + + −

− + − − +

− + − − +

′′ ′= − −  
 + + = ≤ ≤ −

= + + = = −


+ + = = −

             (10.48) 

having used (10.47), and from these last estimates we get 

( )
( )
( )

2

5

, 0 3,

, 2 1.

i

n

o x i n
f x

o x n i n

−

−

 ≤ ≤ −′′ = 
− ≤ ≤ −

                        (10.49) 
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Suppose now that the relations in (10.43) for the derivatives have been proved true for ( ), , , kf f f′ ′′� , 
1k n< − , and let us prove the corresponding relations for ( )1kf + . From (10.45) we get 

( ) ( ) ( ) ( ) ( )12 3 2
1 1,

0
,

k
k jk n k j n

k k j
j

L f x x f x c x f x++ − + + −
+ +

=

= +   ∑                  (10.50) 

whence 

( ) ( ) ( ) ( ) ( )12 3 2
1 1,

0
.

k
k jk n k j n

k k j
j

x f x L f x c x f x++ − + + −
+ +

=

= −   ∑                  (10.51) 

Now for ( )0 1 1i n k≤ ≤ − − +  we use the first estimate in (10.42) for ( )1kL f x+     and the first estimates in 
(10.43) for the derivatives ( ) ( )jf x  so getting from (10.51) 

( ) ( ) ( ) ( )2 3 ( 1) 1 1 2 2

0
if 0 2.

k
k n k k i n k j n i j k i n

j
x f x o x o x o x i n k+ − + + + + − + + − + − + + −

=

= + = ≤ ≤ − −∑       (10.52) 

For the remaining values of i we must use the second estimate in (10.42) for ( )1kL f x+     and the suitable 
estimates in (10.43) for ( ) ( )jf x  so getting from (10.51) 

( ) ( ) ( ) ( ) ( )12 3 2
1,

0
1

k
k jk n k j n

k j
j

x f x o c x f x++ − + + −
+

=

= − =∑ �                  (10.53) 

Now inside the sum each ( )jf  must be replaced by one of the two estimates in (10.43), assumed to be true, and 
we have two possible contingencies 

( ) ( )
( ) ( )
( ) ( )

2 2

2

2 1 2 1

if 1 ,

if 1 .

k j n i j k i n
jk j n

k j n n j k j

o x o x j n i
x f x

o x o x n i j k

+ + − + − + + −

+ + −

+ + − + − − + −

 = ≤ − −= 
= − − ≤ ≤

           (10.54) 

In the first case the restriction 1i n k≥ − −  implies 2 1k i n+ + − ≥ , and in the second case the restriction 
j k≤  implies 1 1k j+ − ≥  as well. In each case the whole sum in (10.53) is ( )o x  as 0x →  and (10.53) 

gives 

( ) ( ) ( )12 3 1 if 1 1.kk nx f x o n k i n++ − = − − ≤ ≤ −                     (10.55) 

Finally from (10.51) we get the sought-for estimates for ( )1kf + : 

( ) ( )
( )( ) ( )

( )( ) ( )

1

1

1 2 1

if 0 1 1,

if 1 1.

i k

k

n k

o x i n k
f x

o x n k i n

− +

+

− − +

 ≤ ≤ − + −= 
− + ≤ ≤ −

                  (10.56) 

The proof of “(10.42) ⇒ (10.43)” is over. The converse implication is checked at once replacing the estimates in 
(10.43) into the sum (10.45) expressing ( )kL f x   : 

( )
( )

( )
( ) ( )

1

1

1 20
0

1 .

k i n
i j

k
k j n

k
k jn jj

j

o xo x
x

o x oo x

+ + −
−

+ + −

−− −
=

=

 ⋅ = 
=  

∑
∑

                    (10.57) 

 

11. Some Remarks on Factorizational Theory 
11.1. On the Use of Non-Canonical Factorizations  
We show by two examples that the use of non-C.F.’s is unreliable to construct a general theory. Let us refer, e.g., 
to the characterizations of an asymptotic expansion for a generalized convex function. 
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First example. For [ )2 ,f AC T∈ +∞ , we know that 

( ) ( )
( ) ( )

2
21 ,

d ,
0

f x ax bx c o x
t f t t

f x x T
 = + + + → +∞ ′′′⇔ < +∞ ′′′ ≥ ∀ ≥

∫                 (11.1) 

and that the inference “⇒” can be easily proved when a C.F. of the operator :Lu u′′′=  of type (I) at +∞  is 
used, see ([2], proof of Th.4.2). Suppose now to use the following factorization (which is no C.F. at +∞ ) 

( ) )2 3 1 2 0, ,u x x x u u AC− −
′ ′′ ′′′ ≡ ∀ ∈ +∞   

                       (11.2) 

and the related representation 

( ) ( )1 22 3 2
1 2 3 1 2 2d d d .

x t t

T T T
f x c x c x c x t t t t f t t− ′′′= + + + ∫ ∫ ∫                     (11.3) 

Assuming the validity of the expansion in (11.1), we try to find a necessary integral condition involving f ′′′ . 
From (11.3), we get 

( )
( ) ( )( )

( )

1 2
by 15.4

2 3 2
1 1 2 2

.
3 2

1

lim lim d d d

lim d d ,

x t t
x x T T T

H x s
x T T

x f x c t t t t f t t x

c s s t f t t

− −
→+∞ →+∞

−
→+∞

′′′∋ = +

′′′= +

∫ ∫ ∫

∫ ∫


 

and by reasons of constant sign, we infer 

( )3 2 d d ,
s

T T
s t f t t s

+∞ −  ′′′ < +∞  ∫ ∫                             (11.4) 

a much weaker condition than ( )2 d .
T

t f t t
+∞

′′′ < +∞∫  Hence, in this example the used factorization does not allow 
to characterize the expansion at hand. 

Second example. Let us consider the operator :Lu u u′′′ ′′= −  and the following three factorizations: 

( ) ( )
( )

a global factorization on ,
e e :

and the C.F. of type I at ;
x xLu u−  −∞ +∞′′′≡  +∞ “ ”

                  (11.5) 

( ) ( ) ( ) ( ) ] )
( )

1 2 1 a factorization valid on 1,
1 1 1 e e :

and a C.F. of type II at ;
x xLu x x x u− − −

′ ′  +∞  ′ ≡ − − −   +∞    
       (11.6) 

( ) ] )1 2 1 a factorization valid on 0,
e e :

but no C.F. at .
x xLu x x x u− − −

′ ′  +∞ ′ ≡    +∞   
            (11.7) 

We have ( )ker span e ; ;1xL x=  and the following characterization for an [ )2 ,f AC T∈ +∞  

( ) ( )
( ) ( ) ( )e 1 ,

d ,
( ) 0

xf x a bx c o x
t f t f t t

f x f x x T
+∞ = + + + → +∞ ′′′ ′′⇔ − < +∞   ′′′ ′′− ≥ ∀ ≥
∫           (11.8) 

obtained from the results in §8 based on the use of C.F.’s. However, in this case the equivalence in (11.8) can be 
also obtained using the non C.F. in (11.7) if one starts from the corresponding integral representation for f and 
reapplies the same procedure used in the proof of Theorem 8.1. 

11.2. On the Use of Integral Representations Inferred from Factorizations 
We start noticing that the convergence of an iterated integral 

( ) ( )0

1

d d ,
x t

T T

t g s s
p t

→

∫ ∫                                (11.9) 
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where 0
1 00, 1 , ,

x
p p T T x

→
> = +∞ −∞ < ≤ ≤ ≤ +∞∫  in the case of conditional convergence, may depend in an 

unpredictable way on the choice of 1T  as in the following two elementary examples: 

( )
1

cos d converges π, if 0 1;
t

T
t s s T k kα α

+∞ − ⇔ = ∈ < <∫ ∫                 (11.10) 

( ) ( )1
1

d sin d converges π, , or .
t

T
t s s s T k k T

+∞ − ′ ⇔ = ∈ = ±∞∫ ∫ �              (11.11) 

Now an integral representation linked to a C.F. of type (I) and more general than (4.15) in Part II-A is 

( ) ( ) ( ) ( ) ( ) ( ) [ [2 1

11 1
1 1 , , 0

0 1 1

1 1 1 1 d , , ,n n

nn n

x t t
n n T T T

n n

f x c x c x L f t t x T x
p x p p p t φ φφ φ − −

−
−

= + + + ∈  ∫ ∫ ∫ �� �  (11.12) 

wherein the ic ’s are suitable constants and the fixed endpoints iT  are such that 0.iT T x≤ ≤  From this repre-
sentation, one infers at once that 

If there exists an n-tuple ( )1 0, , , ,n iT T T x<�  such that the iterated integral 

( ) ( )0 1 1

11 2
, ,

1 2

1 1 1 d converges,n

nn

x t t

T T T
n

L f t t
p p p t φ φ

−→
  ∫ ∫ ∫ ��                 (11.13) 

then, recalling that ( ) ( )0n nx b p xφ = , we get 

( ) ( ) ( ) ( )( )1 1 0, ,n n nf x a x a x o x x xφ φ φ= + + + →�                   (11.14) 

with an appropriate representation of the remainder. 
But, by the initial remark, such an integral condition is almost useless for general results as well as for prac-

tical applications if the iT ’s are fixed a priori and distinct from 0x ; it may be well fulfilled by some very spe-
cial f with an ocillatory Lf, but it cannot be satisfied by any f such that 0Lf >  no matter how small its order of 
growth at 0x : in fact if the improper integral ( ) ( )0

1, , d
nn

x
nT

L f t p t tφ φ
→

  ∫ �  represents a positive number, then 
the iterated integral in (11.13) diverges. 

Moral. Working with the C.F. of type (I) at 0x , the sole integral conditions which can be used for sufficiently 
general results are those appearing in Theorem 4.4 in Part II-A. 

The situation is technically different when working with a C.F. of type (II). Referring to an integral represen-
tation of type 

( ) ( ) ( ) ( ) ( ) ( ) [ [2 1

11 1
1 1 , , 0

0 1 1

1 1 1 1 d , , ,n n

nn n

x t t
n n T T T

n n

f x c x c x L f t t x T x
q x q q q t φ φφ φ − −

−
−

= + + + ∈  ∫ ∫ ∫ �� �   (11.15) 

more general than (5.1) in Part II-A, we see that as soon as we may choose 0iT x=  for some i, i.e. if some of 
the innermost improper integrals converge, then automatically the remaining outer integrals converge as well. 
Moreover, a condition like 

( ) ( )0 0 1

11 1
, ,

1 1

1 1 1 1 d convergenti n

ni i n

x x t t

T t T T
i i n

L f t t
q q q q t φ φ

−

− −
+

  ∫ ∫ ∫ ∫ �� �             (11.16) 

does not “whimsically” depend on , ,i nT T�  if they are distinct from 0x : if one of them is allowed to coincide 
with 0x , this simply means that condition (11.15) may be replaced by a stronger condition yielding additional 
asymptotic information. 
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