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ABSTRACT 

The derivation of moment equations for the theoretical description of electrons is of interest for modelling of gas dis-
charge plasmas and semiconductor devices. Usually, certain artificial closure assumptions are applied in order to derive 
a closed system of moment equations from the electron Boltzmann equation. Here, a novel four-moment model for the 
description of electrons in nonthermal plasmas is derived by an expansion of the electron velocity distribution function 
in Legendre polynomials. The proposed system of partial differential equations is consistently closed by definition of 
transport coefficients that are determined by solving the electron Boltzmann equation and are then used in the fluid cal-
culations as function of the mean electron energy. It is shown that the four-moment model can be simplified to a new 
drift-diffusion approximation for electrons without loss of accuracy, if the characteristic frequency of the electric field 
alteration in the discharge is small in comparison with the momentum dissipation frequency of the electrons. Results 
obtained by the proposed fluid models are compared to those of a conventional drift-diffusion approximation as well as 
to kinetic results using the example of low pressure argon plasmas. It is shown that the results provided by the new ap-
proaches are in good agreement with kinetic results and strongly improve the accuracy of fluid descriptions of gas dis-
charges. 
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1. Introduction 

Nonthermal plasmas are widely used in many technical 
applications including plasma display panels, energy 
saving lamps, devices for microbial decontamination and 
ozonizers [1-4]. They are characterized by low gas 
temperatures g  in the range from 300 to 1000 K and 
comparatively high mean electron energies 

T

e  between 
1 and 10 eV, where 1 eV corresponds to temperature of 
11605 K. Computer simulations of electric gas dis- 
charges producing nonthermal plasmas are used since 
many years to get a deeper understanding of fundamental 
processes and to improve technical devices [5-10]. In 
order to describe all phenomena taking place in the dis- 
charge mechanism, in principle, a mathematical model 
comprising the kinetic Boltzmann equation [11] 
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for the distribution function sf  of each gas species “s” 
with charge sq  and mass sm  in seven-dimensional 
space of   3, ,x y z  r  , velocity  

  3, ,x y zv v v v   end end0, , tt t and time    has  

to be solved in combination with Maxwell’s equations 
for the electric field E  and the magnetic field . The 
right-hand side in (1) accounts symbolically for the 
change in the distribution function due to collision pro- 
cesses. However, such system is not solvable in rea- 
sonable computing time and several simplifying assump- 
tions have to be taken into account. For the nonthermal 
plasmas under consideration, magnetic fields are negli- 
gible, and, instead of the hole system of Maxwell’s equ- 
ations, the Poisson equation 
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for the electric potential   is solved for determination 
of the electric field  E , where sN  is the number 
of gas species with densities sn 0 and   denotes the 
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permittivity of free-space. Furthermore, heavy particles 
are frequently assumed to be in thermodynamic equili- 
brium and macroscopic fluid equations with constant 
temperature g  are taken into account for tracing the 
spatiotemporal behaviour of ions and neutral particles 
[12-15]. In contrast, the non-local kinetics of electrons 
plays an important role in the discharge mechanisms and 
the application range of fluid models which do not des- 
cribe electrons adequately is very limited [16-18]. There- 
fore, hybrid models are frequently used in which fluid 
equations are solved for heavy particles and electrons are 
treated kinetically [19-21]. However, it has been pointed 
out recently that fluid models are able to capture electron 
kinetic effects, if the electron energy flux is adequately 
described [22,23]. 

T

In the present paper, a high order fluid model com- 
prising moment equations for particle density, particle 
flux, energy density and energy flux of the electron com- 
ponent is consistently derived from the electron Bolt- 
zmann equation. In addition a novel drift-diffusion 
approximation for electrons is proposed. Results are com- 
pared to those of a conventional drift-diffusion model 
frequently used [24,25] and to kinetically obtained re- 
sults at the example of argon gas discharge plasmas. 

2. Kinetic Description of Electrons 

In spite of the increasing speed of computers, the solu- 
tion of the electron Boltzmann equation in seven dimen- 
sions is computationally not feasible. A conventional 
approach for reducing computing time is to decrease 
dimensionality by decomposition of the electron velocity 
distribution function (evdf) ef  in terms of spherical 
harmonics in velocity space [26,27]. In the planar system 
considered in the present studies and depicted in Figure 
1, where all gradients and the electric field are assumed 
to be normal to the electrodes, the general spherical har- 
monics expansion reduces to the Legendre polynomial 
expansion [27,28] 
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In this case the velocity distribution function becomes 
symmetric around the electric field and depends on the 
space coordinate x , the velocity magnitude v

 
, the 

direction cosine cos x  and time. The substitu- 
tion of the expansion (3) into the electron Boltzmann 
equation 
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Figure 1. Planar discharge geometry. 
 
with elementary charge 0e and the transformation of the 
expansion coefficients into the space of kinetic energy 
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finally yields the infinite system of partial differential 
equations [16] 
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(6b) 

for the expansion coefficients l . Here, h  
and ,h r  are the cross sections of elastic and inelastic 
collisions of electrons with heavy particles with density 
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h  and mass h  and h  and r  denote the number 
of heavy particle species and reactions, respectively. The 
kinetic energy that is lost in the corresponding inelastic 
electron collision is denoted by ,h r  and the parameter 

,h r

n m N N

inU
  depends on the different kinds of inelastic electron 
collision processes. It is zero for dissociative attachment 
of electrons and one for excitation, dissociation and de- 
excitation processes. Using the assumption that the bind- 
ing energy is equally shared between the two released 
electrons ,h r  equals two for an ionization event [16]. 

In order to solve system (1), it has to be truncated after 
a reasonable finite number of equations. Within the com- 
mon framework of the two-term expansion [29-31], only 
the first two equations for 0f  and 1f  are taken into 
account and lf  is set to zero for . Usually, the 
rapidity of the temporal change of the anisotropic dis- 
tribution f1 is by some orders of magnitude greater than 
that of the isotropic distribution f0 as long as the cha- 
racteristic frequency for the field alteration is small 
compared to the power dissipation in elastic and inelastic 
collisions [30]. In this case, the time derivative term 

1l 

1f t  in (7) for , which describes the establish- 
ment of 

1l 
1f  into the quasi-stationary state 
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(7) 

can be neglected. If in this case lf  is set to zero for 
, the system (6) reduces to the single parabolic diffe- 

rential Equation (6a) using the expression (7) with 

2  for the anisotropic contribution 

1

0 1

l

f f  to the evdf 
[30]. 

In the past, the system (6) has been solved in two-term 
approximation [29,30] using the expression (7) with 

2  as well as in multiterm approximation con- 
sidering higher order contributions to the evdf anisotropy 
[32-35] to study the behaviour of electrons in prescribed 
time-dependent as well as stationary electric fields. But 
the coupled solution (stationary or time-dependent) of the 
kinetic Equations (6) for electrons, fluid equations for 
heavy particles and Poisson’s equation for the electric 
field is still an ambitious task and has been achieved for a 
few discharge situations, only [21,36-38]. In the follow- 
ing a macroscopic system of moment equations is con- 
sistently derived from the system (6), which strongly 
simplifies the description of electron transport. 

0f

3. Macroscopic Transport Equations for 
Electrons 

3.1. Four-Moment Model 

The derivation of a system of moment equations for the 
description of electrons in nonthermal plasmas starts 
from the kinetic system (6). Multiplication of Equation  

(6a) by factors e2 m  and e2 mU , respectively, and  

subsequent integration over kinetic energy U directly 
provides the two moment equations 
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with macroscopic quantities 
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The source terms e  and e  in Equations (8a) and 
(8b) describe the gain and loss of particles and energy 
due to collision processes. For a specific gas, they are 
given as the sum of rates of all relevant processes with 
rate coefficients depending on the mean electron energy 

e ew ne , see, e.g., [15,16] for more details.  
In order to consistently derive partial differential equ- 

ations for the determination of the particle flux (11) and 
the energy flux (12), Equation (6b) for  is mul-  1l 
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spectively. As before, subsequent integration over kinetic 
energy  yields the two moment equations 
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with the mean free path of electrons 
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The definition of the set of transport coefficients 
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with the mean velocity of electrons e e e  allows 
to write the four-moment model (4MM) for electrons in 
the form 
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Electron transport coefficients used in fluid calcul- 
ations are commonly obtained by solving the kinetic 
system (6) in multiterm approximation [16] or in two- 
term approximation [39] for given values of the electric 
field, neglecting spatial and temporal derivatives. The 
resulting coefficients are then put into lookup tables as 
functions of the mean electron energy for the usage in 
fluid calculations. The same procedure, known as local- 
mean-energy approximation [16,40], is used for the 
determination of the new transport coefficients (15). 

3.2. Drift-Diffusion Approximation 

As mentioned in Section 2, the rapidity of the temporal 
change of the anisotropic distribution 1f  is by some 
orders of magnitude greater than that of the isotropic 
distribution 0f  and the time derivative in Equation (6b) 
for 1l   can be neglected in many discharge situations. 
With this assumption and definition of the coefficient 
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is obtained for the particle flux e  and energy flux e  
of the electrons. Substitution of (18a) and (18b) into Equ- 
ations (16a) and (16c), respectively, reduces the four- 
moment model to a system of two parabolic differential 
equations for the particle density e  and the energy 
density e  of electrons. The coefficient (17) is deter- 
mined in the same way as the coefficients (15). 

As an example, the transport coefficients (15) used in 
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the four-moment model (16) and the drift-diffusion 
approximation (18) are shown in Figure 2 for argon gas, 
where the underlying cross sections are detailed in re- 
ference [15]. It becomes obvious that for mean electron 
energies e 10 eV   the distribution anisotropy 2f  be- 
comes important and should not be neglected by using 
the conventional two-term approximation. 

The derived drift-diffusion approximation (18) can be 
used for description of electron transport instead of the 
conventional drift-diffusion approximation DDAc 
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which is deduced from Equation (7) with [16] and 
without [8,40,41] consideration of the higher order con- 
tribution 2f  to the distribution anisotropy. The electron 
diffusion coefficients of particle e  and energy 

e  transport as well as the electron mobilities of 
particles e  and energy eb  are determined in the same 
way as the coefficients of the four-moment model (15) 
and (17) as functions of the mean electron energy [16]. 

 D
 D

b 

3.3. Conventional Three-Moment Model 

The derivation of the four-moment model 4MM and the 
 

 

Figure 2. Argon transport coefficients for electron particle 
flux in drift-diffusion approximation DDAn (a); energy flux 
in drift-diffusion approximation DDAn (b); particle and 
energy fluxes in four-moment model 4MM (c); and dissipa- 
tion frequencies for particle and energy fluxes (d). 

drift-diffusion model DDAn is consistent in the sense 
that beside the truncation of the expansion (3) no addi- 
tional assumptions are needed in order to close the 
system of macroscopic moment equations. This is not the 
case if moment equations are derived directly from the 
electron Boltzmann Equation (4) and not from the kinetic 
system (6), see, e.g., [13,42,43]. The multiplication of 
Equation (4) by factors 1, k  and 2 2m v, , ,v k x y z e , 
respectively, and subsequent integration over velocity 
space yields the system of three moment equations [44] 
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for the particle density e , the particle flux e  and the 
energy density e  of electrons. In order to solve system 
(20) it has to be closed by certain expressions for the 
electron pressure tensor 

       3
3

e, e e e e,, , , , , dk kp t m f t t v t v r r v v r r 
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, ,k x y z
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with   and the random electron velocity  

e e v v v

 

 as well as for the electron energy flux 
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For light particles such as electrons, the pressure 
tensor e  can be simplified to the scalar electron pre- 
ssure [45,46] 
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and is therefore determined in terms of the macroscopic 
quantities e , e  and ev . The derivation of an ade- 
quate expression for the third order moment e  in 
terms of lower order moments is a much more difficult 
task. Most often, the electron energy flux is rewritten as 
[44] 

Q
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 
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with the exact electron heat flux 
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and then the heat flux is approximated by Fourier heat 
conduction according to [12,13] 

       e e, ,
3

t D t n t t  q r r r re e

5
, , .     (26) 

However, this approximation is known to be inaccurate 
in most discharge situations [22,43]. 

A more sophisticated heat flux ansatz has been derived 
by Robson et al. [22]. Unfortunately, their heat flux 
expression depends on parameters which are not known 
for real gases and is therefore not applicable without 
further benchmark calculations [23]. 

4. Comparison of Macroscopic and Kinetic 
Models 

In order to show that the derived systems of partial 
differential equations 4MM and DDAn improve the 
accuracy of fluid models for the description of electrons, 
numerical calculations for two different discharge si- 
tuations in argon were performed. First, the electron 
transport equations were solved for prescribed pulse-like 
electric field (benchmark model). Secondly, an abnormal 
glow discharge in low pressure argon was described self- 
consistently in the sense that the electron transport equa- 
tions were solved together with transport equations for 
heavy particles and Poisson’s equation for determina- 
tion of the electric field. The finite-difference methods 
used to discretize the system of differential equations in 
space and time are detailed in reference [15]. 

4.1. Argon Benchmark Model 

Probe measurements in plasmas cause an abrupt change 
of the local electric field. This situation is considered 
here, and the four-moment model 4MM (16) as well as 
the drift-diffusion model DDAn using the new flux 
representation (18) and the drift-diffusion model DDAc 
using the conventional flux representation (19) were 
solved for argon gas at a pressure of 133 Pa and a gas 
temperature of 300 K using the prescribed electric field 
profile shown in Figure 3(a). In order to rate the results 
of 4MM, DDAn and DDAc, the space-dependent 
electron Boltzmann equation was solved kinetically 
according to Sigeneger et al. [41] for the same electric 
field, taking into account elastic and inelastic electron 
collision processes. Figures 3(b) and 3(c) exhibit the 
results obtained for the mean velocity and the mean 
energy of the electrons by means of the different models. 

Because the applied field is time-independent and 
therefore the temporal derivatives of all quantities are 
zero, results of 4MM and DDAn are almost the same. 
The spatial profile predicted by the models 4MM and 
DDAn for the mean velocity and the mean energy are in 
qualitative agreement with the kinetic results. In contrast,  

 

Figure 3. Prescribed electric field (a) and comparison of 
results for the mean velocity (b) and energy (c) of the 
electrons obtained by the four-moment model 4MM and 
drift-diffusion models DDAn and DDAc with kinetic results. 
 
the results of DDAc strongly differ from those of the 
kinetic solution. The results show impressively that the 
accuracy of fluid models for the theoretical description of 
electrons is strongly increased by the proposed methods. 

4.2. Abnormal Glow Discharge in Argon 

To demonstrate the practical applicability of the derived 
moment equations, the ignition of an abnormal glow 
discharge in argon at a gas pressure of 133 Pa and a gas 
temperature of 300 K was theoretically described using 
the discharge geometry depicted in Figure 1. At the 
powered electrode at 0x   (cathode) a voltage of –250 
W was applied and the electrode at x = 1 cm (anode) was 
grounded. The general procedure for solving the coupled 
system of transport equations for the species and 
Poisson’s equation has been described in [15] and the 
data used for the electron-atom collisions are the same as 
those reported in this paper. 

The results obtained by the models 4MM, DDAn and 
DDAc for the mean electron velocity, the mean electron 
energy and the self-consistently determined electric field 
are shown in Figure 4 at three different instants of time. 
Obviously, all fluid models under consideration predict 
qualitatively the same dynamic behaviour. Shortly after 
switching on the discharge, at t = 1 μs, a quasi-stationary 
Townsend phase is reached which is characterized by an 
almost constant electric field and small spatial variations 
in the mean velocity and mean energy of electrons. 
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Figure 4. Comparison of results obtained by the fluid models 4MM, DDAn and DDAc for an abnormal glow discharge in 
argon at pressure of 133 Pa and applied voltage of –250 V. 
 
Charge carriers are produced mainly in front of the 
grounded electrode by ionization of argon atoms in 
collisions with electrons and by secondary electron 
emission at the powered electrode due to ion bombard- 
ment. At  enough charge carriers are produced 
to distinctly perturb the homogeneous electric field. Due 
to the increase of the electric field in the cathode region 
strong charge carrier multiplication takes place and 
finally the discharge ignites. The discharge becomes 
stationary after approximately 100 μs. Electrons emitted 
at the cathode gain energy in the strong electric field and 
are then slowed down in electron collisions. The dis- 
charge is brightest in the negative glow region at appro- 
ximately . 

10 μst 

0.5 cm 0.8 cmx 

0.3 cmx   strong deviations in the results for the mean 
energy occur at steady state. The mean energy minimum 
is strongly overestimated by DDAc and it has been found  
that this issue causes the occurrence of a singular point in 
the temporal evolution of the discharge ignition if gas 
pressure, discharge chemistry or applied voltage are 
slightly changed. 

5. Conclusions 

A new system of moment equations for the description of 
electrons in nonthermal plasmas was derived by an ex- 
pansion of the electron velocity distribution function in 
Legendre polynomials and the definition of transport co- 
efficients that are determined by means of the local- 
mean-energy approximation. The new model 4MM is 
consistent in the sense that no additional assumptions are 
necessary to close the system of moment equations. It 
has been shown that the additional requirement of a small 
characteristic frequency for the field alteration allows to 
reduce the system of four first-order partial differential 
equations for particle density, particle flux, energy den- 
sity and energy flux of electrons to a parabolic drift- 
diffusion model comprising two second-order partial 
differential equations for the particle density and energy 

Because the characteristic frequency for the field alte- 
ration is small in the discharge situation considered here, 
the results of the four-moment model 4MM and the new 
drift-diffusion model DDAn are almost the same. Small 
differences occur in front of the boundaries due to the 
fact that different types of boundary conditions have to 
be applied for the system of first-order differential 
equations 4MM and the parabolic system DDAn. Again, 
the results of DDAc differ markedly. Particularly in the 
transition from the cathode region to the negative glow at 
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density of electrons. If this requirement is fulfilled, the 
results provided by the new drift-diffusion model DDAn 
are in good agreement with those of the high order fluid 
model 4MM. 

The comparison of results obtained by the models 
4MM and DDAn with results of the conventional drift- 
diffusion model DDAc as well as kinetically obtained 
results has pointed out that the new approach strongly 
increases the accuracy of fluid models for the description 
of electron transport in nonthermal plasmas. Since similar 
partial differential equations for electrons arise in the 
theoretical description of semiconductors [47-49], it po- 
tentially improves the theoretical description of electrons 
in semiconductor devices, too. 
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