

On the Torsion Subgroups of Certain Elliptic Curves over \mathbb{Q}^*

Yoon Kyung Park

School of Mathematics, Korea Institute for Advanced Study, Seoul, Republic of Korea Email: ykpark@math.kaist.ac.kr

Received October 2, 2012; revised December 3, 2012; accepted December 15, 2012

ABSTRACT

Let *E* be an elliptic curve over a given number field *K*. By Mordell's Theorem, the torsion subgroup of *E* defined over \mathbb{Q} is a finite group. Using Lutz-Nagell Theorem, we explicitly calculate the torsion subgroup $E(\mathbb{Q})_{tors}$ for certain elliptic curves depending on their coefficients.

Keywords: Elliptic Curve; Rational Point

1. Introduction

A cubic curve over the field K in Weierstrass form is given by projectively

$$y^{2}w + a_{1}xyw + a_{3}yw^{2} = x^{3} + a_{2}x^{2}w + a_{4}xw^{2} + a_{6}w^{3},$$

with coefficients in K. Then there is a unique \overline{K} rational point (x, y, w) = (0, 1, 0) on the line at infinite w = 0. If the above is an elliptic curve, then (0, 1, 0) is a nonsingular point and we deal with the curve by working with the affine form

$$y^{2} + a_{1}xy + a_{3}y = x^{3} + a_{2}x^{2} + a_{4}x + a_{6}.$$
 (1)

Hereafter assume that K is a number field. Since the field characteristic of K is 0, we can study

$$y^2 = x^3 + Ax + B \tag{2}$$

instead of (1.1). When the discriminant

 $\Delta_E = 4A^3 - 27B^2$ is nonzero, *E* is a nonsingular curve. By Mordell's theorem, E(K) is a finitely generated abelian group and its torsion subgroup $E(K)_{tors}$ is a finite abelian group. Mazur proved that $E(\mathbb{Q})$ of an elliptic curve *E* over the rational numbers must be isomorphic to one of the following 15 types [1]:

$$\mathbb{Z}/N\mathbb{Z}, N = 1-10, 12$$

 $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2N'\mathbb{Z}, N' = 1-4$

This paper is focused on knowing how the coefficients *A* and *B* of (1.2) determine $E(\mathbb{Q})_{tors}$. For the earlier work, we see the cases *A* or *B* is zero in [2]:

Theorem 1. Let *E* be the elliptic curve $y^2 = x^3 + Ax + B$ with *A* and *B* in \mathbb{Z} .

1) If A is fourth-power free and B = 0, then

$$E(\mathbb{Q})_{tors} = \begin{cases} \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}, & \text{if } -A \text{ is a square in } \mathbb{Z}, \\ \mathbb{Z}/4\mathbb{Z}, & \text{if } A = 4, \\ \mathbb{Z}/2\mathbb{Z}, & \text{otherwise.} \end{cases}$$

2) If B is sixth-power free and A = 0, then

$$E(\mathbb{Q})_{tors} = \begin{cases} \mathbb{Z}/6\mathbb{Z}, \text{if } B = 1, \\ \mathbb{Z}/3\mathbb{Z}, \text{if } B = -432 = -2^4 3^3, \text{or if } B \text{ is square not } 1, \\ \mathbb{Z}/2\mathbb{Z}, \text{if } B \text{ is cubic not } 1, \\ 0, & \text{otherwise.} \end{cases}$$

It is too hard to determine the group $E(\mathbb{Q})_{tors}$ without any relation between the coefficients. Hence we consider the elliptic curve as follows:

$$y^{2} = x^{3} + f(k)x + g(k)$$
(3)

with $f(k), g(k) \in \mathbb{Z}[k]$. Then Theorem 1 yields the case when one of f(k) and g(k) is zero and $\max \{ \deg_k f(k), \deg_k g(k) \} = 1$. In this paper, we deal with the case $\max \{ \deg_k f(k), \deg_k g(k) \} = 2$.

Theorem 2. Let

$$E: y^{2} = x^{3} - (6k+3)x - (3k^{2}+6k+2)$$
(4)

be the elliptic curve with k in \mathbb{Z} . Suppose that k is an integer such that $35 \nmid k(9k+4)$ and there is no integer h satisfying $k = 4h(3h^2 + 3h + 1)$ or $-4(h+1)(3h^2 + 3h + 1)$. Then

^{*}This work was supported by NRF 2012-0006901.

$$E(\mathbb{Q})_{tors} = \begin{cases} \mathbb{Z}/4\mathbb{Z}, \ k \equiv 20 \text{ or } 34 \pmod{35}, \exists l \in \mathbb{Z} \text{ such that } k = -3l^2(1+l) \text{ and} \\ \exists m \in \mathbb{Z} \text{ satisfying } m^2 = l(3l-2) \text{ and } 6(6l^2 - 5lm - 2) \text{ is square,} \\ \mathbb{Z}/2\mathbb{Z}, \ k \equiv 20 \text{ or } 34 \pmod{35}, \exists l \in \mathbb{Z} \text{ such that } k = -3l^2(1+l) \text{ and} \\ \nexists m \in \mathbb{Z} \text{ satisfying } m^2 = l(3l-2) \text{ and } 6(6l^2 - 5lm - 2) \text{ is square,} \\ \mathbb{Z}/2\mathbb{Z}, \ k \text{ is congruent to one of the elements of the set } K_2 \text{ modulo } 35 \\ \text{and } \exists l \in \mathbb{Z} \text{ such that } k = -3l^2(1+l), \\ 0, \text{ otherwise.} \end{cases}$$

where $K_2 = \{x \in \mathbb{Z}/35\mathbb{Z} : x \equiv 4, 7, 12, 15, 22, 25, 27, 29, 32\}.$

2. The Proof of Theorem 2

We use the Lutz-Nagell Theorem and we have to calculate $E_p(\mathbb{F}_p)$ if *E* has a good reduction at the prime *p*.

Theorem 3. (Lutz-Nagell) Let E be an elliptic curve (1.1) with coefficients in \mathbb{Z} and E_p be a obtained curve by reducing coefficients of E modulo p. And let Δ_E be the discriminant of E.

1) If $a_1 = 0$ and if P = (x(P), y(P), 1) is in $E(\mathbb{Q})_{tars}$, then x(P) and y(P) are integers;

2) For any a_1 , if P = (x(P), y(P), 1) is in $E(\mathbb{Q})_{tors}$, then 4x(P) and 8y(P) are integers;

3) If *p* is an odd prime such that $p \nmid \Delta_E$, then the restriction to $E(\mathbb{Q})_{tors}$ of the reduction homomorphism $r_p: E(\mathbb{Q}) \to E_p(\mathbb{Q}_p)$ is one-to-one. The same conclusion is valid for p = 2 if $2 \nmid \Delta_E$ and $a_1 = 0$;

4) If $a_1 = a_3 = a_2 = 0$, so that E is given by

 $y^2 = x^3 + Ax + B,$

and if P(x(P), y(P), 1) is in $E(\mathbb{Q})_{tors}$, then either y(P) = 0 (and P has order 2) or else $y(P) \neq 0$ and $y(P)^2$ divides $d = -4A^3 - 27B^2$.

Proof. See [2]. □

Lemma 4. Let $E: y^2 = x^3 + Ax + B$ be the elliptic curve over \mathbb{F}_p and P = (x, y) be a point in $E(\mathbb{F}_p)$ which is not a point at infinity. Then the followings are equivalent.

1) P = (x, y) is a point of order 3 in $E(\mathbb{F}_p)$;

2) $3x^4 + 6Ax^2 + 12Bx - A^2$ is congruent to 0 modulo p.

Proof. 1) \Rightarrow 2) Let (x_2, y_2) be the point 2P = P + P. Then by the group law algorithm ([2]),

$$x_{2} = \frac{x^{4} - 2Ax^{2} - 8Bx + A^{2}}{4y^{2}}$$
$$y_{2} = \frac{-(3x^{2} + A)\left(\frac{(3x^{2} + A)^{2}}{4y^{2}} - 2x\right)}{2y} - \frac{-x^{3} + Ax + 2B}{2y}$$

and

$$-P = (x, -y).$$

Then $3P = O$ means that

$$x^4 - 2Ax^2 - 8Bx + A^2 = 4xy^2$$
(5)

$$-(3x^{2}+A)\left(\frac{(3x^{2}+A)^{2}}{4y^{2}}-2x\right)-(-x^{3}+Ax+2B)=-2y^{2}.$$
(6)

Since $y^2 = x^3 + Ax + B$, x should satisfy that $3x^4 + 6Ax^2 + 12Bx - A^2 = 0$ in \mathbb{F}_p .

2) \Rightarrow 1) Assume that $3x^4 + 6Ax^2 + 12Bx - A^2 = 0$, y is not zero and $y^2 = x^3 + Ax + B$ in \mathbb{F}_p . By simple calculation, such x, y satisfy (5) and (6) and if P is the point (x, y) then 2P = -P. We are done. \Box

Here we choose two rational primes 5,7 and calculate the groups $E(\mathbb{F}_5)$ and $E(\mathbb{F}_7)$. For the integer k unmentioned in our main theorem, we can take another prime and apply it as same manner.

Lemma 5. Let *p* be the rational prime and *E* be the elliptic curve defined as

$$y^{2} = x^{3} - (6k+3)x - (3k^{2}+6k+2)$$

where k is a nonzero integer. And using the natural surjection from \mathbb{Z} to $\mathbb{F}_p \cong \mathbb{Z}/p\mathbb{Z}$, we can get E_p by reducing the coefficients of E modulo p. If p does not divide the discriminant $-2^4 \times 3^3 \times k^3 (9k+4)$ then the group E_p consisting of the points defined over the finite field \mathbb{F}_p with p elements is $(\mathbb{Z}/9\mathbb{Z}, k \equiv 1 \pmod{5})$

1)
$$E_5(\mathbb{F}_5) = \begin{cases} \mathbb{Z}/9\mathbb{Z}, k \equiv 1 \pmod{5}, \\ \mathbb{Z}/6\mathbb{Z}, k \equiv 2 \pmod{5}, \\ \mathbb{Z}/3\mathbb{Z}, k \equiv 3 \pmod{5}. \end{cases}$$

2) $E_7(\mathbb{F}_7) = \begin{cases} \mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z}, k \equiv 3 \pmod{7}, \\ \mathbb{Z}/6\mathbb{Z}, & k \equiv 1, 4 \pmod{7}, \\ \mathbb{Z}/9\mathbb{Z}, & k \equiv 2 \pmod{7}, \\ \mathbb{Z}/12\mathbb{Z}, & k \equiv 6 \pmod{7}. \end{cases}$

Table 1. Point in $E_5(\mathbb{Z}_5)$.

$k \pmod{5}$	$E_{s}(\mathbb{Z}_{s})-\{O\}$	$\left E_{5}\left(\mathbb{Z}_{5} ight) ight $	generators in $E_{s}(\mathbb{Z}_{s})$	
1	$0,(0,\pm 2),(1,\pm 1),(2,\pm 2),(3,\pm 2)$	9	$0, (0, \pm 2), (1, \pm 1), (2, \pm 2)$	
2	$0,(0,\pm 2),(1,0),(3,\pm 1)$	6	(3,±1)	
3	$(2,\pm 2)$	3	$(2,\pm 2)$	

Proof. By [3], every $E_p(\mathbb{F}_p)$ has a subgroup of $\mathbb{Z}/3\mathbb{Z}$. **Table 1** is the proof of (1).

Both cases can be calculated as using simple calculation. For 2), since p = 7 and $p \nmid k(9k+4)$, k can not be congruent to 0 and $5 \pmod{7}$. When

 $k \equiv 1 \pmod{7}$, E_7 becomes $y^2 = x^3 - 2x + 3$. By substituting all elements of \mathbb{F}_7 to x in E_7 , we can find that $E_7(\mathbb{F}_7) = \{(1,\pm3),(2,0),(6,\pm2),\infty\}$. Since it is an abelian group with 6 elements, $E_7(\mathbb{F}_7) \cong \mathbb{Z}/6\mathbb{Z}$. Like this, if $k \equiv 4 \pmod{7}$,

 $E_7(\mathbb{F}_7) = \{(4,\pm 1), (5,0), (6,\pm 1), \infty\}$ has 6 elements. Hence it is isomorphic to $\mathbb{Z}/6\mathbb{Z}$.

In the case $k \equiv 2 \pmod{7}$ $E_7 : y^2 = x^3 - x + 2$ has a torsion subgroup $\{(1,\pm 3), (2,\pm 1), (6,\pm 3), (0,\pm 3), \infty\}$ over \mathbb{F}_7 . To find the point of order 3 in the elliptic curve as the form ((2) in Section 1), we have to get the root of the equation $3x^4 + 6Ax^2 + 12Bx - A^2 = 0$ in given field and it is the *x*-coordinate of the order 3 point by Lemma 4. In this case, the equation is

 $3(x+1)(x^3+6x^2+6x+2)$ in \mathbb{F}_7 . Hence there is no point of order 3 except $(6,\pm 3)$ and $E_7(\mathbb{F}_7) \cong \mathbb{Z}/9\mathbb{Z}$.

For $k \equiv 3 \pmod{7}$, $E_7(\mathbb{F}_7)$ has 9 elements. But the equation giving criterion of order 3 is

3x(x+1)(x+2)(x+4) in \mathbb{F}_7 and

 $(0,\pm3),(3,\pm1),(5,\pm1),(6,\pm1) \in E_7(\mathbb{F}_7)$. Therefore, $E_7(\mathbb{Z}_7) \cong \mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z}$.

Last, if $k \equiv 6 \pmod{7}$,

$$E_7(\mathbb{F}_7) = \{(0,\pm 1), (2,\pm 1), (3,\pm 3), (4,0), (5,\pm 1), (6,\pm 2), \infty\}$$

has only one point (4,0) of order 2. It means that $E_7(\mathbb{F}_7) \cong \mathbb{Z}/12\mathbb{Z}$.

To get 1), we use the same process as 2), I omit it. \Box

Propositions 6 and 7 give the necessary and sufficient condition to have order 2 and 3 points.

Proposition 6. Let

 $E: y^2 = x^3 - (6k+3)x - (3k^2+6k+2)$ be the elliptic curve with k in \mathbb{Z} . There is a point of order 2 if and only if k is an integer of the form $-3l^2(1-l)$. Moreover, the point of order 2 is unique.

Proof. Assume that k is an integer of the form $-3l^2(1-l)$. Through easy calculation, k satisfies $k^2 + 6l^2k + 9l^4 - 9l^6 = 0$. Then $x = 3l^2 - 1$ is a root of $x^3 - (6k+3)x - (3k^2 + 6k + 2) = 0$ and $(3l^2 - 1, 0)$ is

the point of order 2 in $E(\mathbb{Q})$.

Conversely, suppose that the equation of

 $x^3 - (6k+3)x - (3k^2+6k+2) = 0$ has a solution in \mathbb{Z} . To have solution of the equation with respect to k, x should be congruent to 2 modulo 3. By substituting 3m-1 to x, the equation becomes

 $-3\{k^2 + 6km - 9m^2(m-1)\}$. Since it has an integral solution, $m = l^2$ and $k = -3l^2(1-l)$ for an integer l.

Now we show that there is no point of order 2 except $(3l^2 - 1, 0)$ in $E(\mathbb{Q})$. Assume that $(3l^2 - 1, 0) \in E(\mathbb{Q})$. Then $k = -3l^2(1-l)$. $x^3 - (6k+3)x - (3k^2 + 6k + 2)$

$$= (x-3l^{2}+1)(x^{2}-(1-3l^{2})x+(9l^{4}-18l^{3}+12l^{2}-2)).$$

Let Q(x) be $x^2 - (1-3l^2)x + (9l^4 - 18l^3 + 12l^2 - 2)$ with discriminant $-9(3l-1)(l+1)^3$. If the solution of Q(x) exists, then $-(3l+1)(l-1) \ge 0$. It gives us the value l = 0 or 1. Hence k = 0 and E is singular. \Box **Proposition 7.** Let

 $E: y^{2} = x^{3} - (6k+3)x - (3k^{2}+6k+2)$ be the elliptic curve with k in Z. Assume that there is no integer h such that $k = 4h(3h^{2}+3h+1)$ or

 $-4(h+1)(3h^2+3h+1)$. Then $E(\mathbb{Q})$ has no point of order 3.

Proof. As we mentioned in the proof of the previous lemma, the point P = (x, y) is of order 3 if and only if x is the root of

$$T_{E}(X) = 3(X+1)(X^{3} - X^{2} - (12k+5)X - (12k^{2} + 12k+3)).$$

Let $S_{E}(X)$ be the polynomial
 $T_{E}(X)/2(X+1)$

$$= X^{3} - X^{2} - (12k+5)X - (12k^{2}+12k+3).$$

Since $(-1, \pm \sqrt{-3k^2})$ is not in $E(\mathbb{Q})$, it suffices to check whether x is a root of $S_E(X) = 0$ or not.

Suppose that $S_E(X) = 0$ has a root x' in \mathbb{Q} . Then it is an integer. In other words, for an integer k not the form $4h(3h^2 + 3h + 1)$ or $-4(h+1)(3h^2 + 3h + 1)$ by sorting again as k, we can fine an integer x' such that

$$x'^{3} - x'^{2} - (12k+5)x' - (12k^{2}+12k+3)$$

= $-12k^{2} - 12(x'+1)k + x'^{3} - x'^{2} - 5x' - 3 = 0.$

When x = 12m + 3, S_E becomes

 $-12(k^2 + 12km + 4k - 144m^3 - 96m^2 - 16m)$. Because it has integral solutions as a quadratic equation with respect to k, its discriminant $16(4m+1)(1+3m)^2$ is a square. That means that $4m+1=(2h+1)^2$ for an integer h. Through this we get $k = 4h(3h^2 + 3h + 1)$ or $4(k+1)(2k^2 + 2k + 1)$

 $-4(h+1)(3h^2+3h+1)$. If r-12m+5(12m+9) or

If x = 12m+5, 12m+9 or x = 12m+11 then discriminant of the quadratic equations with respect to k is $3(12m+5)\{2(2m+1)\}^2, (4m+3)\{2(6m+5)\}^2$ or $3(12m+11)\{4(m+1)\}^2$ respectively. Neither case has a

 $3(12m+11)\{4(m+1)\}$ respectively. Neither case has a perfect square discriminant and admit any integral root. \Box

Proof of Theorem 2. Use the Lemma 5 and Theorem 3 3), we can determine which finite abelian group has a subgroup of $E(\mathbb{Q})$ for the case $k \equiv 1 \pmod{35}$, *i.e.*, $k \equiv 1 \pmod{5}$ and $k \equiv 1 \pmod{7}$. In fact, $E(\mathbb{Q})_{tors}$ is a subgroup of both $\mathbb{Z}/9\mathbb{Z}$ and $\mathbb{Z}/6\mathbb{Z}$. It yields that it is $\mathbb{Z}/3\mathbb{Z}$ or trivial. Since our group has no point of order 3, it is trivial.

Note that $E(\mathbb{Q})_{tors}$ is a subgroup of order N, if it is a subgroup of order $3^r \cdot N$ with (3, N) = 1, then. So it is resolved as trivial group in many cases.

To observe easily, we can refer **Table 2**: In this table, *k* takes the value modulo 5 at the horizontal line and modulo 7 at the vertical line respectively. The groups $C_n = \mathbb{Z}/n\mathbb{Z}$ in the brackets at top line and at the very left line are result from Lemma 5.

Each entry implies that the type of group: "A", "B" or "C" implies one of subgroups of $\mathbb{Z}/4\mathbb{Z}, \mathbb{Z}/2\mathbb{Z}$ or trivial, respectively. The same alphabet does not mean the same group. And "D" means that both curves $E_5(\mathbb{F}_5)$ and $E_7(\mathbb{F}_7)$ are singular. In this table since "C" is trivial, it remains that a few cases

 $k \equiv 4, 7, 12, 15, 20, 22, 25, 27, 29, 32$ or $34 \pmod{35}$.

For the cases that the subgroup is nontrivial Pro-

Table 2. Type of group $E(\mathbb{Q})_{tars}$.

k(mod 7)	$k \pmod{5}$	0	1(C)	2(C)	2(C)	4
$k \pmod{7}$	$k \pmod{5}$	0	$1(C_9)$	$2(\mathbf{C}_6)$	$3(C_3)$	4
0		D	С	В	С	D
1	(C_6)	в	С	В	С	В
2	(C_9)	С	С	С	С	С
3	$(C_3 \oplus C_3)$	С	С	С	С	С
4	(C_6)	В	С	В	С	В
5		D	С	В	С	D
6	$(C_{_{12}})$	А	С	В	С	А

Assume that $k \equiv 20,34 \pmod{35}$ and there exists an integer *l* such that k = -3l(1-l). In fact

 $k \equiv 20 \pmod{35}$ (respectively, $34 \pmod{35}$) if and only if $l \equiv 5$ or $26 \pmod{35}$ (respectively, 19 or $33 \pmod{35}$). $(3l^2 - 1, 0)$ is the unique point of order 2. Using duplication formula for the elliptic curve, let P = (x', y') be the point satisfying $2P = (3l^2 - 1, 0)$. By Substituting x', y', -(6k+3) and $-(3k^2 + 6k + 2)$ for x, y, A and B in (in the formulas for x_2 and y_2 in the proof of Lemma 4), we get two equations affirming the existence of point of order 4:

$$\left(x^{\prime 2} + 2\left(1 - 3l^{2}\right)x^{\prime} - 18l^{4} + 18l^{3} - 6l^{2} + 1\right)^{2} = 0$$
$$\left(x^{\prime 2} + 2\left(1 - 3l^{2}\right)x^{\prime} - 18l^{4} + 18l^{3} - 6l^{2} + 1\right) \times F(x^{\prime}) = 0$$

where

$$F(x) = x^{4} - 2(1 - 3l^{2})x^{3} + 6(9l^{4} - 18l^{3} + 12l^{2} - 2)x^{2}$$
$$-2(54l^{6} - 162l^{5} + 108l^{4} + 54l^{3} - 63l^{2} + 7)x$$
$$+ 324l^{8} - 972l^{7} + 864l^{6} - 270l^{4} + 60l^{2} - 5.$$

To have an integral solution of

 $x^{2} + 2(1-3l^{2})x-18l^{4} + 18l^{3} - 6l^{2} + 1 = 0$, its discriminant $36l^{3}(3l-2)$ have to be a square. Suppose that we can find an integer *m* such that $m^{2} = l(3l-2)$ and $x' = 3l^{2} - 1 + 6lm$ (or $3l^{2} - 1 - 6lm$). It is easy to check that the integer *m* satisfying the above condition exists in each case determined by *l*. Furthermore, by substituting x', k = -3l(1-l) and $m^{2} = l(3l-2)$ to the right hand side of (1.4) we get a numerical formula

$$54l^{3} (3l-2)(6l^{2} - 5lm - 2)$$

= $9l^{2} \cdot 6l(3l-2) \cdot 6(6l^{2} - 5lm - 2)$
= $9l^{2}m^{2} \cdot 6(6l^{2} - 5lm - 2)$

Since $l \neq 0$ makes the curve (1.4) singular, $6(6l^2 - 5lm - 2)$ is a square of a suitable integer if and only if there exists a point of order 4.

So we are done. \square

3. Conclusions

By the help of Theorem 2, we explicitly calculate the torsion part of Modell-Weil group.

Example 8. Let $E: y^2 = x^3 - 75x - 506$ be the elliptic curve. Then

$$E(\mathbb{Q})_{tors} = \mathbb{Z}/2\mathbb{Z}$$

Given elliptic curve is the form k = 12 in Theorem 2 and $12 = -3 \times 2^2 \times (1-2)$. Therefore $E(\mathbb{Q})_{tors} = \mathbb{Z}/2\mathbb{Z}$. And (11,0) is the nontrivial torsion point on $E(\mathbb{Q})$.

The method to find $E(\mathbb{Q})_{tors}$ is able to be applied to

all elliptic curve without a condition for k by choosing another prime p > 7.

For example, in Theorem 2, there is a condition $35 \nmid k(9k+4)$ for k. This is one for nonsingular curve. For the case that $35 \mid k(9k+4)$, choose the another prime p > 7 such that $p \nmid k(9k+4)$. Calculate

 $E_p(\mathbb{F}_p)$ and eliminate the order 3 point and check the condition for having order 2 point. Since

 $|E(\mathbb{F}_p)| \le 2p+1$, the smaller *p* gives simpler necessary condition. For example, if k = -16 then the elliptic curve is

$$E: y^2 = x^3 + 93x - 674$$

with discriminant $2^6 \times 5 \times 7$. Find $E_p(\mathbb{Z}_p)$ with p = 11 and 17, $|E_{11}(\mathbb{Z}_{11})| = 15$ and $|E_{17}(\mathbb{Z}_{17})| = 18$. Using Lemma 4, we observe that $E(\mathbb{Q})$ has no point of order 3. So it is a trivial group.

Remark 9. Generalize our elliptic curve

$$E: y^2 = x^3 + f(k)x + g(k)$$

for $k \in \mathbb{Z}$ and $\max \{ \deg f(k), \deg g(k) \} \le 2$. We can use the criterion for the quadratic equation to find a point of order 2 or 3. Of course, it is indispensable to consider some exceptional cases in the similar way to Proposition 7.

REFERENCES

- B. Mazur, "Modular Curves and the Eisenstein Ideal," *Publications Mathématiques de l'Institut des Hautes Études Scientifiques*, No. 47, 1977, pp. 33-168.
- [2] A. Knapp, "Elliptic Curves," Princeton University Press, Princeton, 1992.
- [3] D. Kim, J. K. Koo and Y. K. Park, "On the Elliptic Curves Modulo *p*," *Journal of Number Theory*, Vol. 128, No. 4, 2008, pp. 945-953. <u>doi:10.1016/j.jnt.2007.04.015</u>