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ABSTRACT

In this paper, we discuss the integral equation on a half space R!

11
X_y|n—a

u”(y)dy, u(x)>0,xeR;. (0.2)

U(X) :IRE

n-a

X =y

where O<a<n, X" =(X, X,4,—X,) isthe reflection of the point x about the &R} . We study the regularity for the

positive solutions of (0.1). A regularity lifting method by contracting operators is used in proving the boundedness of
solutions, and the Lipschitz continuity is derived by combinations of contracting and shrinking operators introduced by

Ma-Chen-Li ([1]).
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1. Introduction
Let R be the upper half Euclidean space
RE :{x:(xilxzy..-,xn)e R" | Xq >0}.

In this paper we consider the regularity of positive
solution of the following integral equation in R!

u(x):J'Rn

+

11
n-a
x—y]|

u(y)dy, xeR!. (1.1)

n-a

X -y

where p >1. It relates closely to the higher-order PDEs
with Navier boundary conditions in R:
(-A)zu=uf,u=0 inR;
. (1.2)
u=(-A)u=---=(-A)2 u=0, onaR".

D. Li and R. Zhuo proved the following result:
Proposition 1.1. ([2]) Let « be an even number and
n+a

p= . If u(x) is the smooth solution of the inte-
n-a
gral Equation (1.1), then u(x) satisfies the PDEs (1.2).
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In particular, when =2 and p =”L§_, Chen and
n_

Li ([3]) showed the equivalence between the integral
Equation (1.1) and partial differential Equation (1.2). For
more results concerning integral equations, see [4-6].

Firstly, in this paper we have the boundedness for the
positive solutions of (1.1) by using the contracting op-
erators.

Theorem 1.1. Let u be a solution of (1.1). If p > ,

n—-a
n(p-1)

and uel « (R),thenuisin L'(RI)NL*(R!) for

any l<r<o.
Remark 1. In [2], the authors proved that Theorem 1.1

. o n+a .
is true for the critical case p= . While our result
n-a
o n+a
also covers subcritical case <p< and super
n—o n-a

+a

o n
critical case p > .
n-o

Then we employ the brand new method which is the
combinations of contracting and shrinking operators in-
troduced by Ma-Chen-Li ([1]) to derive the Lipschitz
continuity of solutions.
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Theorem 1.2. Under the same conditions of Theorem
1.1, uis Lipschitz continuous in R .

2. L Estimate by Contracting Operators

In this section, we obtain L* estimate for positive solu-
tions to the equation (0.1) by using the contracting op-
erators. To prove the Theorem 1.1, we need the follow-
ing equivalent form of Hardy-Littlewood-Sobolev ine-
quality.

nr

Lemma 2.1. Let geL™er (R“) for <r<ow,
n-a
Define
1
Tg(x) =_[Rn—n_ag (y)dy. (2.1)
x—y|
Then
"Tg"U(R”) <C (n,a, r)”g Lﬁ(R") :

Proof of Theorem 1.1: The proof is divided into two
steps.

Step 1. We first show that u(x)e L' (R]), 1<r<w,
vx e R!. Define

a(x)=u(x)"".

Then

U(X)=L¢{ - - naJa(v)U(y)dy

=y -y

For a positive number A, define

a(x), if a(x)=Aor|x/=A
en(=[2 1200z Acrl
, elsewhere.

Let
a0 (X)=a(x) -, ().
Obviously, |a, (x)|< A, and ag(x) vanishes outside

the ball B, (0).
Define

nwxm=n{

11
b=y e -y

n_a}aA(y)V(y)dy-

FA(X)=IR5( : - MJaB(y)U(y)dy-

X_y|n—a - X*_y

The Equation (0.1) can be rewritten as
u(x)=(Tau)(x)+Fa(x).

We will show that, forany 1<r <o),
1) T is a contracting map from L'(R!) to L'(R7)
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for A large, and
2) Fy(x) isin L'(R7).

4+

1) Assume ve L' (R7), then

'+

|TAV|£J'RE{ 1 - 1 na}|aA(y)v(y)|dy.

X_y|n a_|X*—y

Forany r> we apply Hardy-Littlewood-Sobo-

n-a
lev inequality and Holder inequality to obtain

Tl ey <Cllwy

L%(RE) < C"aA

LE(RE) V"L’(RE)'
Since a(x)e L (R!), by the definition of a,(x),
one can choose a large number A, such that

1

Claul(e) <5

and hence arrives at

1
"TAV"L’ RD S_"V”Lr R
(rR) = 2 1M (Rr)

That is T,:L"(R')—L'(R7) is a contracting op-
erator.
2) Consider

FA(X):J.RQ( - ! MJaB(y)u(y)dy.

o ey

Forany r>

, we apply Hardy-L.ittlewood-Sobo-

lev inequality and Holder inequality to obtain

"FA"L'(RE) SC"a‘Bu L%H(RQ) SC"aB LS(RE) u"l_‘(RQ)'
We require
n+at =£+1, s,t>1.
nr s t
By the bounded-ness of a,, we see that s can be
n(p-1) -1
arbitrary. Since uel « (R!), we take t= n(p )
o
and hence
r=— _nl(p—l) —>n(2p_),ass—>oo,
(1), o) P)
n(p-1) e
we see F, e L“®™  for any small &> 0. Obviously,
n(p—l) > n(p—l) since p>1.
a(2-p) a

If p>2, we are done. If p<2, repeat the above
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process and after a few steps, we arrive at

u(x)e L’(Rf), nﬂa

<r <o

Step 2. In this step we will show that u(x) e L”(R!).
For any point x e R}, we divide the integral into two
parts

1 1
U(X)_J‘Bl(x) |X_y|n—a - )(* _y

— [u(y)"dy

I
W=y -y

+IRE\Bl(x n-a u(y)pdy

p
SJBI(X>WU(Y) dy

1 p
+ IRE\Bl(X) X y|n_a u(y)” dy

=1, +1,

Consider 1,. Since

—, and by the result in
x-y]

<r<owo, we have

Step 1, u(x)eL'(R}), for —

I, <C,.
For 1., we apply Holder inequality
q-1

1
L a o Ve
< [-[Bl(x) Ix— y|(n—a)q dy} (-[Bl(x) ’ dyJ

Choose appropriate g, so that (n—a)gq<n, and
hence

u(y)’

q-1

9 Ya
u(y)’|* dy] <C,

L.

We conclude that
u(x)e L°°(Rf).

3. Lipschitz Continuity by Combinations of
Contracting Operators and Shrinking
Operators

In the previous section we showed that the solution
u(x) of (0.1)is in Lw(Rf). In this section, we will use

Copyright © 2013 SciRes.

the regularity lifting by combinations of contracting and
shrinking operators to prove u(x)e C°*1(R+”), the space
of Lipschitz continuous functions with norm

_ v()-v(y)
Moot e o P o

To prove the Theorem 1.2, we need introduce the fol-
lowing definition, property and a more general Regular-
ity Lifting Theorem on the combined use of contracting
and shrinking operators.

Let V be a Hausdorff topological vector space. Sup-
pose there are two extented norms (i.e. the norm of an
element in V might be infinity) defined on V,

X = {v eV v, <oo} and Y = {v eV :|v|, <oo}.

Definition. (“XY-pair”) Suppose X, Y are two normed
subspaces described above, X and Y are called “XY-pair”,
if whenever the sequence {u,} =X with u —u inX
and |u,[l, <C willimply ueY .

Remark 2. The “XY-pair” are quite common, here we
choose X =L'(R]) for 1<r<w, and Y =C*(R!)
with the norm defined in (3.1).

Theorem 3.1. (Regularity Lifting Theorem) Suppose
Banach spaces X, Y are an “XY-pair”, and let X and
) be closed subsets of X and Y respectively. Suppose
T:X — X isacontraction:

Tf -Tg|, <n|f - ,Vf,geXforsomeO<n<l;
[Tt -Tgll, <[ -gf,. v 1.9 7
and T:9 —Y isshrinking:

[Tg|l, <O[g], . Vg e, forsome0<H<1.

Define
Sf =Tf + F forsome F e XN .

Moreover, assume that
S:XNY->xXNY.
Then there exists a solution u of equation

u=Tu+FinX

and more importantly,
uey.

The proof and some applications of Theorem 3.1 can
be found in [1,7,8].

Proof of Theorem 1.2: For any xeR!, by elemen-
tary calculus one can verify that

= dt = dt
Jo Tt Nz = o rasv® (V)

— 1 1 p
- n_aJ.RE X_y|n—a u (y)dy

It follows that the solution of (0.1) only differs by a
constant multiple from the solution of the following
equation
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dyj

009=[; T

Hence, for convenience of argument, we prove that
every positive solution u of (3.2) is Lipschitz continuous.

Let
<2lul,.}

v 62

xz{VGx =L7(R")
and
QJZ{VGY =C%(R?)

For every ¢>0, define

Tv(x)= j(jm

vl <2l |

dt

V)Y =y )dyjtn_w-

Tff<x)—ng<x)=J;{JBt(x)(fP(y)—gp(y)

Thus

GRS
—pj{ Y[ (v)
quﬁWf—ﬂwF(&

x)|+‘Bt

and

JONNINT (1 |5

Then obviously, u is a solution of the equation

y)dy—.[B[(x )up

v=Tv+F.

Write Sv=Tv+F. We will show that for ¢ suffi-
ciently small,

1) T_ isacontracting operator from X to X.

2) T. isashrinking operator from 2) toV.

3) FexNQ and S :XNY->XNY.

1)Forany f,geX andforany xeR,we have

dt

)dy‘JBt(x*)( f7(y)-g° (y))dy}m

S V[ W A Wi T

Here we applied the Mean Value Theorem with both
&(y) and &, (y) valued between f(y) and g(y),
and Bl(-)| denotes the volume of the ball B, (-).

Choose ¢ sufficiently small such that

Coflulli"e <5

Tv(x)-Tv(z)= E{U&(x)\lp (y)dy—jBt(z)Vp (Y)dy}_[.[st(x*)vp
VP (y+z—X))dyJ—[I&(x*)(vp (y)-vP(y+2" —x ))dy}}tndil

the last equality above is from the fact

Therefore

(@< J: e
< JoJeoP

(y+z-x)dy' = _[

( (y+z- x))‘dytf% +J'0€J'B[(X*)

-%;mww—Wy+r«wa%ﬁ+fJ

(Vlay+Jy, |f"(y)—g"(y)|dy}tf§+1
y)|dy+jat(x*)|§zp’l(y)||f (y)-a(y |dy}tnd:+l
* d
)
and consequently
- g|||;"“ :

Therefore T is a contracting operator from X to X
for such asmall ¢.
2) Assume veg),thenforany x,zeR],

]

y)dy _JBt(Z )Vp

(y+z-x)dy

_Vp(y+ z* _x*))‘dytf%

(v*(y)

dt

|0|V"‘1 &) V(y)-v(y+z -x )\dytnm

dt

<CJul Meos

(1B(x)
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Again by choosing ¢ sufficiently small, we derive 3) To show F is Lipschitz continuous, we split it into
two parts:

supM . . : X dt

- |z-x 4 F(X)=f((f5[(x)“ (y)dy—j&(x*)u (y)dyjtnm
Combining this with the estimate in 1), we arrive at IwU o y .[ 0 j dt

Tn-a+l
1 t
<§"V"c°*l’vvem =1, (x)+1,(x)

Hence T isashrinking operator from ) to. For the first part, we have

[L(x)-1(2) = f{(fmx)up(y)dy—fat(z)up(y)dy)—[fa RICILEINE U”(y)dyﬂtndﬁﬂ
<CJullt (x-

Here we used the fact that

the volume of [ (B, (x)\B,(z))U(B,(2)\B,(x)) |<Ct"*|x—7].

dt
o =l -

It follows that

Sup|ll(x)_ |1(Z)|

S <C(e). (3.3)

For the second part, we use a different approach. Write 6 = |x— z| , then

L)) =T 0085 L [ 00

EI3(x,z)+I3(z*,x*)
dt

|3(X’Z):J.1w(,.'a‘(x) dy ,[ )dy) n—a+ —.[ U 1+5)(2)up(y)dy_-[31(2) (y)dy) n-a+l

dt

:Jlojd.[B[(z) (y)dy 1 é‘ - Tn—a+l J. J- - Thail S[IleB[(Z)Up(y)dymj[(l‘i‘é‘)n_a —1:| (34)
:(Jym%up(v)dyJ(Hé)"’“‘lff Scl(IRgup(y)dy)éscza

y—1|

Similarly,
Is(z’%x*)#f(fat(z) RN >dy]tn e U e )uwy)dy—yat(x*)uwy)dyjtn%
= O 0 G e (35)

: [mf‘t(x*)u "()dy t”(‘j;+1 j[(“ o) _1} = Ulm-[st(x) (v)dy -l ](“ &) o<Co

Note that here we applied the Mean Value Theorem fore,
with both & and &, valued betweenOand & . || (x)-1 (z)|
Combining (3.4) and (3.5), we have sup 2 R ZT <C. (3.6)
L(x)=1L(z)=1,(xz)+1,(z",x")<Cs -
()-12(2) =1 (x2)+15 (2 X Also from the definition of F(x), we immediately
The same inequality holds for 1,(z)—1,(x). There-  have

Copyright © 2013 SciRes. APM
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[Fll <l - (37)

Obviously (3.3), (3.6) and (3.7) imply that F(x) is
Lipschitz continuous, and this together with (3.7) imply

FeXxN.

Finally, to see that S, maps X9 into itself, we
only need to verify that

if V]| <2|u], then |T.v (3.8)

<full-
oo e <[l

In fact,
TSV(X)| = I:(Jst(x)vp (y)dy—jB!(x*)vp (y)dyjtnd%

& * dt
< £ (B 00 B (¢ ) s

<clulr o

B, ()] +

Choosing ¢ sufficiently small (but independent of v),
we can guarantee (3.8).

So far we have verified 1), 2) and 3), by the Theorem
3.1 and Remark 2, we conclude that the solution u of (0.1)
is Lipschitz continuous. This completes the proof of the
Theorem 1.2.

Usually, contracting operators are used to lift regulari-
ties. For a linear operator, if it is “shrinking”, then it is
contracting. While for nonlinear problems, as were seen
in Section 3, sometimes it is very difficult or even im-
possible to prove that it is contracting in a given function
space. However, one can show that it is “shrinking”, and
can still lift the regularity of solutions in many cases. The
general Regularity Lifting Theorem is applied for inte-
gral equations and system of integral equations associ-
ated with Bessel potentials and Wolff potentials (see [1]
and [7]), and therefore arrive at higher regularity as
Lipschitz continuity of solutions.

Copyright © 2013 SciRes.
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