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ABSTRACT 

It is proposed to generalize the concept of the famous classical Cayley-Hamilton theorem for square matrices wherein 
for any square matrix A, the det    x   for arbitrary polynomial matrix A xI  is replaced by det f f x . 
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1. Introduction 

The classical Cayley-Hamilton theorem [1-4] says that 
every square matrix satisfies its own characteristic equa-
tion. The Cayley-Hamilton theorem has been extended to 
rectangular matrices [5,6], block matrices [7,8], pairs of 
commuting matrices [9-11] and standard and singular 
two-dimensional linear systems [5,12]. The Cayley- 
Hamilton theorem has been extended to n-dimensional 
systems [13]. An extension of the Cayley-Hamilton theo-
rem for 2D continuous discrete-time linear systems has 
been given in [14]. 

The Cayley-Hamilton theorem and its generalizations 
have been used in control systems [14,15] and also au-
tomation and control in [16,17], electronics and circuit 
theory [6], time-systems with delays [18-20], singular 
2-D linear systems [5], 2-D continuous discrete linear 
systems [12], automation and electrotechnics [21], etc.  

In this paper an overview of generalization of the 
Cayley-Hamilton theorem is presented. The linear poly-
nomial matrix  A xI  of det  A xI

,n
n

 in the classical 
Cayley-Hamilton theorem is replaced by the general 
polynomial matrix 

  0 1f x A  A x A x   

where iA s

  det

 for  are square matrices of 
the same order. In the Theorem 1 given below it is proved 
that if 

2. Preliminaries 

0,1,2, ,i n 

 f x 
 

f x  and whenever for a square ma-
trix A f A  O  implies  g A O

 

 also. The con-
verse of Theorem 1 is not true, is illustrated with the help 
of examples 1 and 2 in which the leading coefficient ma-
trix of the polynomial matrix f x  may be singular or 
non-singular. A relation between the coefficients of the 
polynomial g x  and the coefficient matric  
 

es of
f x  is worked out in corollaries 1, 2 and 3. 

2
2

n

Lemma 1. If the elements of a matrix A are polynomials 
in x of degree ≤ n, then A can be expressed as a polyno-
mial matrix 0 1 nA A x A x A x   

i

 in x of degree ≤ 
n, where the matrices A s  are of the same order as that 
of the matrix A. 

Illustration 1. Let  
3

2 3

2 2 3

2 5 3 2

5 2 3 4

2 3 4 4 2

x x x

A x x x x

x x x x x

    
 

    
     

2 3
0 1 2 3

 

be a matrix of order 3 × 3. Then  

A A A x A x A x   

0

0 5 3

0 0 3

2 4 0

A

, 

where  

  
   
 
 

1

1 0 2

5 1 0

3 2 0

A

 
   
   

2

0 0 0

0 2 0

4 0 1

A

 
   
 
 

3

2 0 0

0 0 4

0 0 1

A

 
   
 

; ;  

 and 

 

 

Lemma 2. If A is a square matrix of order n having 
elements as polynomials in x each of degree ≤ m, then 
the elements of the adjoint of the matrix A are also poly-
nomials in x of degree  1m n 

3 4

2 3

2 4 3

2 5 3 2

5 2 3 4

2 3 4 4 2

.  
Illustration 2. Let  

x x x x

A x x x x

x x x x x
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   be a matrix of order 3 × 3 having elements as polynomi-
als in x of degree ≤ 4, then  

f

     
  
  

7
13

5 7 6
23

5
33

x f x

x f x

x f x

 
 
 


 
 

 r

  
  

6 8
11 12

21 22

4 6
31 32

adj

f x f

A f x f

f x f




, 

where ,i jf x  ,i

ition is  

3 4 517 21

 denotes the j th element of the 
adjA, a polynomial in x of degree ≤ r. For instance in 
adjA, the element at the (2.1) th pos

 5 2
21 6 9 12 8f x x x    x x x 

2 8

. 

Hence by the Lemma 1, because adjA contains ele-
ments as polynomials in x of degree ≤ 8, it implies that  

2 8  0 1adj A B B x B  
iB s  0 8i 

x B x 

 

, where each of the 
,  is also a square matrix of order 3. 

Remark 1. Prior to understand the concept in the 
proof of the main Theorem 1 given below, we first con-
sider the following two illustrations of polynomial matrix 

.A O g A O   

Illustration 3: Let  

  2
0 1 2f x A A x A x  



          (2.1) 

 2Mbe a polynomial matrix over F x

0 1

3 3 1 2 2 1
, and

4 1 3 1 1 0
A A A

      
             

 for 

, 

  2where A2 is a non-singular matrix and M F x

1 2

0 3
A

 
  
 

 de-
notes the set of all 2 × 2 matrices whose elements are 
polynomials in x over the field F. Then there exists a  

matrix  such that;  



f x  having the leading coefficient matrix singular or 
non-singular such that if    detg x f x  and for a 
square matrix A, whenever 

 2
0 1 2

3 3 1 2 1 2 2 1 1 4

4 1 3 1 0 3 1 0 0 9

3 3 1 4 2 1

4 1 3 3 1 4

f A A A A A A

O

  

         
                 

       
               

 

         

2 2
2

2

2 2 2 2 3 4

2 3 4

1 2 2 1 3 2 3 2

4 1 3 1 1 0 4 3 1

3 2 1 4 3 3 2 9 3 2 3 .

1 0 1 2 1 4 1 14
3 9 3 2 3

0 1 0 3 0 9 0 27

x x x x
f x x x

x x x

 

Also from (2.1), we have 
 

  det

  9 3

3 3

2

g x f

 

  x x x x x x x x x x x x

A A

         
                   

                

        
            

      

1 40

0 81

3 6 2 8 3 42 1 40
.

9 0 18 0 81 0 81
O

 
  g A I   A A 

9 0

 

0 9 0

  
         

                

 

 
     

 

 
A O   . implies f g A O

  2
0 1 2

 Hence, 
Illustration 4: Consider the polynomial matrix 

f x A A x A x                (2.2) 

over   2M F x 0

150 97

86 55
A

 
   

, for ;  

and , where the leading coefficient matrix 

A2 is singular. Then there exists a matrix 

1

1 2

1 4
A

 
   

2

3 9

2 6
A

 
  
 

2 1

4 3
A

 
   

2
2

150 97 1 2 2 1 3 9 8 5

86 55 1 4 4 3 2 6 20 13

6 5 156 102
.

86 55 18 13 104 68

A

O

 

such that  

 


  0 1

150 97

f A A A A A
        

                   
     

             

 

2 3

det

161 23 . 

f x

  

 
 

 

From (2.2), we have 

   

     

2 2
2

2 2

2 2 2 2

150 97 1 2 3 9 150 3 97 2 9

86 55 1 4 2 6 86 2 55 4 6

150 3 55 4 6 86 2 97 2 9 92 276

x x x x
f x x x g x

x x x x

x x x x x x x x

           
                       

              x x x
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As in Illustration 3, it can be easily verified that 

  92 276 161 2 323 .g A I A   A A O 

2
2

m

 

3. Main Results 

Theorem 1. Let m  0 1f x A A x A  
  

x A x   be 
a polynomial matrix for n f x M F x  where  

 i nA s M F 1,2,3, ,i m   for , are square matrices 
of order n over the field F. If    detg x f x , then 
whenever  f A O  (Zero matrix) implies   .g A O  
Converse is not true. 

Proof. Since 

  0 1
2

2
m

mf x A A x A   x A x 

 
 1

1
m n

m nB x

      (3.1) 

is itself is a matrix of order n × n having elements as 
polynomials in x each of degree ≤ m, therefore, using 
lemma 2, we have  

  2
0 1 2adjf x B B x B x 

      (3.2) 

Also    detg x f x  is a polynomial in x over 
 F x  of degree ≤ mn. Therefore, using Lemma 1, we 

have  

    2 3
0 1 2 3det mn

mng x f x p p x p x p     x p x 

 

  

(3.3) 
Since for any square matrix A, we have; 

 adj adjA A A A A I 

   

          (3.4) 

where I is the identity matrix of the same order as of A. 
Now using (3.4), we have  

 adjf x f x g x I

 
  

 

1
1

.

m n

mn
mn

x

p x I





0

1 1

2 2

1

m m

m m

mn

p I

p I

           (3.5)  

Therefore, using (3.1) to (3.3) above, we have from 
(3.5) 

 2
0 1 2

2
0 1 2

2 3
0 1 2 3

m
m

m n

A A x A x A x

B B x B x B

p p x p x p x



   

    

    







  (3.6) 

Comparing coefficients of the corresponding terms on 
both sides of Equation (3.6), we get 

0 0 0

0 1 1 0 1

0 2 1 1 2 0 2

0 3 1 2 2 1 3 0 3

0 1 1 2 2

0 1 1 2 1

2 1 1

1 1

 

m m m

m m m

m mn m m mn m m mn m

m mn m m mn m mn

m mn m mn

A B p I

A B A B p I

A B A B A B p I

A B A B A B A B p I

A B A B A B A B

A B A B A B A B

A B A B A B

A B A B p I

A B p

 

 

    

    




 
  
   

   
   

 
 








I

Multiplying the equations in (3.7) by the matrices  

p I



  
























2 3 1 2 1, , , , , , , , , ,m m mn mn mn

. (3.7) 

I A A A A A A A A   

 

 

respectively and adding, we obtain; 




 
   



2 3
0 1 2 3

1
1

3
0 1 2 3

2 3
0 1 2 3

1
1

 

²

mn m mn m
mn m mn m

mn
mn

mn m mn m
mn m mn m

f A B AB A B A B

A B A B

p I p A p A p A p A g A

g A f A B AB A B A B

A B A B O

  
  

  
  

   

 

      

     

  







 

Converse is not true. For this consider the following 
examples with the coefficient matrix singular and non- 
singular respectively. 

 Example 1. Consider the function f 0 1x A A x 

 

 

   
     

0 1

2 3 3 12
; singular

4 7 2 8

2 3 3 12

4 7 2 8

2 3 3 12

4 2 7 8

det

2 3 7 8 4 2 3 12

26 79 .

A A

f x x

x x

x x

g x f x

; 
where  

x x x x

x

    
       

    
        

   
    

 

      

 

 

Then for the scalar matrix 2

26

79
A I , we have  

  26 26 .g A I I O  

 

 Whereas, 

2 3 3 12 26

4 7 2 8 79

2 3 3 12 80 7526 1
.

4 7 2 8 368 34579 79

f A I

O

    
       

      
 

             

Example 2: Consider the function  
  2

0 1 2f x A A x A x  

 

 

      
 

0 1

2

2 2

2 2

2 2 4

2 4 4 2

1 0 0 0
; and

0 6 0 0

1 2
non-singular

2 5

1 2

2 6 5

det 1 6 5 4

6 6 .

A A

A

x x
f x

x x

; where  

g x f x x x x

x x x x
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Then there exist infinite number of matrices A over the 
complex numbers C of the form   

2 2

2 2

f 0

f 0,

a b
b

a b

 

 

2
; i

2

2 0
; i

0 2

ab a

b a
A

  
     
 
   


 

or 

2 2

2 2

f 0

f 0,

a b
b

a b

 

 

,a b

3
; i

3

3i 0
; i

0 3i

ab a

b a
A

   
      
 
   


 

for , such that C   0g A   but .    0f A 
5For instance, if , , then  a  2 3ib  

   

2 4

4 2

3

3

13 15i 5

2 3i 13 15i

3 0 9 0
and

0 3 0 9

6

9 0 3 0

0 9 0 3

ab a
A

b ab

A A

g A A A I

  
      
  

       
  

      

    

             

1 0
6 .

0 1
O





   
 

2 3 0

5 0 3

  
   

3m 

2 3
2 3

 

Whereas, 

  2
0 2

1 0 1

0 6 2

4 6
.

6 9

f A A A A

O

  
     

  
 

   

 

Illustration 5. For  in Theorem 1, let  

  0 1f x A A  x A x A x 



 

be a polynomial matrix in  3M F x ,where  

3i  A M   0f AF  such that   for some square ma-
trix A of order 3. 

  0 1f A A A A A    2 3
2 3 0A A A 

 

.    (3.8) 

Since the elements of the matrix f x
3

   det

 are polyno-
mials in x of degree   

g x f x   

is a polynomial in x over the field F of degree ≤ 9. 

Therefore, let  

  2 3 9
0 1 2 3 9g x p p x p x p x p x     

  adj

    (3.9) 

fAlso each element of the x  being a polyno-
mial in x of deg ≤ 6. So by Lemma (2), let  

  2 6
0 1 2 6adj f x B B x B x B x         (3.10) 

Now using (3.4), we have  

  
 

2 3 2 6
0 1 2 3 0 1 2 6

2 3 9
0 1 2 3 9 .

A A x A x A x B B x B x B x

p p x p x p x p x I

      

     





0 0 0

0 1 1 0 1

0 2 1 1 2 0 2

0 3 1 2 2 1 3 0 3

0 4 1 3 2 2 3 1 4

0 5 1 4 2 3 3 2 5

0 6 1 5 2 4 3 3 6

1 6 2 5 3 4 7

2 6 3 5 8

3 6 9

A B p I

A B A B p I

A B A B A B p I

 

(3.11) 

Comparing the coefficients of the equivalent powers of 
x on both sides, we have 

A B A B A B A B p I

A B A B A B A B p I

A B A B A B A B p I

A B A B A B A B p I

A B A B A B p I

A B A B p I

A B p I

 
  
  


    
    
    
   


   
  
 

2 3 9, , , , ,I A A A A

 

      (3.12) 

Multiplying these equations by  re- 
spectively and adding, we get; 

 
 

    

2 3 4 5 6
0 1 2 3 4 5 6

2 3 9
0 1 2 3 9

0 .

f A B AB A B A B A B A B A B

p I p A p A p A p A g A

g A O f A

     

      

  





 

 x   and Corollary 1. If f g x  be the polynomials 
given in (3.1) and (3.3) respectively, then for  

   x 0 00 0 det 0g f p A    

p

.  

Therefore, the constant term 0  of the polynomial 
 g x 0 is the determinant of the constant term A  in the 

polynomial matrix  f x . 
Corollary 2. From (3.1) and (3.3), for  

   det f x g x , we have 

 2
0 1 2

2 3
0 1 2 3

det

.

m
m

mn
mn

A A x A x A x

p p x p x p x p x

   

     




   (3.13)  

Therefore, in case for 
1

x
y

x, when   0 or y , 

then from (3.13), we have   
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2

0 1 2 0 1 2 2

1 2 1 2
0 1 2 1 0 1 2

1 2
0 1 2 1

1 1 1 1 1 1
det

1 1
det

1
det

m

m mn mn

m m m mn mn mn
m mm mn

n

m m m
m mm

A A A A p p p p
y y y y y y

A y A y A y A y A p y p y p y
y y

A y A y A y A y A
y

   


 


                     
       

 
         

 

 
      

 

 

 



1mn mnp y p  

 1

.

mn mnp y p  



0y 

 

1 2
0 1 2

1 2 1 2
0 1 2 1 0 1 2 1

1

det

mn mn mn
mn

m m m mn mn mn
m m mn mn

p y p y p y
y

A y A y A y A y A p y p y p y p y p

 

   
 

  

          



 

 (3.14) 

 
Therefore, if , then from (3.14), we get  

mn mp 
0 0

0
0 0

0 1 1 0
1

0 1 1 0

0 2 2 01 1
2

0 2 2 01 1

0 3 3 01 2 2 1
3

0 3 3 01 2 2 1

a b
p

c d

a b a b
p

c d c d

a b a ba b
p

c d c dc d

a b a ba b a b
p

c d c dc d c d



 

  

   

0,1, 2, ,8n

A . Hence if, 0 0m mA p  
 deg

n

Thus 
.  

g x mn  if the leading coefficient matrix 

mA  in  f x

  2 3 4
3 4

 is singular. 
Corollary 3. If  

 
f 0 1 2x A A x A x A x A x    

1 1

1 1

3 3

3 3

; ;

; ;

a b a b

c d

a b

c d

   
   

 
 

   
 

   
2 3 8

3 8

detg x f x

x p x



 

 

be a bi-quadratic polynomial matrix for  

0 0
0 1

0 0

2 2
2 3

2 2

4 4
4

4 4

A A
c d

a b
A A

c d

a b
A

c d

 
 
 
 
 
 

  
 

 

and so on. 
In general, for any   ; we have pn = co-

efficient of 
i jn

i j

a b
x

c d
  i j n  0  4j, for ; i,  . 

Example 3. Consider the cubic polynomial matrix 

and if   2 3
0 1 2 3f x A A x A x A x   

r r r

r r r r

r r r

a b c

, 

 
0 1 2p p x p x p   

 


Copyright © 2013 

Then we have, 

where for A l m n  
x y z


  

0,1, 2,3r 

0 1 2 3

2 3 2 3 2 3

2 3 2 3

2 3 2 3 2 3

1 0 1 1 2 3 3 2 1

, 2 2 1 , 1 0 2 , 1 0 3

0 1 2 2 3 3 2 3 1

1 3 2 2 2 3

1 2 1 2 3

2 2 2 3 3 2 3

A A A A

x x x x x x x

x x x x x x

x x x x x x x x

        
               
           

       
 

       
         

2 3 4 5 6 7 8 9

2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9

25 10 39 56 7 2 53 54 83 44

.

, , if we have 

 

 

1 2 0

3 1 1

2 0 3

3 2

x

f x x

 
   
  

 
  

    
0

detg x f

p p 

 

x x x x x x x x x x

x p x p x p x p x p x p x p x p x

           

       

nwhere , the coefficient of np x  is given by 

, for 0,1,2, ,9; 0 , , 3 and .
i j k

k

i j k

a b c

n n i j k i j k n




       



 n ip l

x y
jm

z

                (3.15) 

It can be easily verified that    
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0 0 0

0 0 0 0

0 0 0

0 0 1 0 1 0

1 0 0 1 0 1 0 1

0 0 1 0 1 0

1 2 0

3 1 1 2

2 0 3

1 2 1 1 0 0 1

3 1 1 3 2 1 2

1 0 0

0 0

1 0 0

5.

2 0

1 1 1

2 0 2 2 1 3 0 0 3

a b c

p l m n

x y z

a b c a b c a b c

p l m n l m n l m n

x y z x y z x y z


    

  

  
       


0.

 

and 

0 0 2 0 2 0

2 0 0 2 0 2 0

0 0 2 0 2 0

0 1 1 1 0 1

0 1 1 1 0 1

0 1 1 1 0 1

1 2 3 1 2 0

3 1 2 3 0 1

2 0 3 2 2 3

1 0 1 1 2 1

3 2 1 2 1 1

2 1 2 0 0 2

23 20 7

a b c a b c

p l m n l m n
2 0 0

2 0 0

2 0 0

1 1 0

1 1 0

1 1 0

1 2 0

1 1 1

1 0 3

1 0 0

2 2 1

0 1 3

a b c

l m n

x y z x y z

a b c a b c

l m n l m n

x y z

a b c

l m n

x y z x y z

 

 

  
 



  
  



    2 6 7 39.  

x y z





   

  


3 4 9, , ,

 

Similarly coefficients of the other powers of x, i.e., 
x x x  can be found by using (3.15). For instance 

3 3 3

9 3 3 3

3 3 3

3 2

1 0 3

2 3

a b c

p l m n

x y z


   3

1

44 ,

1

A    

which verifies our assertion.  

4. Conclusion 

The concept of the Theorem 1 given above and the rela-
tion in (3.15) can be generalized to any polynomial ma-
trix of arbitrary degree with coefficients as square matri-
ces of any order. 
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