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ABSTRACT 

We use C*-algebras to determine non-propagation estimates for a certain class of generalized Schrödinger operators 

acting on , where X is a locally compact group. In particular, the Schrödinger operators on trees are included.  2L X
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1. Introduction 

It is well known that the algebraic approach leads to very 
interesting results on the spectral analysis of self-adjoint 
operators, as relevant results we quote: the essential spec-
trum and the Mourre estimate. A good expositions of this 
formalism and some applications may be found in [1-7]. 
We point out only that the main idea consists in showing 
that these operators are affiliated to suitable C*-algebras 
which reflect their common properties well. A study of 
the quotient of these C*-algebras by the ideal of compact 
operators leads to formula for the essential spectrum of 
these operators expressed as a union of spectra of some 
asymptotic operators. The quotient of the same C*-alge- 
bras by other ideals give localization results of these op-
erators which can be interpreted as non propagation 
properties of their unitary groups. The last result is dis-
covered and developed in [8-11].  

Let H be a self-adjoint operator in Hilbert space  
and   a nontrivial multiplication operator (for example 
the characteristic function of a set having a strictly posi-
tive measure). If  is a continuous function with sup-
port intersecting the spectrum of H, the operator 


 H  

has no reason to be small in general. The unique a priori 
bound would be 

 
 

  ,sup
H 

H 


  


 

 

where H  denotes the spectrum of H. We are going 
to correlate   to  in such a way to make the norm 
small without asking any of the two factors on the right 
hand side of the preceding inequality to be small.  



In order to understand the problem better we recall the 
following example (see [9] for more detail). In  2= L   
we consider the Schrödinger operator 0=H H V , where 

0H  is the positive Laplace operator and V is the operator 
of multiplication with a bounded, uniformly continuous 

function having a limit at plus infinity:  when  V x c
x    ,c 

:

. Then we have that  is included in the 
essential spectrum of H. The behavior of V to the left 
may introduce a spectrum and even an essential spectrum 
below c. Now, let   

 ,a 

 ,a

 be continuous, with a com-
pact support situated below the value c and a  
the family of all operators of multiplication with charac-
teristic functions of intervals of the form  . Then 
we have that for any > 0  there exists , positive 
and sufficiently large, such that 

a
 a H   . As a 

consequence we get the following non propagation result: 
 e itH Ha f f    t  f, uniformly in  and 

 =

. 
So, at energies below c, even when propagation towards 
infinity is possible, it does not take place to the right. 

The purpose of this paper is to determine the localiza-
tion properties for a class of generalized Schrödinger 
operators of the form H h P V  acting in the Hil-
bert space  2= L X

:h X  
:V X  


> 0

 with X is an abelian locally 
compact group. Here P is the momentum operator, 

 is a continuous function verifying some suit-
able hypothesis and  is a continuous func-
tion having a certain type of anisotropic behavior at in-
finity. More precisely we shall show that: If  is a con-
tinuous real function with suitable support and if  , 
then there exists a family of multiplication operators 
 W W W

 where W is a suitable family of subsets of X, 
such that  W H    for some W . This can be 
reformulated in terms of the evolution group 

W
 e itH

t
: 

at energies belonging to supp , the system governed 
by H stays “out supp

 
 W ” uniformly in time. Practi-

cally, supp    must not intersect the spectrum of a cer-
tain subhamiltonian associated to some ideal of the C*- 
algebra in which the Hamiltonian H is affiliated. 

Let us describe the content of this paper. In Section 2 
we introduce the framework and recall some definitions 
and results on crossed product C*-algebra that are useful 
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   =H Hin the spectral theory of self-adjoint operators. Section 3 
is devoted to the proof of non propagation result (Theo-
rem 3.1) on the locally compact group, generalising the 
results of [8] where 

  ). We assume that the ideal 

= nX 

2l 

K



 

. As applications we study 
the multi-crystalline system and the Schrödinger opera-
tors with potential having a cartesian anisotropy in 

. Section 4 is mainly dedicated to study the non 
propagation theorem on trees (Theorem 4.1). Finally, we 
mention that certain generalizations can be made in the 
graph case (see [12]). 

2

2. Framework 

2.1. The -Essential Spectra 

Let H be a self-adjoint operator in Hilbert space , by 
using the spectral theorem we can to associate an opera-
tor H : . to a large class of functions   

 C 
 We 

denote by 0  the set of all continuous functions 
:  

  0x 
 that vanish at infinity (i.e. satisfying  

 ). Some parts of the spectrum of H can 
easily be expressed in terms of these functions: 1) a 
number 

lim x

    belongs to the spectrum H
)

 of H if 
 whenever  H 0  0C    and  2)   0;    

belongs to the essential spectrum ess  H  of H if 
 H  is a non-compact operator whenever  0C  

 


  1
H z

 C

 
and    0.

Given C*-subalgebra  of bounded operators in . 
One says that H is affiliated to  if  for 
some complex number z outside the spectrum of H. If 
this is the case then 

C
C

 H C  for each continuous 
function on  which tends to zero at infinity. 

We recall that an observable affiliated to a C*-algebra 
 is a *-homomorphism from the C*-algebra C  C 
C :  C

=

0  
to  (i.e. a linear mapping  satisfying  0C 
            and  =   if  ,   

).  


  0 
0.    
K

C

0

The spectrum  of the observable  is defined 
as the set of real numbers λ such that   when-
ever   is closed subset of . 

C 
  

  
Now let  be a (closed, self-adjoint, bilateral) ideal 

in . We denote by ˆ C C K



o K



 the associated quotient 
C*-algebra and by  the canonical *-homomorphism of 

 onto . If   is an observable affiliated to C , 
then clearly  determines an observable affiliated 
to . 

C Ĉ
o 

Ĉ
Definition 2.1. The spectrum  of the ob-

servable  (relative to ) is called the -essen-
tial spectrum of  and will be denoted by 

 o 
 Ĉ

  : K  

K  Equivalently, a real number λ be-
longs to  if and only if  whenever 

 is such that 

 

C

 .  
 K



o 
 K


 

0     0.   
Let  be a C*-subalgebra of the C*-algebra C  B 


 

of bounded operators in  and H  is the observable 
determined by a self-adjoint operator H affiliated to  

(so K 
 C

 H 
 ess

 
of all compact operators in  is contained in . The 
notion of the spectrum has obvious meaning and it is 
easy to show that the spectrum of  K   is just 
the essential spectrum H

K 2K
C 1 2 K

 of the self-adjoint op-
erator H. 

It is obvious that, if 1  and  are two ideals in 
 satisfying, K , then  
     .  

2 1
    

C
K K  Furthermore, if H is a 

self-adjoint operator affiliated to a C*-subalgebra  of 
 B  C and if K  is an ideal in  with   ,K  K  

then    .H Hess  

K C

K

The following Lemma was established Lemma 1 in [8], 
and will be used in subsection 3.1. 

 

Lemma 2.2. Let  be an ideal in a C*-algebra  
and   an observable affiliated to C . If C  0  
is such that   = 0    ,  K for all  then  
  . K   

2.2. Locally Compact Space and C*-Algebra 

Let Y be locally compact, Hausdorff space, and C Y

   

b  
the abelian C*-algebra of all bounded, continuous com-
plex functions defined on Y. If G is a closed subset of Y, 
we set    = = 0,G

bC Y C Y y y G    . Certain 
C*-subalgebras of  C Yb  will be useful, more precisely 
particular the algebra  u Y  C YbC  and 0  consisting 
respectively of all bounded, uniformly continuous func-
tions and of all continuous functions vanishing at infinity. 
In fact  C Y  .C Y0 b

In this paper we set X, a locally compact space and 
assume that X acts on Y by homeomorphisms: therefore if 

 is an ideal of  

x  denotes the homeomorphism in Y associated to the 
element 

C

,x X  we have .=x x x xo    The mapping 
X Y Y    , xx  y y  is assumed continuous. 

Then   induces a representation of the group X by 
*-automorphism of  bC Y  as well as of various C*- 
subalgebras of  b  bC Y  ,C Y : for  and x X  
define         = xa y y     .y Y


x  by a  x 

Given a unital C*-subalgebra  of 
  

 C Xb  con-
taining  .C X 

,

0  We denote its character space by  
and we recall that   is compactification of X. For 

 i x  is given by the formula x X  the character 
     = ,i x x   .   for each   




 We denote by  
the frontier of X in . By using the Gel’fand transfor-
mation we can observe that  is isomorphism to the 
C*-algebra  C   of continuous function on  . 
Henceforth we will be using the notions  : C     
for the inverse of Gel’fand isomorphism. The 
C*-subalgebra  C X

 
  ,C X

 (consisting of continuous func-
tions on  that vanish on the frontier  of  ) can be 
naturally identified with 0  more precisely 

   = .C X C X
 

0  There is one-to-one correspondence 
between (self-adjoint, closed) ideals  of  and 
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closed subsets G of , given by  In par-
ticular each closed subset F of frontier  determines 
an ideal 

  = .GC  


F  = .FC 
 .

u
b

xa

 in , viz.  It is clear 
that such an in ideal contains  

 F 
C X


 ,

0

Set now that C*-algebra  considered above is con-
tained in  and invariant under translation, i.e. 
such that  for all 

  ,C X
 x X  with  

x  such algebra will be called an 
X-algebra. Since 

    a y =  ;x y
  ,u

bC X  the mapping  xx a   
is norm continuous for each . 

x


 

 Furthermore the 
action of X on itself (given as y x  y ) induces a 
continuous. representation   of X by homeomorphisms 
of the character space : for     the character x   
is defined as     = .xx a        For ,y X  set 

; then i y=y =x y x y      .x X  
We end this section with a result which will be useful 

in the examples presented further on. Let    be 
character of . A neighborhood base of     is 
given by the collection   where , ,   varies over 

 and   over all finite families 0,   1, , m   of 
elements of  where  

      each .i 


.



, = < for   i i   

bC X



> 0

 

Lemma 2.3. [Lemma 2, in AMP] Let  be a unital 
C*-subalgebra of  Let F be a closed subset of 

 and  a neighborhood of F. Then there exist 
  and a finite family m 1= , , 

  .  

C
A B C

;BB C
A B



, 

,A

 of elements 
of  such that   

A

FF  

A

2.3. Crossed Product C*-Algebra 

If ,  are subspaces of an algebra  then we de-
note by  the linear subspaces of  generated by 
the element AB with   if  is a C*- 
algebra then the norm closure of subspace  is de-
noted by 

B



A B A and called crossed product of  and 
. B
We consider some C*-algebras of the space  B   of 

all bounded operators in the Hilbert space  2= .L X  
If : X  

 Q
 is a bounded, measurable function, we 

denote by  the operator of multiplication by   
in  and by  the operator   P  * Q 


 , where 

 is the Fourier transformation. A C*-subalgebra  
of 


 uC

b


X  will be identified with the subalgebra of 

 consisting of all multiplication operators B  Q
.

 
with  


  

If  is a C*-algebra of   ,C Xu
b  we write C  for 

norm closure in  of the set of finite sums of the 
form n n

A

 B 
 Q P 1 1    PQ   k   with   and 

 We mention the fact that, if C X .k 0  = C X 0  
then   is the ideal of all compact operators in C

 2 .L X  If  is a X-algebra, then  is a C*-algebra 
isomorphic to the crossed product 

C
X  in terms xa


*:h X  

 
of X on . 

We recall now a result from [3]: 
Theorem 2.4. Let  the X-algebra of the first kind 

and let  be a continuous function such that 
 h k   where k   in X*. Then the C*-subal- 

gebra of  B  generated by the self-adjoint operator 
of the form     ,h P k V Q  *k X

:V X  
 where  and 

 belongs to  , coincide with X




= \ ,

. 

3. Non Propagation Theorem in the Locally 
Compact Groups 

3.1. Main Result 

Let X be a locally compact group. Let  be a unital 
X-algebra of the first kind,  its character space, F a 
translation invariant, closed subset of X   and 

 FC   the ideal in  C 
=

 determined by F. Let 
X C  be the crossed product C*-subalgebra of 

 . We consider    which is a trans-
lation invariant ideal in , so 
B    ,F FC 

 F
FK C

C 



 


 is an ideal in 

 that contains all the compact operators in .  
One has need to work with families W of subsets of X 

such that their images through i in  are close to F. W 
will have the structure of filter base. If W is a filter base 
in X, then the family  i W W W


  

 is a filter base in 
 and we say that W is adjacent to F if all cluster 

points in  of this family  i W W W

 
 belong to F,  

i.e. if ,W F i W F 




 

 where the closures are taken in  

. The set of these cluster points is non-empty since 
 is a compact space. In the majority of situations con-

sidered further on, it is enough to take for W the family  

 1=W i i X      W


, where W is a a neigh-  

borhood base of F in   (since i X  is dense in  , 
each of these sets W is non-void). 

If W is a filter base adjacent to F and C  
= 0,

 is 
such that |F  then given any > 0,  there is some 

 W W  such that <    for all  .i W 
W

 In the 
sequel we shall denote by   the characteristic func-
tion of W.  

The main result of this paper is the following non 
propagation theorem.  

Theorem 3.1. Let  and F be as above and W a fil-
ter base in X that is adjacent to F. Let L be a self-adjoint 
operator in  affiliated to . Let 



 C > 0  and 
      =F L  .supp0C X   with  

K
W

 Then there is 
a W  such that  

    .W Q L    

In particular, one has:  

   itL
W Q e L f f   

t

 

  2L X and for each f in .  uniformly in 
Proof. Our proof is similar to that of Theorem 1, in 
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 [8].  e itL
W Q f 

1) We use the notation   for characters in  and 
observe that  



 


|, 0

= = 0 .

F 
 

2 =F C

F

 

 

 

,



 

 

  
 

So if   belongs to ,F > 0 then for each   there 
exists  such that W W       Thus, 
if 

 .i W 
,F   we have  x   for all .x W


 

 
2) By the hypothesis on the support of  we have 

FL K
, ,

 (see Lemma 2.2). So there is a finite number 
of functions 1

F
m    and  *

1 0m C X

 

, ,   
such that  

   
=1

m

i

L Q  2.i i P    

We have:  

       

    

=1

=1

2
m

W i L W
i

m

i

Q L  

 



 



 .

i L X

i iL Q P





 

 

The first term in the r. h. s. of the preceding inequality 
can be made less than 2  by using the result of 1) with  

 

1

,
2i L X=1, ,= sup i mm
 

  








 so the proof is finished.  

The second result in the Theorem 3.1 gives the precise 
meaning of the notion of non-propagation described in 
the Introduction. To be more specific, let us denote by 

;supp f L
,f 

 the spectral support with respect to L of the 
vector  defined as follows in terms of the spec-
tral measure LE

 
f > 0

= 0.E f

 

  



 of L:  

 ; ifsupp

suchthat ,L

f L

 

 
 

;supp f L J  
  = .E J f f

> 0

 is the smallest closed set  such that 

L  Then it follows easily that, under the hy-
potheses of the Theorem 3.1, for each   and each 
closed subset A of  \ L

F 
K


W 

 there exists an element 
 such that W

  ,itL f f 

t  2L X
 ; .

W Q e  

for all  and for each f in  with  
supp f L A

C
,

  
In the situation just described, we take for L a 

Schrödinger operator affiliated to  . Then, if f is a unit 
vector with  ;supp f L A  one has  

 e itL
W

such that  for all . Therfore    0>t t

 
2

e 1 2itLQ f 2
K    >t t for all 0 , which (for small 

 ) essentially means that f describes a state that will 
propagate into complement  W 

 of the set .KK W

0 10 < <t t

   

 
A similar conclusion is true even if f belongs to the sin-
gularly continuous subspace of L, except that some av-
eraging over time may be necessary, there are  
such that  

21 2
0

0
d 1 3

t i L

t K W
t t Q e f

Q f  .t for all   The physical inter-
pretation: the probability of finding f localized in W is 
less than 2  all times. Assume that K is a compact 
subset of X and the preceding vector f belongs to the ab-
solutely continuous subspace of L, then there is 0t    

   


    

1> .t t

= .nX  = 1, ,j m

 

for all   

3.2. Applications 

3.2.1. Non Propagation in Multicrystalline System 
Let S be the unit sphere in  For  
let j  a periodic lattice in X and j  a non-empty open 
subset of S, with =j k  .j k if  We denote by 

 jC X  the C*-algebra  

       


= ; =

,

u
j b

j

C X C X x x

x X

   



 

   



 

and we define  as the set of bounded, uniformly con-
tinuous function   on X such that for any 1, ,j m   
there exists  j jC X   such that  

    = 0lim j
r

rw rw 




,

 

for all jw  uniformly in w on each compact subset 
of j . The (uniquely determined) collection  
 = 1, ,j m j  corresponding to    will be called 
the asymptotic function of  . If   is subset of j  
and  let  R

jW> 0,R   be the subset  
 > ,rw r R w

V
 of X. We obtain the following result:  

Proposition 3.2. Let   be real and denote its 
asymptotic function by  .V  = .L h P Vj  Set   Fix a 
number    C X  0  with 1, ,j m   and choose 

 supp   disjoint from the spectrum of the periodic gen-
eralized Schrödinger operator  = .j jL h P V  Then 
given a compact subset K of j > 0, and   there is 

 0,R   2f L X

 
   

 such that for each  we have  

e .sup itL
RW Kjt

Q L f f  





 

For the proof of the Proposition we will need the fol-
lowing notations:    = > > 0, ,R w r R w j j jW r  
and =j jX  z X (The class of  in j

,
, denoted 

by   is given as = , = , jx X x z     ). We 
observe that  C X  j  is isomorphic to jC   and that 
the correspondence j   defines a *-homomorphism 

 .j  from   to  j

Proof. We consider the mapping:  
C X  
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 :j ji 

   : = ,j z  

 

j j
    

where j  is the j-th asymptotic function of   and z 
any representative of the class .  Set  =j j j . By 
Lemma 4 in AMP, 

i 
j


 L

 is closed invariant under all 
translation subsets of . Now, we need the next   \ i X
result: The set  coïncides with the spectrum of  

jK


the operator jL . Indeed, let :j  
 C C K


 the  

canonical *-morphism and denote by j
L 

K
 the spec- 

trum of the observable L
jo   affiliated to .j

C K  

It suffices to prove that  
j

C Xj

CC K  and the im-

age of L
jo   by this isomorphism is .L

j  

Set  

   
=1 =1

m m

j i i
i i

P Q     


 C X  thj

   ,= ,i j iP Q   

where ,i j j  is the  asymptotic function of 
.i  j

C

 can be extended to the surjective morphism from  

 to C  its kernel is  (see   C Xj
 j jC X

 
 

  1
= .j jL z




  =
j

L 
K

W

, =K

Corollary 2.7. in [4]). Since  is a unital X-algebra of 
the first kind (see Lemma 3 in AMP), then by Theorem 
2.4, we get 

  1
L z

   

By the preceding result we have  

 supp   . Let  be a neighbourhood  

base of j  in . We consider the filter base defined 
by  



  .X     W1= =W i iW  

Then by Theorem 3.1, there is > 0  and W W



 
such that  

  e ,f f

t  2L X

2 = 1,2j

itL
W Q L   

uniformly in  and for each f in . To com-
plete the proof we apply Lemma 5 in AMP.  

3.2.2. Potential with Cartesian Anisotropy 
Let 1 2. For  let us denote by =X     j

:
 

the C*-algebra of all continuous functions j  


 
such that the limits   exists. Then 

1 2  is a unital C*-subalgebra of 
  =n nlim


j c

=   2uC b  that 
is invariant under translations by elements of X. 

Let  = ,j j j j  the two-point compacti-
fication of 

   
j . Then j  is the spectrum of j  and 

1 2=    is the spectrum of . Now we consider 
the self-adjoint operator 


L V=    in  2 2= l 

V

  for 

  real function. It is obvious that for  , 1, 2j k 
j k

 
with     the limits = limV n V n

k kj j n   exist 
uniformly in j jn  , and define elements of j . Let 

   1 1 2=L V I I V1 2 2
          in the represen-

tation    2 2
1 2l l  . Its spectrum equals  ,8c c  

where 1 2=c c c  , 1  and   1= limnc V n 


 2 2= limc V n 

> 0
n

Proposition 3.3. Let 
.  

. Then for any  C    
with  ,8 =supp c c    n 

1 2, >n n n
 there is  such that 

for all   and  ,  f 

     1 1 2 2> > e .itLQ n Q n L f f      

3.3. Main Result in the Case of Trees 

Let   be a  -fold tree of origin e equipped with its 
canonical metric d, where d(x, y) is the shortest path 
joining x to y. We denote by x ~ y when x and y are con-
nected by any edge. For each , we denote by x' = 
x(1), the unique element y ~ x such that 

x
y  = x  – 1. 

For all x ,we define x =d(e, x), Let  be the 
C*-algebra generated by 


 . Where  

     'y x
f f x f y 

 , We denote by  the C*- 
algebra generated by  and where 

 ̂
  ˆC  ̂  is the 

compacatification of  and is the C*-algebra of 
the complex-valued continuous function on 

 ˆC 
̂ . It con-

tains the compact operators on .    2 
  *

,,
=L a Q K 

  Let    , where 
 ˆa C, ,    = 0a   2,  

 ˆL 
> 1

 ,   for almost all  and K 
is a compact operator. Its clear that .  

Theorem 3.4. Let   and let 

  *
,,

=L a Q  
    where K is a compact opera- K  

 , ,   for almost all  ,
ˆ ,a C     = 0ator, 

  2,   n, be a self adjoint operator. For all   set  

  := : .B n x x n 

:

 

Let   

    *
,

,

= .supp a  
 

 
  



 

 be a continuous function with  

   
 


> 0

 

Then for each   there exists  such that  n 

   B n L  

 

             (1) 

Proof. 1) Let  

 |
ˆ= = 0 .C 

   

ˆwhere  = . So if     belongs to  then for 
each 


> 0 n  there exists   such that  

  .n n    

   ˆ: C

  
2) Using Theorem 5.9 in [13] we can deduce that there 

is a unique morphism        such 
that   = 1D D D for all  and  

   |= 1Q   . Now, its clear that  is surjec-
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 so the proof is finished.  

Example 3.5. We can consider the Schrödinger op-
erator  with potential V in [8] W. Amrein, M. Măntoiu and R. Purice, “Propagation 

Properties for Schrödinger Operators Affiliated with Cer-
tain C*-Algebras,” Annales Henri Poincaré, Vol. 3, No. 6, 
2002, pp. 1215-1232. 
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Corollary 3.6. Let L and   be as in Theorem 3.4. 
Then, for any > 0 , there exists  such that  n 
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