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Abstract 
 
Let n

pB , , be the volume of the unit 1 p   p -ball in nR  and q  the Hölder conjugate exponent of 
p . We represent the volume product n

pB n
qB  as a function free of its gamma symbolism. This representa-

tion will allows us in this particular case to confirm, using basic classical analysis tools, two conjectured and 
partially proved lower and upper bounds for the volume product of centrally symmetric convex bodies of the 
Euclidean nR . These bounds in the general case play a central role in convex geometric analysis. 
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1. Introduction 

One of the key notions in convex analysis is the volume 
product   oM K K K  where K  is a (centrally sym-  

metric) convex compact set of the Euclidean  , .,.nR  

with non-empty interior (or simply “body”) and  

 = : , 1,o nK y R x y x K     is the so called polar 

set of K  
For this product, one of the long standing conjectures 

stated by Mahler (who proved it for n = 2) claims that 

 4

!

n

M K
n

 for origin symmetric bodies . This con-  K

jecture has been confirmed in many special cases of K  
and in particular for bodies symmetric with respect to the 
coordinate planes, which naturally include the -balls, 
using a rather advanced Banach space theory. On the 
other hand, for an upper bound, we have the inequality 

p

   2
nM K M B

= 2n
 proved in 1948 by Santaló (and much 

earlier for  by Blashke). A survey of the above 
facts and other related results can be found e.g. in [4]. 

We set forward in this short work to establish 
Mahler’s conjecture and the Blashke-Santaló inequality 
for the case  using exclusively basic 
special functions and classical analysis theory. 

= ,1n
pK B p  ,

nIt is clear that   = ,
on

p qB B  where 
1 1

= 1
p q
 , and  

also directly verifiable through multiple integration (see  

e.g. [1]) that 

1
2 1

1

n

n

n
p

p
B

n
p

 
  
 
 

  
 

for  and 1 p  

1 = 2n nB B n . 

So we now have to manipulate the expression  

 
1 1

1 1

= 4 .

1 1

n

n n
p

p q
M B

n n
p q

    
       
    
   

      
   

      (1) 

Thus, in Sec.2 we start with a suitable for our goals 
gamma functions ratio result (Lemma) that will allow us to 

represent  n
pM B  as a suitable function  , ,M n p for 

1 p   , free of its gamma symbolism (Proposition);  

finally, in Sec.3, by establishing 
 d ,

0
d

M n p

p
  for 

1 < 2p   (Lemma) and then using the evident facts that 

   ,, =M n p M n q  and 1  iff , and 

also by examining separately the case , we will  

2 q  2 <p

1p 
obtain the announced results (Proposition). We also ob-
tain, as byproducts of independent interest, three seem-
ingly new closed formulae concerning infinite products 
(Corol. 1, Corol. 2 and Rem. 2). 
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2. A Lemma and a Proposition 

Lemma 
For  and > 0x 0 < 1   we have that  

   
 

 
  =1

1
1 =

1k

x k k x

x k k x




 

   
 

    .




 (2) 

Proof: 
Let  ,P x   be the infinite product in lemma’s 

statement .One of the classical definitions for the gamma 
function for any complex , is 0, 1, 2,z    

   
1 !

= ,lim
z

k
k

k k
z

z




  

where  is the shifted factorial  
.Substituting in the above limit, 

respectively, 

 k
z

 1 z z z k 
= 1

1
, = ,z z x   and =z x , and after  

simplifying we arrive at  

   
 

 
   

!
1 = lim

1
k

k
k k

k xx

x x




 

 
 

  
 which is iden- 

tical to  ,P x  . 

Remark 
1) Independently of the above argumentation we can 

easily check that  ,P x   exists as a two-variable func- 
ction over  since evidently    0,1 0,  0 ,P x 

0
 

and, by use of the inequality ,  log 1, >t t t 

 

    =1

log ,

1
1

1k

P x

x
k k x



 
 



   
    < .

 

2) This lemma was proved formally (and from “scratch”) 
in [3] where the scheme of the proof served different 
purposes concerning the numerical evaluation of the 
gamma function. 

Proposition 
For ,  1 < <p 

 

 

22
2 2

2 2

2 2
=1

, =

1

4
( 1)

n

nn
n

k

M n p

n
k nk k k

pq pq
h p

k








  
     

  


  (3) 

where   π
=

π
sin

h p

pq
p

 
 
 

. 

Proof: 
Evidently  and so (2) is trivially true for 

. Thus we can consider  
(1 ) = 1h 

= 1n 2.n 
At first let us rewrite (1) as  

 
 2 1

1 1

4 1
,

n

n

n

p q
M n p

n n npq
p q



    
     
    
   

    
   

 

Based on Lemma II.1 for 
1

=
p

 and  

= , =1, , 1
m

x m n
p

  we see that  

1

1
=1

1

1
= ,

1

n

n
m

pn n
P

p p

q





 
        

    
 
 

 m

p
      (4) 

where  ,P x   was defined above in Lemma 
Working in a similar way we obtain the “conjugate 

expression”  .n q  
We observe now that  

 
 

 
 

22

=1

1 1
, ,

1 ,1
=

1 1
k

k k k

n m n m
P P

p p q q

k r n m pn m

pq n m g p r n m p



    
   
   

  
     


,

   (5) 

where we have set  
2

2, =k

j
r j p k jk

pq
   and  

   = 1,k kg p r p . 
Combining (2), (4), and (5), and by “telescoping”, we 

obtain (3). 

3. One More Lemma and a Conclusive 
Proposition 

Lemma 

Let 1 p 2  . Then 
 d ,

0
d

M n p

p
  for all n  with  

equality iff  for = 2p 1n  . 
Proof: 

 1, = 4nM p

p

 and once more we can consider  
By straightforward differentiation with respect to  
and in the case of the infinite product of (2) by logari- 
thmic differentiation (noticing that this product by con- 
struction is a real analytic function of  having as 
logarithm a uniformly converging series of differentiable 
functions of ) we obtain  

2.n 
p

p

 
2

=1

d ( , )

d

1 2
= 2 2

k k k

M n p
sign

p

n n
sign n h h

pq g r



 
 
 

.
               


   (6) 
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In (6) was defined in (3) and  

k

 =h h p
 = , =k  ,k kg g p r r

p

n p

n

 as defined in (5); still for sim- 
plicity from now on we suppress any possible depen- 
dence from  and . 

Since evidently  and the infinite sum in (6) are  h

positive and    
 2

2
=

1

p p
pq

p

 


0  (with equality iff  

= 2p
p

) it will suffice to show that  (with equality 
iff ). 

0h 
= 2

Simple calculations show that  

 π
sinsignh sign pq sign

p


       
  

, where  

     π
= = 2 sin π 1 cos .p p p p

p p
 

   
     

   

π
  (7) 

Now 

   

 2

π
= π 1 sin

π
              2 2 cos < 0,

sign sign p
p

p p
p


     

 
 

    
 

      (8) 

and since   we conclude that 0   with equality iff 
. = 2p

We are now ready to prove the announced double 
inequality concerning  , .M n p  

Proposition 
For and all positive integers   1 p   ,n

  4
,

!

n

M n p M n
n

  , 2  with left (resp. right) equality 

iff  (resp. ), whenever . = 1p = 2p 1n 
Proof: 
Based on Lemma III.1 we can see immediately that for 

, with equa- 
lity iff  
1 < < <t p 

= 2.p
     , < , , 2 ,M n t M n p M n

pWe only need to examine (2) whenever 1 : 

It is clear that  ,1 = 4n
nM n  s , with  

 
 

1

=1

=
1

n

n n
k

k
s k n 1s

k




 . Since and  = 1

1

=1

= =n

kn

s k k n 1 1

1 1s k k n


    

     


n 
 we see that  

!

1
=

n
sn  and we are done. 

Remark 1 
Independently of the above approach one can easily 

verify that ns  converges for all  by the logarithmic 
series test along the lines of Remark II. 1(i): evidently 

 and also for  (by the crude logarithmic 
inequality) 

n

> 0ns 2n 
nlog ns  , where  

 
 =2 =1

n
n m

m k



 = < .
1

n m

n

k

k






n

  

Thus we obtain the (crude but not obvious) inequality 
1

!
ne

n
  for  2.n

We conclude this work with two closed type formulae 
that are automatically true when we set 2p   in (2).  

Exploiting the fact that   2
2 2

4π
, 2

2

n
nB

n
n

 
   
 

M n  and 

the classical value of 
2

n 
 
 

for even and odd  (see  n

 

e.g.[2]) we arrive, respectively, for any  at the 
following fomulae: 

m N

Corollary 1  

 
 

1

2 2
2 1

m

k





 

2 1

4
2 2 π

=
!2 2

m

m

k k m

m





 
    

=1k



  

Corollary 2  

 
   

1

2 1

2 2

m

k



 2
=1

8
2 2 3 π

=
2 3 !!

m

m
k

k k m

m




 
     


2 1

 

Remark 2 
It is clear that the above two formulae provide us with 

the seemingly untabulated formula 

  
 

 
1

=1

2 2

2 1 2

k k

k k 
2 2 2 3 !!

=
2 3 2 !m

k

m m

m m





  


 . 
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