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Abstract 
 
The Monty Hall problem has received its fair share of attention in mathematics. Recently, an entire mono-
graph has been devoted to its history. There has been a multiplicity of approaches to the problem. These ap-
proaches are not necessarily mutually exclusive. The design of the present paper is to add one more approach 
by analyzing the mathematical structure of the Monty Hall problem in digital terms. The structure of the 
problem is described as much as possible in the tradition and the spirit—and as much as possible by means of 
the algebraic conventions—of George Boole’s Investigation of the Laws of Thought (1854), the Magna 
Charta of the digital age, and of John Venn’s Symbolic Logic (second edition, 1894), which is squarely based 
on Boole’s Investigation and elucidates it in many ways. The focus is not only on the digital-mathematical 
structure itself but also on its relation to the presumed digital nature of cognition as expressed in rational 
thought and language. The digital approach is outlined in part 1. In part 2, the Monty Hall problem is ana-
lyzed digitally. To ensure the generality of the digital approach and demonstrate its reliability and productiv-
ity, the Monty Hall problem is extended in parts 3 and 4 to related cases in light of the axioms of probability 
theory. In the full mapping of the mathematical structure of the Monty Hall problem and any extensions 
thereof, a digital or non-quantitative skeleton is fleshed out by a quantitative component. The pertinent 
mathematical Equations are developed and presented and illustrated by means of examples. 
 
Keywords: Binary Structure, Boolean Algebra, Boolean Operators, Boole’s Algebra, Brain Science,  

Cognition, Cognitive Science, Digital Mathematics, Electrical Engineering, Linguistics, Logic, 
Monty Hall Problem, Neuroscience, Non-quantitative and Quantitative Mathematics, Probability 
Theory, Rational Thought and Language 

1. Introduction 
 
The Monty Hall problem, named after the television host 
Monty Hall who made it famous in a TV show, has re-
ceived its fair share of attention in mathematics. Recently, 
accessibility to the history of the problem was greatly 
enhanced due to the appearance of a monograph devoted 
entirely to the subject [1]. A multiplicity of approaches 
has been applied to the problem. These approaches are 
not necessarily mutually exclusive. Among key contribu-
tions of most recent date to the problem’s analysis are an 
updated statement of the Bayesian analysis of the prob-
lem [2], a challenge to move towards a mathematical 

modeling of the problem [3], and yet other innovative 
treatments [4]. 

The design of the present paper is to add one more ap-
proach by analyzing the mathematical structure of the 
Monty Hall problem in digital terms. The structure of the 
problem is described as much as possible in the tradition 
and the spirit, and by means of the algebraic conventions, 
of George Boole’s Investigation of the Laws of Thought 
(1854), the Magna Charta of the digital age, and of John 
Venn’s Symbolic Logic (second edition, 1894), which is 
squarely based on Boole’s Investigation and elucidates it 
in many ways [5].  

This paper has four main parts. The digital approach is 
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p p poutlined in general in part 1. In part 2, the Monty Hall 
problem is analyzed digitally. The Monty Hall problem 
involves 3 doors, 1 car, 2 goats, 1 picked door, and 1 
opened door. To ensure the generality of the digital ap-
proach and to demonstrate its reliability and productivity, 
it would seem to be critically important to extend and 
generalize the analysis of the Monty Hall problem to any 
number of doors, cars, opened doors, and picked doors in 
light of the axioms of probability theory. Such an exten-
sion and generalization is the subject of parts 3 and 4 of 
this paper. Part 3 concerns an extension to any number of 
doors, cars, opened doors, and picked doors. Part 4 con-
cerns an additional extension to any number of picked 
doors. The pertinent mathematical Equations are devel-
oped and presented and illustrated by means of exam-
ples.  
 
2. Preliminary Considerations and  

Reflections on Digitality and Cognition  
 
2.1. Digital Mathematics and Quantitative 

Mathematics  
 
Digital mathematics is the mathematics in which nothing 
gets bigger or smaller and everything is either On or Off, 
1 or 0. Different notation systems are prevalent in digital 
mathematics. I prefer the notation used by the Father of 
the digital age, George Boole.  

Digital mathematics needs to be differentiated from 
the search for the roots of mathematics, a subject to 
which Bertrand Russell and Kurt Gödel and many others 
have contributed. These efforts are often called logistics, 
as opposed to logic. A recent voluminous book on the 
history of logistics from 1870 to 1940 documents all 
these contributions in detail. This account also reveals 
that it seems to be hardly the case that the ultimate roots 
of mathematics have been once and for all fully uncov-
ered [5].  

At the outset of his Elements of Algebra (Vollständige 
Anleitung zur Algebra), Euler states that mathematics is 
the science of quantity, the systematic study of that 
which is capable of increase or diminution. This state-
ment is not fully complete. Digital mathematics is fun-
damentally different from the mathematics with which 
one is better familiar. 

In digital mathematics, nothing gets bigger or smaller. 
When one performs a Boolean search on the Internet 
looking for all that is Paris and in addition all that is 
Paris–adding Paris to Paris as it were by using the 
so-called Boolean OR-operator—the information that 
one gets is not in any way larger than if one had just 
searched for Paris alone. Adding Paris to Paris does not 
produce a class or set that is twice as large as Paris. If p 

is Paris, then  

2p p p

 in Boole’s algebra. By contrast, 
in the familiar mathematics, quantity mathematics, 
  . 
Furthermore, when one executes a Boolean search for 

all entities that have two properties, namely being French 
and again being French—multiplying French by French 
as it were by using the so-called Boolean AND-opera-
tor—one does not obtain search information that is larger 
than if one had just searched for all that is French. If f is 
French, then in Boole’s algebra, f f f 

2

. By contrast, 
in the more familiar mathematics, quantity mathematics, 
f f f . Something is getting bigger. 

 
2.2. Boole’s Algebra and the Algebra of  

Electrical Engineering 
 
It should be noted that, when Boole’s algebra was 
adopted in electrical engineering, the conventions were 
switched. Boole’s “0” is electrical engineering’s “1” and 
vice versa. Boole’s “×” is electrical engineering’s “+” 
and vice versa [6]. I assume that Claude Shannon, who 
adapted Boole’s algebra for the design of switching cir-
cuits in the 1930s and thus in a sense became the Father 
of computer science, was the originator of this change. In 
electrical engineering, 0 is conceived as zero resistance 
or hindrance and therefore as an open circuit. I person-
ally prefer Boole’s notation and will use it in what fol-
lows. But as long as it is understood which functions 
symbols have, it makes no difference whether one or the 
other notation is used.  
 
2.3. The Digital Nature of Rational Thought and 

Language  
 
The human experience consists entirely of how the brain 
engages reality outside itself by means of the senses, 
nothing more, nothing less. This includes any manner in 
which the brain combines sensory perceptions internally. 
There are more than the traditional five senses, sight, 
hearing, smell, taste, and touch. The others include sens-
ing pain, sensing that one is upside down, sensing resis-
tance when pushing, and sensing hunger. Part of the 
brain’s engagement with what is outside itself may be 
called rational thought and language—as distinct from, 
say, emotions.  

I refrain from defining at this point exactly what is ra-
tional thought and what is language in rational thought 
and language. It is much preferable to begin by regarding 
the two together as a single large phenomenon. It may in 
fact be difficult to disentangle the two entirely. After all, 
to which of the two do any connections between the two 
belong?  

I am personally convinced that rational thought and 
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language is entirely digital. This fundamental assumption 
will serve as a working hypothesis. I have begun con-
structing a comprehensive model of how rational thought 
and language proceeds digitally. But the presentation of 
this model is reserved for another occasion. In seeking 
inspiration as to what this model might look like in the 
brain, there is nothing wrong with creating physical tem-
plates consisting of magnetic coils and switches or tran-
sistors or memristors in an attempt to create a prefigura-
tion of what will be found later in the brain. 

The proposed model has nothing to do with any of the 
many programs now in existence that allow a machine to 
comprehend, produce, or translate languages. These pro-
grams are impressive, as appears from a translation by 
Google Translate of a passage of Antoine de Saint- 
Exupéry’s Le petit prince presented in a recent article in 
the New York Times [7]. These programs do not, how-
ever, in any way mimic human language nor do they 
pretend to. All are based on probability and statistics. 
Relying on huge databases and much computing power, 
the programs mathematically predict what is most likely 
to come next based on information already stored. These 
intelligent guesses are fast becoming ever more accurate.  
 
2.4. Empirical Basis for Observing the Digitality 

of Rational Thought and Language  
 
Little or nothing is known directly about how the bio-
logical brain produces thought and language. The ques-
tion arises: Is it not premature to construct models per-
taining to how the brain thinks and talks? Where is the 
empirical basis?  

The empirical basis is twofold. First, it is abundantly 
clear that the brain teems with digital activity, even if 
the precise mechanisms of this activity are mostly not 
understood. Second, as one brain communicates with 
another through thought and language, all communica-
tions need to travel by air from the mouth of a speaker to 
the ear of a hearer or by light from the written page to a 
reader’s eyes. There can be no doubt that everything that 
is essential to the structure of rational thought and lan-
guage must be conveyed in sound waves or light beams 
that travel from mouth to ear or from page to eye.  

One might object that sounds and written symbols are 
not the same as operations of neurons inside the brain. 
Then again, certain operations of neurons generate a 
structure that is empirically accessible in language. If 
the structure of the neurons differed from the linguistic 
structure they spawn, people would say things that differ 
from what they think that they are saying. Clearly, the 
structure expressed in language must be exactly the 
same as the structure formed inside the brain, even if the 
material platforms that the two inhabit could hardly dif-

fer more.  
What about the validity of the proposed digital model? 

It is true that mathematical models have predictive value. 
Consider the computations relating to a novel kind of 
bridge construction. The computations are predictive in 
the sense that, if they are error free, the bridge should not 
collapse. What is more, the computations are binding. 
The bridge must be built according to the computations 
or it will collapse.  

The validity of digital mathematics in general has been 
amply demonstrated by countless applications in tele-
phone circuits and computer science. Still, one cannot 
conjure up just any fanciful digital analysis of brain op-
erations and simply expect the brain to operate according 
to it. The digital analysis must meet certain empirical 
conditions and be comprehensive in the mathematical 
sense by extending to all possible cases. The digital 
analysis should be to linguistic reality what mathematics 
is to physical reality in the field of physics.  
 
2.5. The Digital Supplements 
 
When one looks at a page of written text, the 1s and the 
0s do not readily jump at the eye. So where is the digital 
structure? In a course that I might one day teach about 
the digital nature of rational thought and language, I 
might begin by confronting students with the expression 
“two black cats” and ask where the mathematics is in this 
expression. I would suspect that quite a few might point 
to “two” as the mathematical component. However, 
“black cats” is just as mathematical.  

In digital terms, the presence of something creates a 
certain awareness of its absence, in other words, of all 
that it is not. Accordingly, to the class or set of cats cor-
responds a supplement class or supplement of all that is 
not cats. If the class of cats is denoted by c, then its sup-
plement is denoted in Boole’s notation by  , that is, 
the universe or all that one could possibly think about 
(Boole’s “1”) minus (–) cats (c), or also by c . Likewise, 
the class of all that is black can be denoted by b and its 
supplement, all that is not black, by b

b c

.  
 
2.6. The Digital Combination Classes  
 
Furthermore, digitally speaking, two classes “black” (b) 
and “cats” (c), along with their respective supplements, 
divide the universe or all that one could possibly think 
about into exactly four combination classes, black cats, 
non-black cats, what is black but not a cat, and what is 
neither black nor a cat. The present writer belongs to the 
fourth category. In Boole’s notation, the combination 
classes are denoted by   (or bc), b c  (or bc ), 
b c  (or  bc ), and b c  (or  bc ). The universe or all 
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that one could possibly think about, Boole’s “1,” consists 
entirely of the sum of the four combination classes, as 
follows. 

1

(or also :1

b c b c

bc

   

  )

b c b c

bc bc bc

   

 
         (1) 

This division is profoundly digital. It encompasses all 
the combinations in which presence and absence, or On 
and Off, or 1 and 0, of two classes “cat” and “black” and 
their supplements can combine.  

The division is also fundamental to how we think. 
Consider the simple sentence “The cat is black.” The two 
classes “the cat” and what is black generate four combi-
nation classes. What matters is the abolition of one of the 
four combination classes, namely what is both the cat 
and not black. It is this operation of abolition that makes 
the thought “The cat is black” possible.  

In Boole’s algebra, there are two levels of thought, the 
primary level of the things and the secondary level of the 
events. A proposition such as “The sun shines” is pri-
mary. The secondary level can be comprised of two pri-
mary propositions. An example is “When the sun shines, 
I take a walk on the beach.” In this sentence, one digital 
combination class is switched off or shut down or empty, 
that is, all the occasions when the sun shines and I do not 
take a walk on the beach. There is no such thing accord-
ing to said statement. The three other digital combination 
classes are on or occupied: either the sun shines and I 
walk on the beach, or the sun does not shine and I walk 
on the beach, or the sun does not shine and I do not walk 
on the beach. 

The relation to the conditio sine qua non can be ex-
plained digitally [8]. Compare the statement already 
mentioned, “When the sun shines, I take a walk on the 
beach,” with the statement “Only when the sun shines do 
I take a walk on the beach.” A different digital combina-
tion class is switched off in the latter statement, namely 
all the occasions when the sun does not shine and I do 
take a walk on the beach. 

Furthermore, in the sentence “I take a walk on the 
beach if and only if the sun shines,” both said combina-
tion classes are switched off. Since there are four digital 
combination classes, that means that two combination 
classes remain switched on: either I walk on the beach 
and the sun shines or I do not walk on the beach and the 
sun does not shine.  
 
2.7. Limits to the Universe  
 
When two classes and their supplements partition the 
universe or all that one could possibly think about into 
four combination classes, it is common to impose un-

spoken or explicit limits on what is being partitioned [9]. 
One hardly always considers everything thinkable. For 
example, the statement “Manchester is the winner” de-
scribing the outcome of a soccer match between Man-
chester United and Liverpool involves four digital com-
bination classes: all that is Manchester and the winner, 
all that is Manchester but not the winner, all that is not 
Manchester yet the winner, and all that is neither Man-
chester nor the winner. The design of the statement 
“Manchester is the winner” is to present two combina-
tion classes as empty: all that is Manchester but not the 
winner and all that is not Manchester yet the winner. It 
seems clear that all that is not Manchester does not in 
this case include the Queen of England or the Pope in 
Rome. Non-Manchester is limited to the soccer club 
Liverpool. It is also clear that “Manchester” does not 
refer to all of the city of Manchester, but just to the soc-
cer club Manchester United. Although the limits imposed 
on the universe are not stated explicitly, it seems clear 
what they are.  
 
2.8. Excursus: On Negation and on the Digitality 

in Rational Thought and Language  
 
In a digital world, negation is the mother of all meanings. 
Everything without exception can be negated: “Caesar” 
as “not Caesar,” “It rains” as “It does not rain,” “there” 
as “not there,” “There is” as “There ain’t,” and “yes” as 
“no.” It is as if reality presents itself to us in two parallel 
universes, the affirmative and the negated. But what is 
negation?  

E. Schröder, the mathematician and onetime director 
of the Technische Hochschule in Karlsruhe, advised 
great caution when it comes to defining negation because 
the most famous philosophers from Aristotle to Kant 
proposed definitions of negation that are very far apart 
and great authorities constructed untenable theories 
about negation that exhibit the greatest internal contra-
dictions [10]. Greek philosophers struggled mightily with 
being and not being and being and becoming and the like. 
But it is only since the mid-nineteenth century that digi-
tal mathematics has provided what I believe to be the 
valid and final definition of negation. What is negation in 
digital terms? 

As the brain engages reality outside itself as observed 
or as remembered or even as recombined, it naturally 
does not focus on, or contemplate, everything all at once. 
It selects certain components of what Boole calls the 
universe, that is, all that one could possibly think about. 
To a certain degree, by the way it is structured, reality 
presumably more easily draws the attention of the brain 
to certain of its facets rather than to others. One may 
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focus on an entity such as a tree, on a property that 
comes with that entity such as green, or on a circum-
stance in which that entity along with its property finds 
itself such as “in the forest.” The contemplation of any 
component of all that one could possibly think about 
automatically conjures up the notion of all that remains, 
all that that component is not, for example, all that is not 
a tree, all that is not green, or all that is not in the forest.  

If the component of the universe of thought is viewed 
as a class or set, then all that is not that component is just 
as much a class. A class that encompasses all that some-
thing is not may be called a supplement class or a sup-
plement. As was noted above, in Boole’s algebra, if 
lower case g denotes all that is green, then all that is not 
green is denoted by g , that is, the universe (Boole’s 
“1”) minus g, which Boole abbreviates as g .  

Negation is born, and so is digitality, when the need 
arises to refer explicitly to all that something is not. For 
example, I may want to state that a certain car falls out-
side the class of all that is green. I can do so by means of 
the word “not,” as in “This car is not green.”  

Importantly, a class and its supplement together make 
up all that is thinkable. In this connection, Aristotle for-
mulated the fundamental axiom of thought, namely that 
something cannot at the same time be and not be some-
thing. What is more, the relation between a class and its 
supplement is like a toggle. The original class is of 
course all that its supplement class is not. Put differently, 
the original class is the supplement of its own supple-
ment. One common way of referring to this property of 
digital reality is that two negations cancel one another.  

This is not the place to illustrate the digital component 
of rational thought and language at length. Suffice it to 
point to a semantic field among whose members are 
English words such as “alone,” “also,” “only,” “other,” 
and “self” and an English expression such as “for his 
part” along with their equivalents in other languages [11]. 
Everyone knows how to use these words. But defining 
them is another matter. Without entering into detail, it 
would appear that these words all refer to digital sup-
plement classes. For example, “he alone” means “no 
others besides him,” “no non-he’s” as it were. “He also” 
means “others besides him,” that is, “non-he’s” in addi-
tion to him. In a digital world, there is also a need for 
referring with an explicit word to the supplement class. 
The word “other” performs exactly that function. 
“Other” refers to what something else that has been men-
tioned is not.  

In this connection, I have also proposed to analyze 
contrastive emphasis digitally [12]. When one says, for 
example, “It is in Paris that the session is held” or “The 
session is held in Paris,” one apparently means “not 

somewhere else,” that is, “not in non-Paris.” Paris is 
presented as the digital supplement of its digital supple-
ment, which is very much Paris itself.  
 
3. Two Goats and a Car:  

Digital-Mathematical Analysis of the 
Monty Hall Problem  

 
3.1. Boole and Probability  
 
It is now generally forgotten that Boole wrote the Magna 
Charta of the digital age, his Investigation of the Laws of 
Thought (1854), to address problems in probability. But 
his contribution to probability has been “simply bypassed 
by the history of the subject” [13]. Boole believed that 
the theory of probability is a field of mathematics strad-
dling the fence that separates quantitative mathematics 
from digital mathematics. 

It is assumed here as a working hypothesis that the 
digital approach permeates all engagement of the brain 
with reality, and that includes assessments of probability. 
In support of this assumption, the Monty Hall problem is 
analyzed digitally in the present part 2 and then extended 
and generalized in light of the axioms of probability the-
ory in parts 3 and 4.  

The study of the Monty Hall problem has a long his-
tory. But the countless technical and popular treatments 
of the problem are characterized by the exclusion of a 
potentially fertile additional approach, the digital and 
Boolean perspective, the perspective that I personally 
believe reflects the fundamentally digital nature of how 
the brain processes reality in terms of rational thought 
and language.  
 
3.2. Description of the Monty Hall Problem  
 
Behind 3 closed doors, 2 goats and 1 car are hiding. One 
is asked to pick a door to get what is behind it. The aim 
is to get the car. One begins by picking a closed door 
without however knowing or being told what it is hiding. 
Subsequently, someone who knows what is behind all 3 
doors without revealing this knowledge to the person 
who has picked a closed door opens 1 of the 2 doors that 
were not picked, and more specifically a door hiding a 
goat. Since 2 of the 3 doors hide goats, it is always pos-
sible to open a non-picked door that hides a goat. The 
other 2 doors remain closed and 1 of these 2 is the one 
that was initially picked.  

The Monty Hall problem revolves entirely around the 
following question. Once a door has been opened to re-
veal a goat, should one switch from the closed door that 
one has picked to the other door that remains closed in 
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order to improve one’s chances of getting the car? There 
is no doubt whatsoever that one should switch. The need 
is therefore for establishing the respective probabilities 
of switching and not switching doors.  
 
3.3. Intuitive Grasp of the Need to Switch Doors: 

Opening Doors to Reveal Goats as a Means 
of Compressing or Condensing a Probability 
into Fewer Doors  

 
The need for switching doors to improve one’s chances 
of getting the car is obvious from the following consid-
eration. Everyone knows that one has only 1 chance in 3 
of getting the car by picking a certain door. That in effect 
means that there are 2 chances in 3 that the car is hiding 
behind 1 of the 2 other doors that were not picked. In 
other words, there are 2 chances in 3 that the 2 
non-picked doors hide 1 car and 1 goat. Accordingly, 
there ought to be every temptation to switch to the other 
2 doors to get the car. The problem is that one cannot 
switch to both of the 2 other doors that were initially not 
picked. One can only switch to 1 of them. But to which 
one of the 2 should one switch? 

This is where critical and odds-changing help arrives 
in the form of someone opening 1 door to reveal 1 goat. 
The effect of this intervention is that the chance of 2 in 3 
that the 2 other doors are hiding the car is concentrated in 
1 unopened door. What opening 1 door to reveal 1 goat 
achieves is to compress or condense a certain degree of 
probability distributed equally over a number of doors 
into fewer doors. In the case of the Monty Hall problem, 
a probability of 2 3 , which is distributed equally as a 
probability of 1 3

iC

 over each of the 2 doors that are ini-
tially not picked, is compressed into 1 door by opening 1 
door to reveal 1 goat. 

In sum, there is every reason to switch doors. It is not 
certain that one will get the car. But one has 2 chances in 
3 of being lucky.  
 
3.4. The Two Digital Levels, the Level of Things 

and the Level of Events  
 
Just as two classes “black” and “cat” digitally generate 
four combination classes (§2.6), the Monty Hall problem 
in a digital and Boolean perspective fundamentally in-
volves two classes generating four combination classes. 
But in the case of the Monty Hall problem, the two 
classes do not contain all the instances of two things, 
such as “black things” and “cats,” but rather all occa-
sions or instances or occurrences of two events. Accord-
ing to Boole’s analysis, rational thought and language 
exhibits two levels, the level of primary propositions that 
is concerned with classes of things and the level of sec-

ondary propositions that is concerned with classes of 
events. Each class of events contains all the occurrences 
of a certain event.  

When two classes of events and their supplement 
classes are partitioned into four combination classes, it is 
common to impose unspoken or explicit limits on what is 
being partitioned (§2.7). The same applies to the Monty 
Hall problem and any extensions thereof. What one is 
considering in terms of things is limited to a number of 
doors hiding either cars or goats. What one is consider-
ing in terms of events is limited to initially picking or not 
picking a car and then picking or not picking a car by 
switching after one or more doors have been opened to 
reveal goats.  
 
3.5. Mathematical Notation of Things and 

Events  
 
To differentiate things and events in mathematical nota-
tion, things are denoted below by lower case italic letters 
and events by upper case italics. For example, c stands 
for “cars” and C  for picking a door hiding a car. In 
addition, subscript letters provide additional distinctive 
information about events. For example, will stand for 
initially picking a door hiding a car.  
 
3.6. The Two (Classes of) Events Involved in the 

Monty Hall Problem, the Second Dependent 
on the First  

 
In the case of the Monty Hall Problem, two events are 
involved. What is more, the two events occur in a fixed 
sequence. The second event always follows the first and 
is dependent upon the first according to the definition of 
dependence in the classic theory of probability.  

The two classes of events are as follows. The first 
contains all the occasions when one initially picks the 
door behind which the car is hiding. The second contains 
all the occasions when one picks the door behind which 
the car is hiding by switching from the door initially 
picked to the sole door that remains closed after a door 
has been opened to reveal a goat. 
 
3.7. The Supplement Classes, or Supplements, of 

the Two Events Involved 
 
Digitally speaking, all classes come with supplement 
classes or supplements. A supplement contains all that a 
class is not. A supplement is a class in its own right. On 
the level of things, the supplement of “cat” is all that is 
not a cat. On the level of events, the supplement of “It 
rains” is all the occasions when it does not rain.  

In the case of the Monty Hall problem, the supplement 
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of initially picking the door hiding the car contains all 
the occasions when one fails to initially pick that door.  
The supplement of picking the door hiding the car by 
switching from the door initially picked to the sole other 
door remaining closed after a door has been opened to 
reveal a goat contains all the occasions when one fails to 
pick the door hiding the car by switching doors.  
 
3.8. The Two Classes and Their Supplements in 

Boole’s Algebra  
 
In Boole’s algebra, picking the door hiding the car may 
be denoted by and failing to pick that door by C

1

iC

. 
Boole uses overstrike as an abbreviation of 1–, as in 

, that is, the universe or any events that one could 
possibly think about minus (–) all the occasions when the 
door hiding the car is picked. 

C

Initially (i) picking the door hiding the car may be de-
noted by  and failing to initially pick that door by 

iC . Furthermore, picking the door hiding the car by 

switching (s) doors once a door has been opened to re-
veal a goat may be denoted by sC and failing to pick that 

door by switching doors by sC

iC

.  

Since initially picking a car ( ) is the same as ini-

tially not picking a goat ( iG ), and so on, the following 

Equations apply. 

i iC G  i iC G  s sC G  s sC G

C C

 

 
3.9. The Four Digital Combination (Classes of) 

Events  
 
In digital fashion, two classes of events along with their 
supplements generate four combination classes corre-
sponding to all the four possible combinations of the 
occurrences and non-occurrences of the two events. The 
four combination events are as follows:  

(1) (On-On) initially pick the car and then again pick 
the car by switching doors;  

(2) (On-Off) initially pick the car but then fail to pick 
the car by switching doors;  

(3) (Off-On) initially fail to pick the car but then suc-
ceed in picking the car by switching doors; and 

(4) (Off-Off) initially fail to pick the car and then 
again fail to pick the car by switching doors.  

Digital combination class (1) is denoted in Boole’s 
notation by i s or as i sC C ; i s  is yet another 
notation. Boole’s “×”—now better known as the Boolean 
AND-operator even if Boole himself did not refer to it in 
this—manner denotes a combined event in which two 

component events are valid at the same time. The other 
three combination events may be denoted by

C C

siC C , i sC C , 
and siC C

C

. 
 
3.10. The Probabilities of the Digital  

Combination Events 
 
In Boole’s algebra, four symbols such as i , i , C sC , 
and sC

C C

 not only denote classes of events but also the 
probability that the events in question will take place. 
Accordingly, the probabilities of the four digital combi-
nation events (1), (2), (3), and (4) listed in §3.9 consist 
for each combination event of the product of the prob-
ability that the first of the two combined events will take 
place multiplied by the probability that the second event 
will. The four probabilities may therefore be denoted by 

i s , siC C , i sC C , and si  respectively. 
The symbol “×” is then to be understood quantitatively 
and not as an equivalent of what is now known as the 
Boolean AND-operator. 

C C

C

3.11. 100% as the Sum of the Probabilities of All 
Combination Events  

The two classes “cat” and “anything black” along with 
their supplements subdivide all that is thinkable in terms 
of things, as denoted by Equation (1) in §2.6. Likewise, 
the two classes i  and sC , along with their supple-
ments subdivide all that is thinkable in terms of events, 
as denoted by Equation (2).  

1 i s i s i sC C C C C C       i sC C

C

      (2)  

In other words, the totality of all possible scenarios 
consists entirely of four combination events: either i  
and sC C both happen, or i  does and sC  does not, or 

i  does not but C sC  does, or neither i  nor C sC

iC
 do. 

Put differently, either  and sC  co-occur, or iC  and 
Cs  do, or i   and C sC  do, or  and iC sC  do. There 
are no other possibilities.  

Accordingly, the probabilities of the four combination 
events add up to 1 or 100%. It is one hundred percent 
certain that one of the four combination events will take 
place.  
 
3.12. The Two Empty Digital Combination 

Classes of Events  
 
Closer reflection reveals that two of the four combination 
events involved in the Monty Hall problem never occur, 
namely i sC C and siC C . The corresponding classes 
of events are therefore empty. Digitally speaking, these 
two combination events are switched off, as it were.  
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C C
 

As regards i s , one cannot initially pick the car 
and then again pick the car by switching doors because 
there is only 1 car. As regards si , one cannot ini-
tially fail to pick the car—in other words, pick a goat— 
and then again fail to pick the car—that is, again pick a 

C C

goat—by switching doors. The reason is that, when one 
has initially picked a goat, the door hiding the only other 
goat is opened and one cannot switch to that door be-
cause it is now open. Accordingly, the only door to 
which one can switch hides the car and one cannot fail to 
pick the car by switching doors.  

The probability of these two combination events is 
therefore equal to zero (0). Equation (2) in §3.11, which 
denotes the sum of the probabilities of the four digital 
combination events, can therefore be reduced to a sum of 
two combination events, as follows. 

isi sC C C C 1                (3) 

 
3.13. The Digital Combination Event Including 

the Desired Outcome of Getting the Car 
(C), namely i sC C

C

 
 
The desired outcome of the Monty Hall problem as a 
challenge is getting the car ( ). Of the two digital com-
bination classes of events that are not empty in Equation 
(2) in §3.12, namely i s  and C C i sC C , only i sC C  
includes the desired outcome C. Importantly, this com-
bination event involves switching doors, as denoted by 
subscript s, after initially failing to pick the car ( i ). In 
the other combination event, one had initially picked the 
car , but then loses it by switching doors.  

C

Ci

If the probability of the combination event with the 
desired outcome is lower than 0.5 or 50%, one should 
not switch doors to increase one’s chances of getting the 
car. If the probability is higher than 0.5 or 50%, switch-
ing doors makes getting the car more probable. If the 
probability is exactly 0.5 or 50%, it does not make a dif-
ference whether one switches doors or not; one does not 
increase or decrease one’s chances of getting the car. 
What is the probability of the combination event that 
includes the desired outcome?  

Two of the four digital combination classes of events 
are empty (§3.12). Accordingly, the sum of the prob-
abilities of the two other combination events is 1 or 
100%. Either one or the other of the two other combina-
tion events must be the case.  

If the probability of one of the two combination events 
is x%, then the probability of the other is (1

3.14. The Probability of the Digital Combination 
Event Including the Desired Outcome, 
namely 

x )% be-
cause there are only two. The probability of one combi-
nation event can be derived from the probability of the 
other by subtracting the probability of the other from 1 or 
100%.  

i sC C  
 
The desired outcome is achieved by switching doors as 
part of the digital combination event i s . In order to 
compute the probability of this combination event, it is 
first necessary to establish the probabilities of its two 
components, the two events 

C C

iC   and sC .  
The probability of iC , that is, failing to initially pick 

the car, is evidently 2 3  or about 66.7%. There are 3 
doors and 2 of them hide a goat.  

CIn establishing the probability of s , it needs to be 
taken into account that sC  is a dependent event ac-
cording to the definition of dependence in classical 
probability theory. Accordingly, the question to ask is: 
What is the probability that one will pick the car by 
switching ( sC ) after having initially failed to pick it ( iC )? 
That probability is 1 or 100%. Indeed, if one first picked 
a goat and the other door hiding a goat is opened, 
switching to the only other unopened door must always 
result in picking the car. 

The probability of the desired combination event i  
× 

C

sC , which results in picking the car by switching 
doors ( sC ), is therefore 2 3 1 2 3  . Not only does this 
combination event produce the desired outcome but its 
probability is also higher than 0.5 or 50%. There can be no 
doubt: One has to switch doors to improve one’s chances 
of getting the car. 
 
3.15. The Probability of the Combination Event 

That Fails to Achieve the Desired Outcome, 
namely siC C  

 
Failing to get the car is the outcome of the digital com-
bination event iC sC . After initially picking the car 
( i ), one loses it by switching doors (C Cs ). The prob-
ability of this digital combination event can be derived 
directly from the probability of the other digital combi-
nation event i sC C (§3.14). That is because only two 
of four possible digital combination events actually oc-
cur in the Monty Hall problem. Their combined prob-
ability must therefore be 1 or 100%. Either one or the 
other must take place. Since the probability of i sC C  
is 2 3  (§3.14), the probability of siC  must be C
1 2 3  or  1 3 . But for completeness’ sake, it may be 
desirable to establish the probability of siC C  in its 
own right.  

The probability of initially picking the car ( i ) is C 1 3  
or about 33.3%. There is 1 car and there are 3 doors. But 
once the car is chosen, the probability of failing to pick 
the car by switching doors ( Cs ) is 1 or 100% because 
one has already picked the sole car and cannot pick it 
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again. Consequently, the probability of siC C  is 1 3 1  
or 1 3



.  
 
4. Extension and Generalization of the 

Monty Hall Problem to Any Number of 
Doors (d), Cars (c), and Opened Doors (o)  

 
4.1. The Probability of Getting a Car by  

Switching Doors (Cs): 


 
c d -

- - o

1

1
 

d d

 
The general question that stands at the center of the lar-
ger problem of which the Monty Hall problem represents 
just one specific case is as follows: Should one switch 
doors in order to improve one’s chances of getting cars 
after doors have been opened to reveal goats? To answer 
the question, one needs to know the respective probabili-
ties of picking a door hiding a car by switching doors 
( sC ) and picking a door hiding a car by not switching. 
The probability of picking a door hiding a car by not 
switching is the same as the probability of initially pick-
ing a door hiding a car ( iC ). If one does nothing else, the 
probability does not change. If the probability of getting 
a car by switching is greater than the probability of get-
ting a car by not switching, then one should switch doors 
to improve one’s chances of getting a car. A comparison 
between the probabilities of sC and  imposes itself. i

Of the two probabilities in question, that of picking a 
door hiding a car by not switching is readily known. As 
was said, it is the same as the probability of initially 
picking a door hiding a car ( iC ). This probability is the 
ratio of cars to doors and can be denoted by 

C

c d . It is 
the ratio of favorable outcomes to the sum of favorable 
and unfavorable outcomes, in accordance with a funda-
mental axiom of classical probability theory. For exam-
ple, if there is 1 car and there are 3 doors, the chance of 
initially picking a door hiding a car is 1 3  and 1 3  
remains the chance of getting the car if one does nothing 
else, such as switching to another door. If there are 2 cars 
and 5 doors, the chance of getting a car by sticking with 
the door that was initially picked is 2 5 . And so on. 

As regards the other probability, that of getting a car 
by switching doors ( sC ), Equation (4) applies. 

 
 

1

1

c d

d d o


sC 

 
             (4) 

c = the number of cars (= g , the number of non-goats) 
d = the number of doors (= , the sum of cars and 

goats) 
c g

1p 
1p 

d c g  c d g 

o = the number of opened doors 
How Equation (4) is obtained is explained below in 

§§4.4-6. In Equation (4), 1 is the number of picked doors 
(p). The picked doors are not denoted algebraically by, 
say, p because Equation (4) is only valid when there is 
only 1 picked door, that is, when . Cases in which 
there is more than 1 picked door, that is, in which , 
are discussed in part 5 below. 

Equation (4) does not feature goats (g). However, of 
the three variables d, c, and g, each can be derived from 
the two others because , , and 
g d c

 

. 
When the number of the cars is 1, Equation (4) can be 

simplified as follows.  

 s

cg g
C

d g o d g o
 

 
        (5) 

After all, (4) is equivalent to the following Equation. 

 
 

1

1s

c c g
C

d c g o

 
              (6) 

  

1cIf  , then the following Equation can be substi-
tuted for (6). 

 
 
1 1 1

1 1s

g
C

d g o

 


  
            (7) 

And Equation (7) can be rewritten as Equation (5). As 
will be seen below, the deeper reason for this simplifica-
tion is as follows. When there is more than 1 car, getting 
a car by switching doors can be the result of both initially 
picking a door hiding a car and initially picking a door 
hiding a goat. There are two scenarios. When there is 
only 1 car, getting the car by switching doors can only be 
the result of initially picking a door hiding a goat. There 
is only one scenario. One cannot initially pick the only 
car and then pick it again when switching doors. 
 

   d - d - - o1 14.2.  as the Factor by Which 

the Probability of Getting a Car by Not  
Switching Doors Increases by Switching 
Doors After Doors Have Been Opened to 
Reveal Goats 

 
Equation (4) can also be rewritten as follows. 

1

1s

c d
C

d d o


 

 
              (8) 

The first member of the right-hand term in Equation 
(8), c d , is the probability of getting a car by not 
switching. As was noted earlier, this probability is the 
same as the probability of initially picking a door hiding 
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Ca car ( i ). The probability iC  cannot change if one 
does nothing else. Equation (8) can therefore also be 
written as follows. 

1

1s i

d
C C

d o


 

 

 

             (9) 

The second member of the right-hand term in Equa-
tion (9),  1d d 1 o  , is the factor by which the 
probability of getting a car by not switching doors is 
changed by actually switching.  

When there is only 1 car, then Equation (8) can be 
written in light of Equation (5) in §4.1 as follows.  

s

c g

d g o
 





C              (10) 

The factor by which the probability of getting a car by 
not switching doors is changed by actually switching is 
then g g o

0o
. 

If no doors are opened to reveal goats, then   
and the factor in question is    1d  1d   (or g g

1

 
when there is only 1 car), that is, 1. In this specific case, 
Equation (9) is equivalent to the following Equation.  

s i iC C C  

0
o 

  

            (11) 

The probability does not change by switching doors 
and one hence does not increase one’s chances of getting 
the car by switching.  

If one or more doors are opened, then o  and 
 is smaller than . It follows that 1d 1d 

1d d 1 o  is larger than 1 when any doors are 
opened. In this case, Equation (9) is equivalent to the 
following Equation. 

s iC C                  (12) 

In sum, one will always improve one’s chances of get-
ting a car if one switches doors after doors have been 
opened to reveal goats. The increase in the probability of 
getting the car will vary. For example, it will be small if 
there are many, many doors and only a couple of doors 
hiding goats are opened. But there will always be an in-
crease.  

What is more, any increase in the number of opened 
doors (o) produces an increase in the probability of get-
ting the car by switching doors ( sC
  

). As o in 
1d d  1d o 1 o  increases,  decreases. Ac-

cordingly, the fraction as a whole increases and so does 

sC . 
Any increase in the number of doors hiding cars (c) 

increases the chances of getting a car in general and any 
increase in the number of doors hiding goats (g) de-
creases those chances in general. But any changes in the 

number of cars or doors do not affect the probability of 
getting a car by switching doors. Only the number of 
opened doors (o) does. 
 
4.3. Examples  
 
4.3.1. Opening Doors to Reveal Goats Always  

Increases the Probability of Getting a Car by 
Switching Doors  

Equation (4) in §4.1 defines the probability that one will 
get a car by switching doors and makes it possible to 
compare this probability with the probability of getting a 
car by not switching. It is a fact that the probability of 
getting a car will always remain the same when no doors 
are opened to reveal goats and will always increase when 
one or more doors are opened. There is therefore never 
any point in switching doors to get a car when no doors 
are opened to reveal goats and always reason to switch 
when doors are opened.  

The factor by which the probability in question in-
creases by switching doors when doors are opened is 
   1 1d d o     in general and g g o  in the 
special case in which there is only 1 car (§4.2). 
 
4.3.2. The Special Status of the Monty Hall Problem 
The Monty Hall problem is just one instance of a much 
more general problem. The Monty Hall problem is spe-
cial in that it presents what may be called the minimal 
scenario of the general problem. It exhibits the lowest 
numbers of doors, cars, and opened doors. The number 
of cars cannot be lowered because there is only one. The 
number of doors cannot be lowered from 3 to 2—and the 
number of goats therefore from 2 to 1—because it then 
becomes impossible to always open a door revealing a 
goat. By using Equation (4), it can be determined that the 
chances of getting the car by switching are as follows. 

 
 

 
 

1 1 3 1 2

1 3 3 1 1 3

c d

d d o

 
 

   
 

Moreover, the probability of getting the car is in-

creased through switching by a factor of 
1

1

d

d o


 

, in 

this case of 
 
 
1 3 1

2
3 3 1 1




 

 

. 

Because there is only 1 car, it is possible to use Equa-
tion (5) in §4.1. The probability of getting the car by 
switching doors is then determined as follows. 

 
2 2

3 2 1 3

g

d g o
 

 
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In any variations on the Monty Hall problem, the 
numbers of doors hiding cars and goats and opened doors 
can only be increased. Increasing the doors hiding cars 
increases the probability of initially picking a car and 
therefore also of getting a car by not switching. Increas-
ing doors hiding goats decreases that same probability. 
But neither will increase the probability of getting a car 
by switching as opposed to not switching. That probabil-
ity is increased only by increasing the number of opened 
doors. 
 
4.3.3. Changing the Number of Doors (d) and Doors 

Opened to Reveal Goats (o)  
The most characteristic effect of the Monty Hall problem 
and its variations is the way in which opening doors to 
reveal goats increases the probability of getting a car by 
switching doors. What is more, the increase of the prob-
ability of getting a car by switching doors grows as ever 
more and more doors are opened to reveal goats. But this 
increase can only grow on condition that there are more 
doors hiding goats in the first place.  

For example, the number of doors hiding goats could 
be increased to 9 and the total number of doors therefore 
to 10. If only 1 door is opened to reveal a goat, the prob-
ability of getting the car by switching doors ( sC ) is, in 
light of Equation (4) in §4.1, as follows, given 1 car ( c ), 
10 doors ( ), and 1 opened door ( ).  d o

 
 

 
 

1 1

1 1

c d

d d o 
10 1 9

0 10 1 1 80

 
 

 
 or 11.25% 

Because there is only 1 car, it is possible to use Equa-
tion (5) in §4.1. The probability of getting the car by 
switching doors is then determined as follows. 

   
9 9

9 1 80
 

 10

g

d g o
 

The probability of getting the car by not switching is 
1 10  or 10%. The increase in the probability of getting 
the car by switching is only 1.25%. The difference be-
tween switching and not switching would only become 
noticeable as the process of picking a door by switching 
doors is repeated over and over again. But as the opened 
doors (o) increase in number, so does the probability of 
getting the car by switching doors. If there are 2 doors, 
the probability is as follows. 

   
9 9

9 2 70
 

 10

g

d g o
 or about 12.6% 

As 6 more doors hiding goats are opened one by one 
until only 1 unopened door hiding either a car or a goat 

remains, the probability of getting the car by switching 
doors gradually increases as follows: from 9 60  (15%) 
to 9 50  (18%) to 9 40  (22.5%) to 9 30  (30%) to 
9 20  (45%) and finally to 9 10

 

 (90%). When only 1 
door is left unopened besides the initially picked door, 
the chances of getting the car are 9 times greater when 
switching doors than when not switching doors and one 
has a 90% chance if one switches. What is more, the 
probability of getting the car by switching doors no less 
than doubles when, of 2 doors remaining unopened be-
sides the picked door, 1 is opened and only 1 door is left 
to which one can switch.  

If there are 1000 doors of which 1 hides a car and 999 
hide a goat and 998 doors are opened to reveal goats, the 
chance of getting the car by switching to the 1 door re-
maining unopened is as follows.  

 
999 999

1000 999 998 1000

g

d g o
 

 
 

One has a 99.9% chance of getting the car by switching 
doors.  
 
4.3.4. Changing the Number of Cars (c) 
The examples provided have so far illustrated changing 
the number of doors hiding goats (g) and changing the 
number of opened doors (o). The main aim of the exam-
ples was to illustrate the effect of opening doors in terms 
of probability. Towards that end, the number of doors 
being opened to reveal goats had to be increased. But this 
number cannot be increased without increasing the 
number of doors hiding goats. That still leaves changing 
the number of cars to be illustrated.  

As was noted above (§4.1 end), when there is 1 car, 
there is one scenario, and when there is more than 1 car, 
there are two scenarios. As will be seen below, when 
there are two scenarios, the probability of getting a car 
by switching doors consists of a sum of two terms. When 
there is only one scenario, there is only one term. 

Let us assume that c = 6, g = 4, d = 10. The probability 
of initially picking a door hiding car and therefore also of 
getting a car by not switching doors is 6 10  or 60%. 
The probability of getting a car by switching doors in-
creases as follows when first 1, then 2, and finally 3 
doors are opened to reveal a goat. 

 
 

opening 1 door: 
6 10 1 54

10 10 1 1 80




 
 or 67.5% 

 
 

opening 2 doors: 
6 10 1 54

10 10 1 2 70




 
 or about 71.1% 

 
 

opening 3 doors: 
6 10 1 54

10 10 1 3 60




 
 or 90% 
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i

4.4. Probability Theory as a Mathematical  
Discipline That Combines the Digital or 
Non-quantitative with the Quantitative 

 
The design of §§4.4-7 is to clarify how Equation (4) 
(§4.1) has been obtained. This Equation makes it possi-
ble not only to determine the probability of getting a car 
by switching doors under the precise conditions stipu-
lated in the Monty Hall problem (see above) but also to 
extend and generalize the Monty Hall problem to any 
number of doors, cars, and doors that are opened to re-
veal a goat. However, getting a car is only one possible 
outcome. The other outcome is not getting the car. Equa-
tion (4) is therefore only one component of a larger 
mathematical problem. To ensure an adequate analysis 
and a true appreciation of the Monty Hall problem itself, 
it will be necessary to map the mathematical structure of 
the larger problem. The larger problem concerns all pos-
sible outcomes. The total probability of all outcomes is 1 
or 100%. One or the other outcome of all possible out-
comes must always be the case. 

But first, to ensure an even deeper appreciation of the 
Monty Hall problem on an even more general level, it 
will be useful to highlight a most peculiar general prop-
erty of the type of mathematics needed to analyze the 
problem and its extensions, namely probability theory. In 
that regard, no one more than Boole has taken pains to 
emphasize—and in fact hardly anyone has in addition to 
him—that probability theory is a mathematical discipline 
straddling the digital or non-quantitative and the quanti-
tative. 

The mathematical anatomy of the larger problem of 
which the Monty Hall is a specific case hence has two 
components, a digital or non-quantitative component and 
a quantitative component. The relation between the digi-
tal component and the quantitative component is such 
that the digital component provides a skeleton that is 
fleshed out by the quantitative component. 
 
4.5. The Digital or Non-quantitative  

Component in the Mathematical Mapping 
of the Monty Hall Problem and Its  
Extensions 

 
The larger problem of which the Monty Hall problem 
presents just one specific case revolves entirely around 
the four possible combination events in which either a 
first event or its supplement or negation can be followed 
by either a second event or its supplement or negation. In 
the specific case of the Monty Hall problem, the prob-
ability of two of the four possible combination events is 
zero. 

Two classes, whether of things or of events, and their 
supplements produce exactly four combination classes 
(§2.6). Three events and their supplements would pro-
duce exactly eight combination classes, and so on. This 
structure is digital or non-quantitative. One might rightly 
object that at least the number of the combination classes 
is quantitative. Strictly speaking, therefore, it is only the 
exploitation of the contrast between a class and its sup-
plement and the combination of classes and their sup-
plements into combination classes that is digital. 

Certain combinations of two classes and their supple-
ments are invalid. Combining a class with itself produces 
just that class (§2.1) and is therefore not a valid combi-
nation. Combining a class with its supplement is not pos-
sible because, according to the fundamental axiom of 
thought, something cannot at the same time be and not be 
something (§2.8). 

In the case of the Monty Hall problem and any exten-
sions thereof, the first event is initially ( ) picking a door 
hiding a car ( C ), denoted here by iC . The first event 
can also be defined as failing to pick a door hiding a goat 
or a non-car. The supplement or negation of the first 
event is initially ( ) failing to pick a door hiding a car 
( C ), denoted here by iC . The supplement may also be 
described as picking a door hiding a non-car. The second 
event is picking a door hiding a car ( ) by switching (s) 
doors and is denoted here by 

C

sC . The supplement or 
negation of the second event is failing to pick a door 
hiding a car ( C ) by switching (s) doors and is denoted 
here by sC

i sC C

. In sum, there are exactly four digital com-
bination classes (of events), the following. 

  (1) 

(2) i sC C  

(3) i sC C  

(4) i sC C  

The total probability of the occurrence of these four 
digital combination events is 1 or 100%. That means that 
one of these four combination events must always be the 
case. The four digital combination classes are also mutu-
ally exclusive. Combining them would result in combi-
nations of a class and its supplement. As has already 
been noted, according to the fundamental axiom of 
thought, such combinations are impossible. Something 
cannot at the same time be and not be something. 

Of the four digital combination classes, two have the 
desired outcome of picking a car by switching doors (Cs), 
namely (1) and (3). It is on these two combination classes 
that the study of the Monty Hall problem and any exten-
sions thereof focuses (see §4.7 below). But the problem 
can only be mathematically appreciated to its full extent 
by considering all possible outcomes, whose combined 
probability is 1 or 100%. 
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4.6. The Quantitative Component in the 
Mathematical Mapping of the Monty Hall 
Problem and Its Extensions 

 
4.6.1. Preamble: Boole’s “×” as an Expression of How 

the Digital and the Quantitative Complement 
One Another as Two Facets of a Single  
Phenomenon 

At the center of the mathematical structure of the larger 
problem of which the Monty Hall problem presents just 
one specific case stand four mutually exclusive digital 
combination classes of events. In Boole’s algebra, they 
are denoted by 

i sCC , i sCC , iC Cs , and i sC C

C C

. 

As a notation of digital combination classes, the sym-
bol “×” represents the Boolean AND-operator, which is 
used for example when one searches for all that is both 
Paris and hotels on the Internet. 

However, in Boole’s algebra, the notations 
i s , 

i s
, C C i sC C , and 

i s  can also stand for the 
numerical probabilities of the occurrence of the four 
combination classes. The symbol “×” then functions as 
the multiplication sign of quantitative mathematics. 
Boole’s notation system therefore most felicitously repre- 
sents probability as a single phenomenon that exhibits 
digital or non-quantitative properties and quantitative 
properties inextricably linked to one another. 

C C

The quantitative probability of a combination class of 
events involving two events is obtained by first calculat-
ing the probability of the first event, then calculating the 
probability of the second event, and finally multiplying 
the two probabilities with one another. 

In calculating the probability of the second event, it 
needs to be taken in account that the second event may 
be dependent on the first event according to the defini-
tion of dependence in classical probability theory. The 
dependence is such that the occurrence of the first event 
creates a new situation that influences the calculation of 
the probability of the second event. In other words, the 
second event takes place in a environment different from 
the one in which the first event takes place. And it is the 
first event that changed the environment. 
 

4.6.2. The Probability of Digital Combination Event 
1

1

c c

o
 


C C

C

d d
 ： i sC C   

To establish the probability of 
i s

, the probability of 
the first event 

i
 initially (i) picking a door hiding a car 

(C), needs to be determined first. This probability is the 
ratio of all the cars to all the doors, which can be denoted 
by c d . If there is 1 car and there are 3 doors, the 
chance of picking the door hiding the car is 1 in 3. 

Next is establishing the probability of the second event 

sC

1c 

1d

, picking a door hiding a car (C) by switching doors 
(s). This probability is also a ratio of cars to doors. Since 
a car has already been picked in the first event, the num-
ber of cars needs to be reduced by 1 to . And since 
one cannot pick again the door picked in the first event 
because one needs to switch, the number of doors needs 
to be reduced by 1 to  . As was already noted above, 
the number of picked doors, 1, is not denoted algebrai-
cally by, say, p because the formula being developed here 
is only valid when 1 door is picked, that is, when 1p  . 
Furthermore, since one cannot pick any doors being 
opened to reveal a goat,  needs to be reduced fur-
ther by the number of opened doors (o) to . The 

1d 
1d o 

probability of sC  will therefore be 
1

1

c

d o


 

i sC C

 as a ratio 

of cars to doors.  
The combined probability of  will be 

1

1

c c

d d o




 
. In the case of the Monty Hall problem, the 

probability in question is as follows. 

1 1 1 1 0 1
0 0

3 3 1 1 3 1 3


      

 

This probability is zero. It is not possible to pick the 
door hiding the car by switching doors if one has already 
initially picked the car because there is only 1 car. 
 
4.6.3. The Probability of Digital Combination Event 


i sC C  : 

 1

c g o

d d o
  

As regards the probability of i s , the probability of 
the first event C  has already been determined to be 

C C
i

c d (§4.6.2).  
Next is establishing the probability of the second event 

sC , picking a door hiding a goat or non-car ( C ) by 
switching doors (s). This probability is a ratio of goats to 
doors. Since no goat has been picked in the first event, 
the number of goats does not need to be reduced in this 
respect. However, since one cannot pick any doors being 
opened to reveal a goat, the goats in those doors cannot 
be picked either and the number of the goats (g) needs to 
be reduced by the number of opened doors (o) to g o . 
Furthermore, again because one cannot pick any doors 
being opened to reveal a goat, the number of doors 
available for being picked ( ) needs to be reduced as 
well by the number of opened doors (o), namely to 

1d 

1d o  . The probability of sC  will therefore be 
g

1

o

d o 


 as a ratio of goats to doors.  

The combined probability of i sC C  will be 
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1

c g o

d d o




 
. In the case of the Monty Hall problem, the 

probability in question is as follows. 

1 2 1

3 3 1 1 3


 

 
1 1 1 1

1
1 3 3

     

In one third of all possible cases, one will initially pick 
a door hiding a car and then pick a door hiding a goat by 
switching doors.  

4.6.4. The Probability of Digital Combination Event 

 1

g c

d d o
  ： i sC C  

To establish the probability of i s , the probability of 
the first event 

C C

iC , initially (i) picking a door hiding a 
goat or non-car ( C ), needs to be determined first. This 
probability is a ratio of all the goats to all the doors, 
which can be denoted by g d . If there are 2 goats and 
there are 3 doors, the chance of picking a door hiding a 
goat is 2 in 3. 

Next is establishing the probability of the second event 

sC

1d 
1d 

1d o 

, picking a door hiding a car (c) by switching doors 
(s). This probability is a ratio of cars to doors. Since no 
car has been picked in the first event, the number of cars 
(c) does not need to be reduced. But since one cannot 
pick again the door picked in the first event because one 
needs to switch, the number of doors needs to be reduced 
by 1 to . Furthermore, since one cannot pick any 
doors being opened to reveal a goat,  needs to be 
reduced further by the number of opened doors (o) to 

. The probability of sC  will therefore be 

1

c

d o 
 as a ratio of cars to doors.  

The combined probability of i sC C  will be 

1

g c

d d o


 
. In the case of the Monty Hall problem, the 

probability in question is as follows.  

2 1

3 3 1 1 3
 

 
2 1 2 2

1
1 3 3

     

In two thirds of all possible cases, one will initially 
pick a door hiding a goat and then pick a door hiding the 
car by switching doors.  

 
4.6.5. The Probability of Digital Combination Event 

 
 

1

1

g g o

d d o
  ： i sC C  

As regards the probability of i s , the probability of 
the first event 

Next is establishing the probability of the second event 

sC , picking a door hiding a goat or non-car ( C ) by 
switching doors (s). This probability is a ratio of goats to 
doors. Since a goat has been picked in the first event, the 
number of goats needs to be reduced by 1 to g 1 . Fur-
thermore, since one cannot pick any doors opened to 
reveal a goat, the goats in those doors cannot be picked 
either and the number of the goats needs to be reduced 
further by the number of opened doors (o) to g o1 

1d 

1d o

. 
Furthermore, also because one cannot pick any doors 
being opened to reveal a goat, the number of doors 
available for being picked ( ) needs to be reduced as 
well by the number of opened doors (o), namely to 

C C

iC  has already been determined to be 
g d (§4.6.4).  

  . The probability of sC  will be 
g 1

1

o

d o

 
 

 as a 

ratio of goats to doors. 
The combined probability of i sC C  will be 

g 1

1

g o

d d o

 


 
. In the case of the Monty Hall problem, the 

probability in question is as follows.  

2 2 1 1 2 0 2
0 0

3 3 1 1 3 1 3

 
     

 
 

This probability is zero. There are 2 goats. It is not 
possible to pick a door hiding a goat by switching doors 
if one has already initially picked a goat because the 
other door hiding a goat is opened and the second goat is 
no longer available for picking.  

 
4.6.6. The Combined Probability of All Digital  

Combination Events: 1 or 100% 
In a digital perspective, two classes and their supple-
ments partition the universe or all that one could possibly 
think about into four combination classes (§2.6). The 
universe that is being considered in any partition often 
exhibits unspoken or explicit limits and is therefore not 
quite all that one could think about (§2.7). In a quantita-
tive perspective, the numerical probabilities of all four 
combination events must add up to 1 or 100%. One or 
the other of the four combination classes must be the 
case and the four combination classes may take place 
with different degrees of probability. Accordingly, the 
following Equation applies. The notation is Boole’s.  

1

1 1 1
1

1
1

c c c g o g c

d d o d d o d d o
g g o

d d o

 
    

     
 

  
 

   (13) 

Because probability exhibits simultaneously a digital 
or non-quantitative facet and a quantitative facet, this 
Equation can be read in two different ways (§4.6.1). If 
“×” is interpreted as the Boolean AND-operator, the 
reading is digital and the four terms are combination 
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classes of events, each characterized by the joint occur-
rence (×) of two events. If “×” is interpreted as the mul-
tiplication sign of quantitative mathematics, the four 
products (×) represent the numerical probabilities of the 
occurrence of each of the combination events.  
 
4.7. The Probability of the Two Digital  

Combination Events Producing the Desired 
Outcome, Getting the Car, by Switching 
Doors, namely  and i sC C i sC C  

 
The Monty Hall problem and any extensions thereof re-
volve around a challenge with a desired outcome, namely 
getting a car. The question is whether the desired out-
come can be achieved with greater or lesser probability 
by switching doors. The focus is therefore on determin-
ing the probability of all the cases in which one gets the 
car by switching doors. It appears that only two of the 
four possible combination events discussed above (§4.6) 
have getting a car by switching doors as the outcome, 
namely i s  and C C i s  (§§4.6.2 and 4.6.4). The 
combined probability of these two combination events is 
as follows (§§4.6.2 and 4.6.4). 

C C

1c c

d d o


 

 1 1

g c

d d o


 

1 0c  

       (14) 

If there is only 1 car, then  and therefore 
1

0
1d o




 
c

 and 
1

0
1

c c

d d o


 

 
. The probability of 

getting a car by switching is then as follows.  

1

g c

d d o


 

 
 

 

The two products making up expression (14) have the 
same denominator. Expression (14) can therefore be re-
written as follows.  

1

1

c c gc

d d o

 
 

 
 

 

And, in light of the common factor c, also as follows.  

1

1

c c g

d d o

 
 

 
 

 

And further as follows. 

1

1

c c g

d d o

 
 

c g d 

 
 

 

And since , the following expression is also 

equivalent.  
1

1

c d

d d o


 

This is the probability that switching doors will pay off 

. Extension and Generalization of the 
 of 

 
.1. “Doubling” the Monty Hall Problem  

ery many are the ways in which the Monty Hall prob-

e than one door is 
pi

.2. The Increase in Digital Complexity  

ecause probability is a phenomenon exhibiting both 

e case in which 2 doors are picked initially, 
as

 

by getting a car, as stated in Equation (4) in §4.1.  
 
5

Monty Hall Problem to Any Number
Picked Doors (p)  

5
 
V
lem can be extended. One might for example consider 
cases in which one can pick three or more types of things 
hiding behind doors, cars and goats and other types of 
things. Exploring more of these extensions remains de-
sirable. But what can be done within the confines of the 
present paper is limited. Moreover, a principal aim of the 
present paper is highlighting the digital component of the 
analysis of the problem and its extensions in its relation 
to digitality as a fundamental component of human cog-
nition. A discussion of countless extensions of the Monty 
Hall problem would probably not shed much additional 
light on the fundamental assumption made here as a 
working hypothesis, namely that rational thought and 
language is profoundly digital. In what follows, the 
analysis of extensions will be limited to cases in which 
more than one door can be picked.  

One specific case in which mor
cked involves “doubling” the Monty Hall problem in 

all its characteristics. Accordingly, there would be 2 cars 
instead of 1, 4 goats instead of 2, 6 doors instead of 3, 
and 2 doors would be opened to reveal goats instead of 1. 
Furthermore, the question would now be: If one picks 2 
doors that remained closed and 2 doors are opened to 
reveal goats, should one switch to the 2 remaining un-
opened doors to improve one’s chances of getting 2 cars 
and, if so, by how much would one improve one’s 
chances?  
 
5
 
B
digital or non-quantitative and quantitative properties 
(§§3.1 and 4.6.1), making the number of picked doors 
into a variable will add complexity to the analysis of the 
extended Monty Hall problem. As regards the digital 
complexity, the original Monty Hall problem and the 
extensions to any number of doors, cars, and opened 
doors discussed above involve only digital combination 
events. The additional extension to any number of picked 
doors involves digital combinations of digital combina-
tion events.  

Consider th
 in the “doubling” of the Monty Hall problem (§5.1). 

In the original Monty Hall problem and its extension to 
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lly picked and 2 
do

ing, 
tw

any number of doors, cars, and opened doors discussed 
above, the initial pick of a door and the pick of a door by 
switching doors are both single events. 

By contrast, when 2 doors are initia
ors are picked after switching, both the initial pick and 

the pick by switching are composite. Both consist them-
selves of combination events. There are 2 initial picks 
that follow one another in sequence and 2 picks by 
switching that also follow one another in sequence.  

In both the 2 initial picks and the 2 picks by switch
o classes of events and their supplements generate four 

digital combination classes (§2.6). As regards the 2 ini-
tial picks, the two classes of events are picking a car ( C ) 
in the first ( f ) initial ( i ) pick ( fiC ) and picking a r 
( C ) in the second (

ca
s ) nitial ( i ick (i ) p siC ). The two 

supplement classes are failing to pick a c (ar C ) in the 
first (f) initial ( i ) pick ( fiC ), or picking a goat nd fail-
ing to pick a car (

, a
C ) in e second ( th s ) initial ( i ) pick 

( siC ), or picking a goat. Accordingly, the four digital 
co bination classes characterizing just the 2 initial picks 
are as follows: 

m

fi siC C , fi siC C , fi siC C , and 

fi siC C .  
gardAs re s the 2 picks by switching doors after doors 

have been opened to reveal goats, the two classes of 
events are picking a car ( C ) in the first ( f ) pick by 
switching ( s ) ( fsC ) and pic ing a car ( C ) in the second 
(

k  
s ) pick by swi ing ( tch s ) ( ssC ). The s plement of the 

first event is failing to pick ar (
up

a c C ) in the first ( f ) 
pick by switching ( s ) ( fsC ), or pick g a goat. The su -
plement of the seco t is failing to pick a car (

in p
ennd ev C ) 

in the second ( s ) pick by switching ( s ) ( ssC ), or pi -
ing a goat. Accordingly, the four di ital mbination 
classes characterizing the 2 picks by switching doors are 
as follows: 

ck
cog

fs ssC C , fs ssC C , fs ssC C , and 

fs ssC C . 
 

.3. The 16 Digital Combinations of the  

 
ach of the four combination events of the initial picks is 

ars    p = doors picked in the initial picks  
e 

5
“Doubled” Monty Hall Problem 

E
combined with each of the four combination classes of 
the picks by switching. The result is 16 combinations of 
combination events. The 16 combinations are listed be-
low along with the numerical probability of their occur-
rence. 

c = c
g = goats  o = doors opened to reveal a goat after th

intial picks 
(1) 

    :

1 2

fi si fs ssC C C C

c c c

d d d p o d

  

        

3
0

1 1

c

p o

 
    

 

(2)  

    :

1 2
0

1 1

fi si fs ssC C C C

c g c c

d d d p o d p o

  

                

 

(3)  

    :

1 2
0

1 1

fi si fs ssC C C C

g c c c

d d d p o d p o

  

                

 

(4) 

    :

1 1

1 1

4 3 2 1 6

6 5 2 1 15

fi si fs ssC C C C

g g c c

d d d p o d p o

  

               
          
   

 

(5) 

    :

1 2
0

1 1

fi si fs ssC C C C

c c c g o

d d d p o d p o

  

                 

 

(6) 

    :

1 1

1 1

2 4 1 1 2

6 5 2 1 15

fi si fs ssC C C C

c g c g o

d d d p o d p o

  

                
          
   

 

(7) 

    :

1 1

1 1

4 2 1 1 2

6 5 2 1 15

fi si fs ssC C C C

g c c g o

d d d p o d p o

  

                
          
   

 

(8) 

    :

1 2
0

1 1

fi si fs ssC C C C

g g c g o

d d d p o d p o

  

                 

 

(9) 

    :

1 2
0

1 1

fi si fs ssC C C C

c c g o c

d d d p o d p o

  

                 
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(10) 
    :

1

2 4 1 1 2

6 5 2 1 15

fi si fs ssC C C C

c g g o

d d d p o

  

         
          
   

1 1

1

c

d p o


    

 

(11) 
    :

4 2 1 1 2

6 5 2 1 15

fi si fs ssC C C C

g c g o

d d d p o

  

         
          
   

1 1

1 1

c

d p o


    

 

(12) 

    :

1 2

1

fi si fs ssC C C C

g g g o

d d d p o d

  

          
0

1

c

p o


   

 

(13) 

    :

1

2 1 2 1 1

6 1 2 1 15

fi si fs ssC C C C

c c g o

d d d p o

  

        
          
   

1 1

1

g o

d p o

  
    

 

(14) 

    :

1

fi si fs ssC C C C

c g g o

d d d p o d

  

         

1 2
0

1

g o

p o

 
   

 

(15) 

    :fi si fs ssC C C C

g c g o

d d d p o d

  

         

1 2
0

1 1

g o

p o

 
   

 

(16) 

    :

1 2

1

fi si fs ssC C C C

g g g o

d d d p o d

  

          

3
0

1

g o

p o

  
   

probability of 10 combinations of combination 
events is zero. In (1), (2), (3), (5), and (9), cars are 
picked in 3 or 4 of the 4 picks, but there are only 2 cars. 
In (8), (12), (14), (15), and (16), goats are picked i 3 or 
4 of the 4 picks, but it is not possible to pick more than 2 
in total. There are two scenarios. First, in (8), (12), and 
(1

rd on the first two, and the fourth on the first 
ree. For example, in (4), a door hiding a goat is initially 

ent. The chance of picking a goat is 

 

The 

n 

6), 2 goats are initially picked. When 2 doors are then 
opened to reveal goats, there are no goats left to pick. 
Yet, 1 goat is picked according to (8), (12), and (16). 

This is not possible. Second, in (14) and (15), 1 goat is 
initially picked. When 2 doors are then opened to reveal 
goats, only 1 goat is available for picking. Yet, 2 goats 
are picked according to (14) and (15). This is also not 
possible.  
 
5.4. Dependence 
 
Each combination in §5.3 consists of a sequence of four 
events, with the second event being dependent on the 
first, the thi
th
picked in the first ev
c d . In the second event, a door hiding a goat is again 
picked. But the number of the goats and the doors has 
been reduced by 1 in the first event. The chance of again 
picking a goat in the second event is therefore 
   1 1c d  . In the third event, a car is picked. But the 
number of doors has been reduced by the 2 doors that are 

ed in the first and second events (p), though not the 
number of cars as no car has been picked yet. In addition, 
the number of doors is reduced by 2 as 2 doors are 
opened to reveal a goat (o). The chance of picking a car 

pick

is therefore    2c d p o   . Finally, in the fourth 
event, a car is again picked. But, the number of cars has 
been reduced by 1. So has again the number of doors. 
The chance of picking a car is therefore 
   3 1c d p o    . When goats are picked by swit- 
ching doors, that is, in the third and fourth component 
events, the n  be reduced not only by 
goats that are picked but also by goats revealed by open-
ing doors (o).  

y of a Successful Outcome by 
Switching Doors in the “Doubled” Monty 
Hall Problem  

Is one more likely or less likely of getting 2 cars by
switching doors 

umber of goats can

5.5. The Probabilit

 
than by not switching doors after 2 doors 

 
goat
abili  2 cars by not switching and by 
switching need to be compared. 

have been opened to reveal goats if there are 2 cars, 4
s, and 6 doors? To answer this question, the prob-
ties of getting the

The probability of getting the 2 cars by not switching is 
the same as the probability of initially getting 2 cars by 
picking 2 doors. The probability of picking 1 of the cars at 
first pick is c d  or 2 6  or 1 3 . If one was successful 
in picking a car at first pick, then not only the number of 
the doors but also the number of the cars is reduced by 1. 
The probability of picking a car again at second pick is 
therefore    1 1c d   or    2 1 6 1   or 1 5 . The 
probability of picking both cars in the first 2 picks, then, 
is therefore 1 3 1 5  or 1 15 r about 6.6%. 

As for the probability of getting the 2 cars by switching 
 o
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ars are picked nly 1 of the 1 ita

ce of th

from the 2 doors initially picked to the 2 only doors that 
remain closed after 2 doors have been opened to reveal 2 
goats, 2 c  in o 6 dig l com-
binations listed in §5.3, namely (4). The probability of 
the occurren is co ation is mbin 6 15  or 2 5  or 
4

s 

g it after switching doors. The 
robability of gettin e car is 

0%. Remarkably, one can only get the 2 cars by swit- 
ching doors if one had originally picked 2 doors hiding 
goats or no cars at all.  
 
5.6. Comparison of the Original and the  

“Doubled” Monty Hall Problem  
 
In the original Monty Hall problem, one is more likely to 
get the car than not gettin

g thp 2 3 . By contrast, in 
et the 2 

cars doors. The 
robability of g  is 

“doubling” the problem, one is less likely to g
than not getting them after switching 

p etting them 6 15 . On the other hand, 
in the original Monty Hall problem, one doubles one’s 
chances to get the car from 1 3  to 2 3  by switching 
doors. By contrast, in “doubling” e problem, one’s 
chances of getting both cars increase sixfold from 

 th
1 15  

to 6 15 .  
 
5.7. Compressing Probability as an Effect of 

Opening Doors to Rev  Goa
 
As always, opening doors to reveal goats has the e  
of press

eal ts 

ffect
com ing or condensing a greater robability to 

wer doors (§3.3). There is a prob f only 
p

ability ofe 1 15  

5.5). 
How
of getting both cars by initially picking 2 doors (§

ever, there is a probability of 6 15  or 40% that the 
 cars are both hiding behind 2 of the other 4 doors that 

rs 1

nd 4

as

minator 
ll 16 digital combination events listed in §5.3 exhibit 

mber of 
pick

2
one has not picked. This number is obtained as follows.  

There are 15 different ways in which the 2 cars can be 
hiding behind the 6 doors: behind doors 1 and 2, doo  
and 3, doors 1 and 4, doors 1 and 5, doors 1 and 6, doors 
2 and 6, doors 2 and 3, doors 2 a , doors 2 and 5, 
doors 2 and 6, doors 3 and 4, doors 3 and 5, doors 3 and 
6, doors 4 and 5, doors 4 and 6, and doors 5 and 6. Let us 

sume that the doors picked initially are 1 and 2. In 6 
out of a total of 15 ways, or 40%, the 2 cars are hiding 
behind the 4 other doors, namely doors 3 to 6. They are 
the last 6 locations in the list just provided. In 9 of 15 
ways, at least 1 car is hiding behind either door 1 or door 
2 or both. 
 
5.8. Denominator and Numerator of the  

Probabilities Involved in the “Doubled” 
Monty Hall Problem 

 
5.8.1. Deno
A

the same denominator. Furthermore, as the nu
s increases, the denominator will morph into 

    1 2 3d d d d   


1

3

d p o d p o

p o  2d p o d

         

   
 

 as fol-
lows.  

    

This progression is obviously factorial, as expressed by 
“!”. For any number of doors (d), opened doors (o), and 
picked doors (p), the numerator will therefore be

 
   

!! d p od  


!d p d p o p     !

The details exceed the scope of the present paper. Suf-
fice it to note that 0!, which is obtained when 

 

  0o pd p    , is not the same as zero or nothing 
but rather signifies the absence of any additional factor.  
 
5.8.2. Numerator  
A

s of what 
is sought. The que

g doors. But what if one took satisfaction with getting 
s one improve one’s chances in that 

s regards the numerator of the 16 combination classes 
listed in §5.3, an evaluation is necessary in term

stion was asked before how much one 
improves one’s chances of getting both doors by switch-
in
just 1 car? How doe
case by switching both doors? One’s initial chances of 
getting at least 1 car by picking 2 doors is the combined 
probability of the three combined events of picking first 
a car and then again a car, of picking first a car and then 
a goat, and of picking first a goat and then a car, or 

1

1 1 1

c c c g g c

d d d d d d


    

  
, in this case 

2 1 2 4 4 2 9

6 5 6 5 6 5 15
      . As regards switching, the 

outcome of five of the 16 combination classes listed 
above includes getting at least 1 car. They are combina-
tion classes (4), (6), (7), (10), r combined 
probability is 

and (11). Thei
14 15 . In sum, one does not double one’s 

chances of getting at leas
the probability of not getting one has been reduced to as 

t 1 car by switching doors. But 

little as 1 15 .  

 
6. Conclusions 
 
Walking in the footsteps of Boole has made it possible, I 
believe, to construct a map of the mathematical structure 
of the M  Honty all problem in its context and of certain 

s thereof, even if the analysis 
rmutations remains desirable. Two 

mponents, one digital-mathematical or non-quantitative 

extensions or generalization
of even higher pe
co
and the other quantitative, complement one another to 
make up this map. But the focus of the present paper is 
not only on this mathematical structure but also on its 
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ng Professor
f Finance at Tshinghua University’s School of Ec

r reading and comme
n the present paper. In explaining the Monty Hall prob-

a lecture entitled “How the Bio-
lo

to, in the 
fr

 

] J. Gill, “Bayesian Methods,” International Encycloped

ndica, Vol. 65, No. 1, 2010, pp. 57-71. 

relation to the presumed digital nature of cognition as 
expressed in rational thought and language. 
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