A Study on the Conversion of a Semigroup to a Semilattice

Bahman Tabatabaie, Seyed Mostafa Zebarjad
Department of Mathematics, Shiraz University, Shiraz, Iran
E-mail: s_zebarjad@yahoo.com
Received January 19, 2011; revised March 15, 2011; accepted March 25, 2011

Abstract

The main aim of the current research has been concentrated to clarify the condition for converting the inverse semigroups such as S to a semilattice. For this purpose a property the so-called E^{*} - unitary has been defined and it has been tried to prove that each inverse semigroups limited with E^{*} - unitary show the specification of a semilattice.

Keywords: Semigroup, Semilattice, E^{*} - unitary

1. Introduction

1.1. Literature Survey

Literature survey done by the authors show that a special class of semigroups possessing is formed by the $E^{*}-$ unitary inverse semigroups, sometimes also called 0 E^{*} - unitary , which was defined by Szendrei [1] and has been intensely studied in the semigroup literature. See, for example, Kellendonk's topological groupoid is Hausdorff when S is E^{*} - unitary [2], and the related class of E-unitary inverse semigroups have also been shown to provide Hausdorff groupoids [3]. In the current research the authors try to prove that each inverse semigroups limited with E^{*} - unitary show the specification of a semilattice. For this purpose, firstly we present elementary concepts as follows.

1.2. Preliminary Definitions and Propositions

A groupoid is a set G together with a subset $G^{2} \subseteq G \times G$, a product map $(a, b) \mapsto a b$.

From G_{-}^{2} to G, and an inverse map $a \mapsto a^{-1}$ (so that $\left.\left(a^{-1}\right)^{-1}=a\right)$ from G onto G such that:

1) if $(a, b),(b, c) \in G^{2}$, then $(a b, c),(a, b c) \in G^{2}$ and $(a b) c=a(b c)$.
2) $\left(b, b^{-1}\right) \in G^{2}$ for all $b \in G$, and if $(a, b) \in G^{2}$ then $a^{-1}(a b)=b$ and $(a b) b^{-1}=a$.

Note that G^{2} is nothing but the set of all pairs (x, y) in $G \times G$ for which $x y$ is defined, and G^{2} is
called the set of composable pairs of the groupoid G [3].
If $x \in G, d(x)=x^{-1} x$ is the domain of x and $r(x)=x x^{-1}$ is its range. The pair (x, y) is composable if and only if the range of y is the domain of x. $G^{0}=d(G)=r(G)$ is the unit space of G, its elements are units in sense that $x \mathrm{~d}(x)=x$ and $r(x)=x \quad$ [4].

By an inverse semigroup we mean a semigroup S such that for each a in S, there exists a unique element a^{*} in S with the following properties:

$$
a a^{*} a=a, \text { and } a^{*} a a^{*}=a^{*}
$$

It is well known that the correspondence $a \mapsto a^{*}$ is an involutive anti-homomorphism, i.e., $(a b)^{*}=b^{*} a^{*}$ for all a and b in S. It is very common to denote it by $E(S)$, the set of all idempotent elements of S, it means that $a^{2}=a$ for all a in $E(S)$. It is clear that $a^{*}=a$ for all a in $E(S)$.

A very important example of an inverse semigroup is given by $S=I(X)$ the set of all partial one-to-one maps on a set X. So each element of $I(X)$ is a bijection form a subset U of X onto another subset V of X. The set $I(X)$ is a semigroup where the multiplication rule is given by composition of partial maps with the largest possible domain.

For example, if $\theta_{1}, \theta_{2} \in I(X)$ with $\theta_{1}: U_{1} \rightarrow V_{1}$ and $\theta_{2}: U_{2} \rightarrow V_{2}$, then

$$
\theta_{1} \theta_{2}: \theta_{2}^{-1}\left(V_{2} \cap U_{1}\right) \rightarrow \theta_{1}\left(V_{2} \cap U_{1}\right)
$$

is given by:

$$
\theta_{1} \theta_{2}(a)=\theta_{1}\left(\theta_{2}(a)\right) .
$$

The element θ_{1}^{*} is taken to be θ_{1}^{-1}. It is easily checked that $I(X)$ is an inverse semigroup [3,5].

We recall that a relation \leq on a set X is called a partial ordering of X if for all $a, b, c \in X$:

1) $a \leq a$
2) $a \leq b$ and $b \leq a$ implies $a=b$
3) $a \leq b$ and $b \leq c$ implies $a \leq c$.

The following example is of great importance to us. Define $e \leq f(e, f \in E(S))$ to mean $e f=f e=e$. It is clear that \leq is a partial ordering of $E(S)$. We shall call \leq the natural partial ordering of $E(S)$.

An element b of a partially ordered set X is called an upper bound of a subset Y of X, if $y \leq b$ for each y in Y. An upper bound b of Y is called a least upper bound or join of Y, if $b \leq c$ for every upper bound c of Y. If Y has a join in X, it is clearly unique. Lower bound and greatest lower bound or meet can be defined similarly.

A partially ordered set X is called a semilattice if every two elements subset $\{a, b\}$ of X has a join and a meet in X; it implies that every finite subset of X has both a join and a meet. The join (or meet) of $\{a, b\}$ will be denoted by $a \wedge b$ (or $a \vee b$)[3].

Definition 1.1 Suppose that S is an inverse semigroup and X can be assumed that as a locally compact Hausdorff topological space.

An action of S on X is a semigroup homomorphism as follows:

$$
\begin{aligned}
\alpha: S & \rightarrow I(X) \\
a & \mapsto \alpha_{a}
\end{aligned}
$$

such that

1) for every $a \in S$ there is a continuous α_{a} with open domain in X.
2) the union of the domains of all the α_{a} coincides with X.

Proposition 1.2 Let S be an inverse semigroup, α an action of S on a set X and $a \in S$, then

$$
\alpha_{a} \alpha_{a^{*}} \alpha_{a}=\alpha_{a} \text { and } \alpha_{a^{*}} \alpha_{a} \alpha_{a^{*}}=\alpha_{a^{*}}
$$

Proof: Since α is an action of S on X then $\alpha: S \rightarrow I(X)$ is a semigroup homomorphism, so for every $a \in S$ we have $\alpha(a) \alpha\left(a^{*}\right) \alpha(a)=\alpha(a)$, then $\alpha_{a} \alpha_{a^{*}} \alpha_{a}=\alpha_{a}$, and simillary $\alpha_{a^{*}} \alpha_{a} \alpha_{a^{*}}=\alpha_{a^{*}}$
With regard to the above text one may ${ }^{a}$ conclude that, $\alpha_{a^{*}}=\alpha_{a}^{-1}$, and if $e \in E(S)$, so α_{e} is the identity map on its domain.

Since the range of each α_{a} coincides with the domain of $\alpha_{a^{*}}=\alpha_{a}^{-1}$, therefore it can be open as well as its domain. Also it can be mentioned that α_{a}^{-1}, is continu-
ous, so α_{a} is necessarily a homeomorphism onto its range.

For every $e \in E(S)$ the domain (and range) of α_{e} can be denoted by E_{e}, it means:

$$
\alpha_{e}: E_{e} \rightarrow E_{e}
$$

It is clear to show that the domains of both α_{a} and $\alpha_{a^{*} a}$ is the same, and implies that the domain of α_{a} is $E_{a^{*} a}^{a}$. Likewise the range of α_{a} is given by $E_{a a^{*}}$. Thus $\alpha_{a}: E_{a^{*} a} \rightarrow E_{a a^{*}}$ is a homeomorphism for every $a \in S$. Briefly if e and f are in $E(S)$ then we have $\alpha_{e} \alpha_{f}=\alpha_{e f}$ and $E_{e} \cap E_{f}=E_{e f}$.
Proposition 1.3 For each $a \in S$ and $e \in E(S)$ we have: $\alpha_{a}\left(E_{e} \cap E_{a a^{*}}\right)=E_{a e a^{*}}$

Proof: Since N. Sieben [6], R. Exel [7] and Lawson [8] proved it, the authors use their result.

Definition 1.4 Let \sum be the subset of $S \times X$ given by:

$$
\Sigma=\left\{(a b) \in S \times X: b \in E_{a^{*} a}\right\}
$$

and for every $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$ in \sum we will say that $\left(a_{1}, b_{1}\right) \sim\left(a_{2}, b_{2}\right)$ if $b_{1}=b_{2}$ and there exists an idempotent e in $E(S)$ such that $b_{1} \in E_{e}$, and $a_{1} e=a_{2} e$.

It is clearly that the relation \sim is an equivalence relation on \sum The equivalence class of (a, b) will be denoted by $[a, b]$.

Let $G=\{[a, b]: a \in S, b \in X\}$ and put

$$
G^{2}=\left\{\left(\left[a_{1}, b_{1}\right],\left[a_{2}, b_{2}\right]\right) \in G \times G: b_{1}=\alpha_{a_{2}}\left(b_{2}\right)\right\}
$$

And for every $\left(\left[a_{1}, b_{1}\right],\left[a_{2}, b_{2}\right]\right) \in G^{2}$ define:

$$
\left\{\begin{array}{l}
{\left[a_{1}, b_{1}\right] \cdot\left[a_{2}, b_{2}\right]=\left[a_{1} a_{2}, b_{2}\right]} \\
{\left[a_{1}, b_{1}\right]^{-1}=\left[a_{1}^{*}, \alpha_{a_{1}}\left(b_{1}\right)\right]}
\end{array}\right.
$$

it is easy to see that G is a groupoid [3] and the unit space $G^{(0)}$ of G naturally identifies with X under the correspondence

$$
[e, b] \in G^{(0)} \mapsto b \in X,
$$

where e is any idempotent such that $e \in E_{S}$. We show G semigroup as $G(\alpha, S, X)$.

We would now like to give G is a topology. Let $a \in S$ and U be an open subset of $E_{a^{*} a}$ we define $\psi(a, U)$ as follows:

$$
\psi(a, U)=\{[a, b] \in G: b \in U\}
$$

The collection of all $\psi(a, U)$ is the basis of a topology on G, and also the multiplication and inversion operations on G are continuous, therefore G is a topological groupoid.

2. Main Results

Recall from [2] that an inverse semigroup S is naturally equipped with a partial order defined by:

$$
a \leq b \leftrightarrow a=b a^{*} a \forall a \in S
$$

Proposition 2.1 Assume that S is an inverse semigroup which is a semilattice. Suppose that α is an action of S on a locally compact Hausdorff space X, such that for each $a \in S$, the domain $E_{a^{*} a}$ of α_{a} is closed. Then $G=G(\alpha, S, X)$ is Hausdorff.

Proof:Suppose $[a, c]$ and $[b, d]$ are two distinct elements of $G(\alpha, S, X)$. The aim is to find two disjoint open subsets T_{1} and T_{2} of $G(\alpha, S, X)$ such that:

$$
[a, c] \in T_{1},[b, d] \in T_{2}, T_{1} \cap T_{2}=\phi
$$

We consider two cases:
Case 1): If $(c \neq d)$:
Since X is Hausdorff space then

$$
\exists F_{1}, F_{2} \subseteq X(\text { open }), c \in F_{1}, d \in F_{2}, F_{1} \cap F_{2}=\phi
$$

Now let $T_{1}=\psi\left(a, F_{1} \cap E_{a^{*} a}\right)$ and $T_{2}=\psi\left(b, F_{2} \cap E_{b^{*} b}\right)$
Since T_{1} and T_{2} are open set and

$$
\begin{aligned}
& T_{1}=\left\{[a, k] \in G: k \in F_{1} \cap E_{a^{*} a}\right\}, \\
& T_{2}=\left\{[b, k] \in G: k \in F_{2} \cap E_{b^{*} b}\right\},
\end{aligned}
$$

It is clearly that:

$$
[a, c] \in T_{1},[b, d] \in T_{2} \text { and } T_{1} \cap T_{2}=\phi
$$

Case 2): If $(c=d)$:
Since S is a semilattice let $h=a \wedge b$ so

$$
\left\{\begin{array}{l}
h \leq a \rightarrow h=a h^{*} h \\
h \leq b \rightarrow h=b h^{*} h
\end{array} \Rightarrow[a, c]=[b, c]\right.
$$

Then referring to what proposed in Definition 1.4. $c \notin E_{h^{*} h}$. But $E_{h^{*} h}$ is closed then $T_{2}=X \backslash E_{h^{*} h}$ can be open and $c \in T_{2}$.

Now we can set T as $T_{2} \cap E_{a^{*} a} \cap E_{b^{*} b}$. But we know that $\psi(a, T)=\{[a, k]: k \in T\}$ and it is clear that $[a, c] \in \psi(a, T),[b, c] \in \psi(b, T)$.
To do so it is enough to prove that $\psi(a, T)$ $\cap \psi(b, T)=\phi$.
Suppose that $[l, k] \in \psi(a, T) \cap \psi(b, T)$ then:

$$
\left\{\begin{array}{c}
{[l, k] \in \psi(a, T) \rightarrow[l, k]=[a, k] \rightarrow(l, k) \sim(a, k)} \\
\rightarrow \exists e \in E(S), k \in E_{e}, a e=l e \\
{[l, k] \in \psi(b, T) \rightarrow[l, k]=[b, k] \rightarrow(l, k) \sim(b, k)} \\
\rightarrow \exists f \in E(S), k \in E_{f}, b f=l f
\end{array}\right.
$$

Since ef $\in E(S)$ and $e f=f e,\left(k \in E_{e} \cap E_{e f}\right)$, it can
be replaced e and f with $e f$ and finally we have:

$$
a e f=l e f, l e f=l f e=b f e=b e f
$$

Therefore we can find an element $e \in E(S)$ such that $\quad k \in E_{e}, a e=l e, l e=b e . \quad$ So $\quad(l e)^{*}(l e)=a e l^{*} l e$ $=l e l^{*} l e=l l^{*} l e e=l e$, then $l e \leq a$, and similary $l e \leq b$, since $h=a \wedge b$ thus $l e \leq h$, then $l e=l e h^{*} h$, hence $l^{*} l e=l^{*} l e h^{*} h \leq h^{*} h$, and finally

$$
k \in E_{l^{*} l} \cap E_{e}=E_{l^{*} \mid l e} \subseteq E_{h^{*} h}
$$

But $k \in T$ that is contradicts.
Definition 2.2 A zero in an inverse semigroup S is an element $0 \in S$ such that:

$$
o a=a 0=0 \forall a \in S
$$

Definition 2.3 An inverse semigroup S with zero is said to be E^{*} - unitary if for every $e, a \in S$ one has that $e^{2} \neq e \leq a \Rightarrow a^{2}=a$.

In other words, if an element dominates a nonzero idempotent then that element itself is an idempotent.

Proposition 2.4 If S is a E^{*}-unitary inverse semigroup and a, b belong to the defined semigroup S such that $a^{*} a=b^{*} b$ and $a e=b e$ for some nonzero idempotent $e \leq a^{*} a$ then $a=b$.

Proof: We define $x=a e a^{*}$. So x is nonzero idempotent because:

$$
e \leq a^{*} a \Rightarrow e=\left(a^{*} a\right)^{*}\left(a^{*} a\right) e=e a^{*} a a^{*} a
$$

Then $e=a^{*} a e a^{*} a$ (because of the ability of idempotent elements for being commute) and we have

$$
b a^{*} x=b a^{*} a e a^{*}=b b^{*} b e a^{*}=b e a^{*}=a e a^{*}=x .
$$

Therefore, we have $x \leq b a^{*}$. Since S is a $E^{*}-$ unitary which implies that $b a^{*}$ is idempotent. Then $b a^{*}=\left(b a^{*}\right)^{*}=a b^{*}$ so $a b^{*}$ is idempotent as well. But, we have

$$
b b^{*}=b b^{*} b b^{*}=b a^{*} a b^{*}=a b^{*} b a^{*}=a a^{*} a a^{*}=a a^{*}
$$

Setting $y=b a^{*} b$, we have that

$$
y^{*} y=b^{*} a b^{*} b a^{*} b=b^{*} a a^{*} a a^{*} b=b^{*} a a^{*} b=b^{*} b b^{*} b=b^{*} b
$$

Also $y^{*} y=a^{*} a$, while

$$
b=b b^{*} b=b y^{*} y \text {, and } a=a a^{*} a=a y^{*} y,
$$

So it is enough to prove that $y^{*}=a y^{*}$. We have

$$
a y^{*}=a b^{*} a b^{*}=a b^{*}=b a^{*}=b b^{*} b a^{*}=b b^{*} a b^{*}=b y^{*}
$$

In what follows we give the main result of this paper.
Theorem 2.5 In condition that S is a E^{*}-unitary inverse semigroup with zero, then can be appeared as a semilattice.
Proof: For proving the above theorem it is necessary to show that $a \wedge b$ exists for every $a, b \in S$. If there is not nonzero $h \in S$ such that $h \leq a, b$, it is obvious that
$a \wedge b=0$ and it can be satisfied for the proof.
For doing this we can assume that there is a nonzero $h \in S$ in which $h \leq a, b$. Our claim is that $a b^{*} b=b a^{*} a$.

Suppose that $k=a^{*} a b^{*} b$ and considering to our assumption ($h^{*} h \leq a^{*} a, b^{*} b$), we have $h^{*} h \leq k$.

Substituting $x=a k$ and $y=b k$,

$$
\left\{\begin{array}{l}
x^{*} x=k a^{*} a k=k^{2}=k \\
y^{*} y=k b^{*} b k=k^{2}=k
\end{array} \Rightarrow x^{*} x=y^{*} y\right.
$$

also

$$
x h^{*} h=a k h^{*} h=a h^{*} h=h=b h^{*} h=b k h^{*} h=y h^{*} h
$$

Using the proposition (2.4) $x=y$ will be achieved and so

$$
\begin{aligned}
& a b^{*} b=a a^{*} a b^{*} b=a k=x=y=b k \\
& =b a^{*} a b^{*} b=b\left(b^{*} b\right) a^{*} a=b a^{*} a
\end{aligned}
$$

and finally

$$
\begin{equation*}
a b^{*} b=b a^{*} a \tag{1}
\end{equation*}
$$

By applying the above argument to a^{*}, b^{*}, h^{*} and knowing that $h^{*} \neq 0$ and $h^{*} \leq a^{*}, b^{*}$ we have

$$
a^{*} b b^{*}=b^{*} a a^{*}
$$

so

$$
\left(a^{*} b b^{*}\right)^{*}=\left(b^{*} a a^{*}\right)^{*}
$$

and therefore Equation (1) can be modified to (2):

$$
\begin{equation*}
b b^{*} a=a a^{*} b \tag{2}
\end{equation*}
$$

We have that $h \leq a, b$ then $h=a h^{*} h$ and $h=b h^{*} h$, then we can show that

$$
b^{*} a h^{*} h=b^{*} b h^{*} h=h^{*} h
$$

Since S is a E^{*} - unitary and $b^{*} a$ is dominated by $h^{*} h$, we have $\left(b^{*} a\right)^{2}=b^{*} a$. By applying the same reasoning to a^{*}, b^{*} and $h^{*},\left(b a^{*}\right)^{2}=b a^{*}$ can be a result.

Thus

$$
\left\{\begin{array}{l}
\left(b^{*} a\right)^{*}=b^{*} a \\
\left(b a^{*}\right)^{*}=b a^{*}
\end{array}\right.
$$

and hence $a b^{*} b=b a^{*} b=b b^{*} a$

$$
\begin{equation*}
a b^{*} b=b b^{*} a \tag{3}
\end{equation*}
$$

By combination of Equations (1) to (3), Equation (4) will be appeared.

$$
\begin{equation*}
a b^{*} b=b a^{*} a=b b^{*} a=a a^{*} b \tag{4}
\end{equation*}
$$

At the end we try to prove that $a b^{*} b$ can satisfy the following condition

$$
h \leq a b^{*} b \leq a, b
$$

for every $h \in S$ such that $h \leq a, b$.
It is clear that $a b^{*} b \leq a, b$ and as defined before $k=a^{*} a b^{*} b$, then we have $h^{*} h \leq k$, and so

$$
h=a h^{*} h=a k h^{*} h=a a^{*} a b^{*} b h^{*} h=a b^{*} b h^{*} h=\left(a b^{*} b\right) h^{*} h
$$

Finally $h \leq a b^{*} b$. It means that $a b^{*} b$ is the join of a and b and this is the proof of theorem.

3. References

[1] M. B. Szendrei, "A Generalization of Mcalister’s PTheorem for E-Unitary Regular Semigroups," Acta Scientiarum Mathematicarum, Vol. 51, 1987, pp. 229-249.
[2] M. V. Lawson, "Inverse Semigroups: The Theory of Partial Symmetries," Word Scientific, Singapore, 1998. doi:10.1142/9789812816689
[3] J. Renault, "A Groupoid Approach to C*-Algebra, Lecture Notes in Mathematics," 1st Edition, Sprin-ger-Verlang, Berlin, Vol. 793, 1980.
[4] J. M. Howie, "Fundamentals of Semigroup Theory," Clarendon Press, Oxford, 1995.
[5] H. Clifford and G. B. Preston, "The Algebric Theory of Semigroups," American Mathematical Society, United States, Vol. 1, 1961.
[6] N. Sieben, "C*-Crossed Products by Partial Actions and Actions of Inverse Semigroups," Journal of the Australian Mathematical Society, Series A, Vol. 63, No. 1, 1997, pp. 32-46.
[7] R. Exel, "Inverse Semigroups and Combinatorial C*Algebras," Bulletin of the Brazilian Mathematical Society, New Series, Vol. 39, No. 2, 2008, pp. 191-313.
[8] M. V. Lawson, "Inverse Semigroups, The Theory of Partial Symmetries," Word Scientific, Singapore, 1998.

