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Abstract

The main aim of the current research has been concentrated to clarify the condition for converting the inverse
semigroups such as S to a semilattice. For this purpose a property the so-called E™ —unitary has been de-
fined and it has been tried to prove that each inverse semigroups limited with E” —unitary show the specifi-

cation of a semilattice.
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1. Introduction
1.1. Literature Survey

Literature survey done by the authors show that a special
class of semigroups possessing is formed by the E" —
unitary inverse semigroups, sometimes also called 0—
E” —unitary , which was defined by Szendrei [1] and has
been intensely studied in the semigroup literature. See,
for example, Kellendonk’s topological groupoid is
Hausdorff when S is E" —unitary [2], and the related
class of E —unitary inverse semigroups have also been
shown to provide Hausdorff groupoids [3]. In the current
research the authors try to prove that each inverse semi-
groups limited with E” —unitary show the specification
of a semilattice. For this purpose, firstly we present ele-
mentary concepts as follows.

1.2. Preliminary Definitions and Propositions

A groupoid is a set G together with a subset G’ GxG,
aproduct map (a,b)r> ab.

From Gj to G, and an inverse map ar>a ' (so
that (a*) =a)from G onto G such that:

1) if (a,b),(b,c)eG? then (ab,c),(a,bc)eG?
and (ab)c=a(hc).

2) (b,b*)eG® for all beG, and if (a,b)eG?
then a™(ab)=b and (ab)b™=a.

Note that G? is nothing but the set of all pairs
(x,y) in GxG for which xy is defined, and G* is
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called the set of composable pairs of the groupoid
G[3].

If xeG,d(x)=x"x is the domain of x and
r(x)=xx" isits range. The pair (x,y) is composable
if and only if the range of y is the domain of x.
G”=d(G)=r(G) is the unit space of G, its elements
are units in sense that xd(x)=x and r(x)=x [4].

By an inverse semigroup we mean a semigroup S
such that for each a in S , there exists a unique ele-
ment a” in S with the following properties:

aa'a=a, and a’'aa’ =a’

It is well known that the correspondence a+> a* is
an involutive anti-homomorphism, i.e., (ab)* =ba’
forall a and b in S. Itis very common to denote it
by E(S), the set of all idempotent elements of S, it
means that a*=a forall a in E(S). Itis clear that
a"=a forall a in E(S).

A very important example of an inverse semigroup is
given by S=1(X) the set of all partial one-to-one
maps on a set X . So each element of 1(X) is a bijec-
tion form a subset U of X onto another subset V
of X.Theset I(X) isa semigroup where the multi-
plication rule is given by composition of partial maps
with the largest possible domain.

For example, if 6,6, € 1(X) with 6,:U, -V, and
6,:U, -V, , then

0,0, : 6, (V, "U,) > 6,(V, NU, )
is given by:

APM



74 B. TABATABAIE ET AL.

The element & istakentobe &*. Itis easily checked
that I(X) is an inverse semigroup [3,5].

We recall that a relation < on a set X is called a
partial ordering of X ifforall a,b,ce X :

l)a<a
2)a<b and b<a implies a=b
3)a<b and b<c implies a<c.

The following example is of great importance to us.
Define e< f (e, f €E(S)) to mean ef = fe=e. It is
clear that < is a partial ordering of E(S). We shall
call < the natural partial ordering of E(S).

An element b of a partially ordered set X is called
an upper bound of a subset Y of X, if y<b for
each y in Y. An upper bound b of Y s called a
least upper bound or join of Y, if b<c for every up-
perbound ¢ of Y.If Y hasajoinin X, itisclearly
unique. Lower bound and greatest lower bound or meet
can be defined similarly.

A partially ordered set X is called a semilattice if
every two elements subset {a,b} of X has a join and
a meet in X ; it implies that every finite subset of X
has both a join and a meet. The join (or meet) of {a,b}
will be denoted by aAb (or avb)[3].

Definition 1.1 Suppose that S is an inverse semigroup
and X can be assumed that as a locally compact
Hausdorff topological space.

An action of S on X is a semigroup homomorph-
ism as follows:

a:S—1(X)
ab a,

such that

1) for every aeS there is a continuous «, with
open domainin X

2) the union of the domains of all the «, coincides
with X .

Proposition 1.2 Let S be an inverse semigroup, «
anactionof S onaset X and aeS,then

a0, =a, and o .a,a. =a,.

Proof: Since « is an action of S on X then
a:S—1 (X) is a semigroup homomorphism, so for
every acS we have o(a)a(a’)a(a)=a(a), then
a,a .0, =a,, andsimillary o a0, =a,

With regard to the above text one may conclude that,
a.=a,' ,andif ecE(S),s0 a, isthe identity map
on its domain.

Since the range of each «, coincides with the do-
main of a. ! therefore it can be open as well as its
domain. Also |t can be mentioned that «", is continu-
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ous, S0 a,
range.

For every e E(S) the domain (and range) of o,
can be denoted by E,, it means:

o, E, > E,.

is necessarily a homeomorphism onto its

It is clear to show that the domains of both «, and
a.. is the same, and implies that the domain of ¢, is
Eaa Likewise the range of ¢, is given by E . Thus
o, E. —>E . isa homeomorphlsm for every aesS.
Bnefly if e and f are in E(S) then we have
a0, =a, and E,NE; =E;.

Proposition 1.3 Foreach aeS and ecE(S) we

have: «, (Ee NE_. ) =E_.

Proof: Since N. Sieben [6], R. Exel [7] and Lawson [8]
proved it, the authors use their result.
Definition 1.4 Let > be the subset of Sx X given

by:
S ={(ab)eSxX:beE, |

and for every (a,,b;) and (a,,b,) in X we will say

that (a,b)~(a,b,) if b =h, and there exists an
idempotent e in E(S) such that b eE, and
ae=a,e.

It is clearly that the relation ~ is an equivalence re-

lation on X The equivalence class of (a,b) will be
denoted by [a,b].
Let G :{[a,b]:ae S,be X} and put

“={([ab].[a, b,]) €GxG:by = at, (b, )
And for every ([a,,b;].[a,,b,])eG? define:
{[ai,bl]-[az’bz%[aiaz,bz]
[a.b]" =[a].a, (b)]
it is easy to see that G is a groupoid [3] and the unit

space G? of G naturally identifies with X under
the correspondence

[eb]eG” —beX,

where e is any idempotent such that e e E5. We show
G semigroupas G(«,S,X).

We would now like to give G is a topology. Let
aeS and U be an open subset of E. we define
w(a,U) asfollows:

v(aU)={ableG:beU}

The collection of all y(a,U) is the basis of a topol-
ogy on G, and also the multiplication and inversion
operations on G are continuous, therefore G is a to-
pological groupoid.
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2. Main Results

Recall from [2] that an inverse semigroup S is natu-
rally equipped with a partial order defined by:

a<bwa=ba'avaeS$

Proposition 2.1 Assume that S is an inverse semi-
group which is a semilattice. Suppose that « is an ac-
tion of S on a locally compact Hausdorff space X,
such that for each aeS, the domain E, of «, is
closed. Then G =G(«,S,X) is Hausdorff.

Proof:Suppose [a,c] and [b,d] are two distinct
elements of G(«,S,X). The aim is to find two disjoint
opensubsets T, and T, of G(«,S,X) such that:

[a,c] eTl,[b,d] e, TTNT,=¢
We consider two cases:

Case1): If (c=d):
Since X is Hausdorff space then

3F,F, < X (open),ceF,deF, FNF,=¢

Nowlet T,=y(a R nE. ) and T,=y(b,F,NE,, )
Since T, and T, are open setand

T,={lak]eG:keRnE_},
T,={bk]eG:keF,nE,},

Itis clearly that:
[a,c]eT,[bd]eT, and T,NT, =¢

Case 2): If (c=d):
Since S isasemilatticelet h=aab so
{hsa—m:ah*h

=|a,c|=1|b,c
h<b-—>h=bh'h [ ][ ]

Then referring to what proposed in Definition 1.4.
cegE. .But E. isclosed then T,=X\E_ can be
openand ceT,.

Now we can set T as T,nE. nE. . But we
know that y(a,T)={[a,k]:keT} ‘and it is clear that

[a,c]ey/(a,T),[b,C]et//(b,T).
To do so it is enough to prove that z//(a,T)

m//(b,T) =4.
Suppose that [I,k]ew (a,T)nw(b,T) then:

[1Lk]lew(aT)>[1Lk]=[ak]—(1.k)~(ak)
—3JecE(S) keE, ae=le
[1Lk]ew (b,T)—[1,k]=[b,k] = (1,k) ~ (b,K)
—3f cE(S),keE,,bf =If

Since ef e E(S) and ef = fe, (keE,NE,), it can
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be replaced e and f with ef and finally we have:
aef =lef,lef =Ife =bfe = bef

Therefore we can find an element e E(S) such
that keE, ae=lele=be. So (le) (le)=ael'le
=lel’le=1I"lee=le, then le<a, and similary le<b,
since h=aab thus le<h, then le=Ileh*h, hence
I"le =I"leh*h < h*h, and finally

keE, nE,=E, cE,
"1 € I"le h"h

But keT thatis contradicts.
Definition 2.2 A zero in an inverse semigroup S is
anelement 0eS such that:

oa=a0=0vaeS

Definition 2.3 An inverse semigroup S with zero is
said to be E® —unitary if for every e,acS one has
that e’ #e<a=a’=a.

In other words, if an element dominates a nonzero
idempotent then that element itself is an idempotent.

Proposition 2.4 If S is a E" —unitary inverse se-
migroup and a,b belong to the defined semigroup S
such that a’a=b'b and ae=be for some nonzero
idempotent e<a"a then a=h.

Proof: We define x=aea" .
idempotent because:

So X is nonzero

e<a'a=e=(a'a) (a'aje=ea’aa’a
Then e=a"aea’a (because of the ability of idempo-
tent elements for being commute) and we have
ba"x =ba’aea” =bb’bea” =bhea” =aea” = x.
Therefore, we have x<ba*. Since S is a E" -
unitary which implies that ba” is idempotent. Then

ba"z(ba* =ab” so ab" isidempotent as well.
But, we have

bb* =bb’bb* =ba*ab® =ab*ha* =aa*aa” = aa"

Setting y =ba’b, we have that

y*y =b*ab’ba‘’b=b"aa’aa’b =b"aa’b =b*bb*b =b"b
Also y"y=a"a, while

b=bb'b=by"y, anda=aa"a=ay"y,
So it is enough to prove that y* =ay”. We have
ay” =ab’ab” =ab” =ba” =bb"ba" =bb*ab* =by”

In what follows we give the main result of this paper.

Theorem 2.5 In condition that S is a E* —unitary
inverse semigroup with zero, then can be appeared as a
semilattice.

Proof: For proving the above theorem it is necessary to

show that aAb exists forevery a,beS . If there is not
nonzero heS such that h<a,b, it is obvious that
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anb=0 and itcan be satisfied for the proof.
For doing this we can assume that there is a nonzero
heS inwhich h<a,b.Ourclaimisthat ab’h=ba"a.
Suppose that k =a*ab’b and considering to our as-
sumption (h’h<a'a,b’b), wehave h'h<k.
Substituting x=ak and y=bk,
X*x = ka"ak =k? =k XX Yy
y'y =kb'bk = k? =k
also
xh"h = akh*h = ah"h = h =bh*h =bkh*h = yh*h

Using the proposition (2.4) x=y will be achieved and
SO

ab’b=aa"ab’b=ak = x=y =bk
=ba‘ab’b=b(b’b)a’a=ba"a
and finally
ab’b=ha‘a 1)

By applying the above argument to a",b",h" and
knowing that h* =0 and h*<a*,b® we have

a'bb® =b"aa”
S0
(a*bb*)* = (baa’ )
and therefore Equation (1) can be modified to (2):
bb*a=aa’b 2

We have that h<a,b then h=ah’h and h=bh'h,
then we can show that

b*ah*h =b*bh*h =h"h
Since S is a E*—Lzmitary and b"a is dominated by
h*h, we have (b*a) =b*a. Byzapplying the same rea-
soningto a’,b” and h", (ba") =ba" can bearesult
Thus

(b*a)* =b*a
(ba* ) =ba’
and hence ab"b=ba'b=bb"a
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ab'b =bb'a 3)

By combination of Equations (1) to (3), Equation (4)
will be appeared.

ab’b=ba"a=bb'a=aa’b (4)

At the end we try to prove that ab*h can satisfy the
following condition

h<ab’b<a,b

forevery heS suchthat h<a,b.
It is clear that ab’b<a,b and as defined before
k =a"ab"h, then we have h"h <k, and so

h = ah*h = akh*h = aa*ab*bh*h = ab*bh*h = (ab*b)h*h

Finally h<ab*b. It means that ab"b is the join of
a and b and this is the proof of theorem.
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