

A Study on the Conversion of a Semigroup to a Semilattice

Bahman Tabatabaie, Seyed Mostafa Zebarjad

Department of Mathematics, Shiraz University, Shiraz, Iran E-mail: s_zebarjad@yahoo.com Received January 19, 2011; revised March 15, 2011; accepted March 25, 2011

Abstract

The main aim of the current research has been concentrated to clarify the condition for converting the inverse semigroups such as S to a semilattice. For this purpose a property the so-called E^* – unitary has been defined and it has been tried to prove that each inverse semigroups limited with E^* – unitary show the specification of a semilattice.

Keywords: Semigroup, Semilattice, E^* – unitary

1. Introduction

1.1. Literature Survey

Literature survey done by the authors show that a special class of semigroups possessing is formed by the E^* – unitary inverse semigroups, sometimes also called $0 - E^*$ – unitary, which was defined by Szendrei [1] and has been intensely studied in the semigroup literature. See, for example, Kellendonk's topological groupoid is Hausdorff when *S* is E^* – unitary [2], and the related class of *E* – unitary inverse semigroups have also been shown to provide Hausdorff groupoids [3]. In the current research the authors try to prove that each inverse semigroups limited with E^* – unitary show the specification of a semilattice. For this purpose, firstly we present elementary concepts as follows.

1.2. Preliminary Definitions and Propositions

A groupoid is a set G together with a subset $G^2 \subseteq G \times G$, a product map $(a,b) \mapsto ab$.

From G^2 to G, and an inverse map $a \mapsto a^{-1}$ (so that $(a^{-1})^{-1} = a$) from G onto G such that:

1) if $(a,b), (b,c) \in G^2$, then $(ab,c), (a,bc) \in G^2$ and (ab)c = a(bc).

2) $(b,b^{-1}) \in G^2$ for all $b \in G$, and if $(a,b) \in G^2$ then $a^{-1}(ab) = b$ and $(ab)b^{-1} = a$.

Note that G^2 is nothing but the set of all pairs (x, y) in $G \times G$ for which xy is defined, and G^2 is

Copyright © 2011 SciRes.

called the set of *composable pairs* of the groupoid G[3].

If $x \in G$, $d(x) = x^{-1}x$ is the *domain* of x and $r(x) = xx^{-1}$ is its *range*. The pair (x, y) is composable if and only if the range of y is the domain of x. $G^{0} = d(G) = r(G)$ is the *unit space* of G, its elements are units in sense that xd(x) = x and r(x) = x [4].

By an inverse semigroup we mean a semigroup S such that for each a in S, there exists a unique element a^* in S with the following properties:

$$aa^*a = a$$
, and $a^*aa^* = a^*$

It is well known that the correspondence $a \mapsto a^*$ is an involutive anti-homomorphism, *i.e.*, $(ab)^* = b^*a^*$ for all a and b in S. It is very common to denote it by E(S), the set of all idempotent elements of S, it means that $a^2 = a$ for all a in E(S). It is clear that $a^* = a$ for all a in E(S).

A very important example of an inverse semigroup is given by S = I(X) the set of all partial one-to-one maps on a set X. So each element of I(X) is a bijection form a subset U of X onto another subset V of X. The set I(X) is a semigroup where the multiplication rule is given by composition of partial maps with the largest possible domain.

For example, if $\theta_1, \theta_2 \in I(X)$ with $\theta_1: U_1 \to V_1$ and $\theta_2: U_2 \to V_2$, then

$$\theta_1 \theta_2 : \theta_2^{-1} (V_2 \cap U_1) \to \theta_1 (V_2 \cap U_1)$$

is given by:

$$\theta_1\theta_2(a) = \theta_1(\theta_2(a)).$$

APM

The element θ_1^* is taken to be θ_1^{-1} . It is easily checked that I(X) is an inverse semigroup [3,5].

We recall that a relation \leq on a set X is called a partial ordering of X if for all $a, b, c \in X$:

1) $a \leq a$

2) $a \le b$ and $b \le a$ implies a = b

3) $a \le b$ and $b \le c$ implies $a \le c$.

The following example is of great importance to us. Define $e \le f(e, f \in E(S))$ to mean ef = fe = e. It is clear that \le is a partial ordering of E(S). We shall call \le the natural partial ordering of E(S).

An element b of a partially ordered set X is called an upper bound of a subset Y of X, if $y \le b$ for each y in Y. An upper bound b of Y is called a least upper bound or join of Y, if $b \le c$ for every upper bound c of Y. If Y has a join in X, it is clearly unique. Lower bound and greatest lower bound or meet can be defined similarly.

A partially ordered set X is called a semilattice if every two elements subset $\{a,b\}$ of X has a join and a meet in X; it implies that every finite subset of X has both a join and a meet. The join (or meet) of $\{a,b\}$ will be denoted by $a \wedge b$ (or $a \vee b$)[3].

Definition 1.1 Suppose that S is an inverse semigroup and X can be assumed that as a locally compact Hausdorff topological space.

An action of S on X is a semigroup homomorphism as follows:

$$\alpha: S \to I(X)$$
$$a \mapsto \alpha_a$$

such that

1) for every $a \in S$ there is a continuous α_a with open domain in X.

2) the union of the domains of all the α_a coincides with X.

Proposition 1.2 Let *S* be an inverse semigroup, α an action of *S* on a set *X* and $a \in S$, then

$$\alpha_a \alpha_{a^*} \alpha_a = \alpha_a$$
 and $\alpha_{a^*} \alpha_a \alpha_{a^*} = \alpha_{a^*}$

Proof: Since α is an action of *S* on *X* then $\alpha: S \to I(X)$ is a semigroup homomorphism, so for every $a \in S$ we have $\alpha(a)\alpha(a^*)\alpha(a) = \alpha(a)$, then $\alpha_a \alpha_{a^*} \alpha_a = \alpha_a$, and simillary $\alpha_{a^*} \alpha_a \alpha_{a^*} = \alpha_{a^*}$

With regard to the above text one may conclude that, $\alpha_{a^*} = \alpha_a^{-1}$, and if $e \in E(S)$, so α_e is the identity map on its domain.

Since the range of each α_a coincides with the domain of $\alpha_{a^*} = \alpha_a^{-1}$, therefore it can be open as well as its domain. Also it can be mentioned that α_a^{-1} , is continu-

Copyright © 2011 SciRes.

ous, so α_a is necessarily a homeomorphism onto its range.

For every $e \in E(S)$ the domain (and range) of α_e can be denoted by E_e , it means:

$$\alpha_e: E_e \to E_e.$$

It is clear to show that the domains of both α_a and α_{a^*a} is the same, and implies that the domain of α_a is E_{a^*a} . Likewise the range of α_a is given by E_{aa^*} . Thus $\alpha_a : E_{a^*a} \to E_{aa^*}$ is a homeomorphism for every $a \in S$. Briefly if e and f are in E(S) then we have $\alpha_e \alpha_f = \alpha_{ef}$ and $E_e \cap E_f = E_{ef}$.

Proposition 1.3 For each $a \in S$ and $e \in E(S)$ we

have: $\alpha_a \left(E_e \cap E_{aa^*} \right) = E_{aea^*}$

Proof: Since N. Sieben [6], R. Exel [7] and Lawson [8] proved it, the authors use their result.

Definition 1.4 Let Σ be the subset of $S \times X$ given by:

$$\sum = \left\{ \left(ab\right) \in S \times X : b \in E_{a^*a} \right\}$$

and for every (a_1, b_1) and (a_2, b_2) in Σ we will say that $(a_1, b_1) \sim (a_2, b_2)$ if $b_1 = b_2$ and there exists an idempotent e in E(S) such that $b_1 \in E_e$, and $a_1e = a_2e$.

It is clearly that the relation ~ is an equivalence relation on Σ The equivalence class of (a,b) will be denoted by [a,b].

Let $G = \{[a,b]: a \in S, b \in X\}$ and put

$$G^{2} = \left\{ \left([a_{1}, b_{1}], [a_{2}, b_{2}] \right) \in G \times G : b_{1} = \alpha_{a_{2}}(b_{2}) \right\}$$

And for every $([a_1, b_1], [a_2, b_2]) \in G^2$ define:

$$\begin{cases} [a_{1},b_{1}] \cdot [a_{2},b_{2}] = [a_{1}a_{2},b_{2}] \\ [a_{1},b_{1}]^{-1} = [a_{1}^{*},\alpha_{a_{1}}(b_{1})] \end{cases}$$

it is easy to see that G is a groupoid [3] and the unit space $G^{(0)}$ of G naturally identifies with X under the correspondence

$$[e,b] \in G^{(0)} \mapsto b \in X,$$

where *e* is any idempotent such that $e \in E_s$. We show *G* semigroup as $G(\alpha, S, X)$.

We would now like to give G is a topology. Let $a \in S$ and U be an open subset of E_{a^*a} we define $\psi(a,U)$ as follows:

$$\psi(a,U) = \left\{ [a,b] \in G : b \in U \right\}$$

The collection of all $\psi(a,U)$ is the basis of a topology on G, and also the multiplication and inversion operations on G are continuous, therefore G is a topological groupoid.

APM

2. Main Results

Recall from [2] that an inverse semigroup S is naturally equipped with a partial order defined by:

$$a \le b \leftrightarrow a = ba^* a \ \forall a \in S$$

Proposition 2.1 Assume that *S* is an inverse semigroup which is a semilattice. Suppose that α is an action of *S* on a locally compact Hausdorff space *X*, such that for each $a \in S$, the domain E_{a^*a} of α_a is closed. Then $G = G(\alpha, S, X)$ is Hausdorff.

Proof:Suppose [a,c] and [b,d] are two distinct elements of $G(\alpha, S, X)$. The aim is to find two disjoint open subsets T_1 and T_2 of $G(\alpha, S, X)$ such that:

$$[a,c] \in T_1, [b,d] \in T_2, T_1 \cap T_2 = \phi$$

We consider two cases:

Case 1): If $(c \neq d)$:

Since X is Hausdorff space then

$$\exists F_1, F_2 \subseteq X \text{ (open)}, c \in F_1, d \in F_2, F_1 \cap F_2 = \phi$$

Now let $T_1 = \psi(a, F_1 \cap E_{a^*a})$ and $T_2 = \psi(b, F_2 \cap E_{b^*b})$ Since T_1 and T_2 are open set and

$$\begin{split} T_1 &= \left\{ \left[a, k \right] \in G : k \in F_1 \cap E_{a^* a} \right\}, \\ T_2 &= \left\{ \left[b, k \right] \in G : k \in F_2 \cap E_{b^* b} \right\}, \end{split}$$

It is clearly that:

/

$$[a,c] \in T_1, [b,d] \in T_2 \text{ and } T_1 \cap T_2 = \phi$$

Case 2): If (c = d): Since *S* is a semilattice let $h = a \wedge b$ so

$$\begin{cases} h \le a \to h = ah^*h \\ h \le b \to h = bh^*h \end{cases} \Rightarrow [a,c] = [b,c]$$

Then referring to what proposed in Definition 1.4. $c \notin E_{h^*h}$. But E_{h^*h} is closed then $T_2 = X \setminus E_{h^*h}$ can be open and $c \in T_2$.

Now we can set T as $T_2 \cap E_{a^*a} \cap E_{b^*b}$. But we know that $\psi(a,T) = \{[a,k]: k \in T\}$ and it is clear that $[a,c] \in \psi(a,T), [b,c] \in \psi(b,T)$.

To do so it is enough to prove that $\psi(a,T) \cap \psi(b,T) = \phi$.

uppose that
$$[l,k] \in \psi(a,T) \cap \psi(b,T)$$
 then:

$$\begin{cases} [l,k] \in \psi(a,T) \rightarrow [l,k] = [a,k] \rightarrow (l,k) \sim (a,k) \\ \rightarrow \exists e \in E(S), k \in E_e, ae = le \\ [l,k] \in \psi(b,T) \rightarrow [l,k] = [b,k] \rightarrow (l,k) \sim (b,k) \\ \rightarrow \exists f \in E(S), k \in E_f, bf = lf \end{cases}$$

Since $ef \in E(S)$ and ef = fe, $(k \in E_e \cap E_{ef})$, it can

Copyright © 2011 SciRes.

be replaced
$$e$$
 and f with ef and finally we have:

$$aef = lef, lef = lfe = bfe = bef$$

Therefore we can find an element $e \in E(S)$ such that $k \in E_e$, ae = le, le = be. So $(le)^*(le) = ael^*le = lel^*le = le^*le = le^*le = le$, then $le \leq a$, and similary $le \leq b$, since $h = a \wedge b$ thus $le \leq h$, then $le = leh^*h$, hence $l^*le = l^*leh^*h \leq h^*h$, and finally

$$k \in E_{l^*l} \cap E_e = E_{l^*le} \subseteq E_{h^*h}$$

But $k \in T$ that is contradicts.

Definition 2.2 A zero in an inverse semigroup *S* is an element $0 \in S$ such that:

$$oa = a0 = 0 \forall a \in S$$

Definition 2.3 An inverse semigroup *S* with zero is said to be E^* – unitary if for every $e, a \in S$ one has that $e^2 \neq e \leq a \Rightarrow a^2 = a$.

In other words, if an element dominates a nonzero idempotent then that element itself is an idempotent.

Proposition 2.4 If *S* is a E^* -unitary inverse semigroup and *a*, *b* belong to the defined semigroup *S* such that $a^*a = b^*b$ and ae = be for some nonzero idempotent $e \le a^*a$ then a = b.

Proof: We define $x = aea^*$. So x is nonzero idempotent because:

$$e \le a^* a \Longrightarrow e = (a^* a)^* (a^* a) e = ea^* aa^* a$$

Then $e = a^* a e a^* a$ (because of the ability of idempotent elements for being commute) and we have

$$ba^*x = ba^*aea^* = bb^*bea^* = bea^* = aea^* = x.$$

Therefore, we have $x \le ba^*$. Since *S* is a E^* -unitary which implies that ba^* is idempotent. Then $ba^* = (ba^*)^* = ab^*$ so ab^* is idempotent as well. But, we have

$$bb^* = bb^*bb^* = ba^*ab^* = ab^*ba^* = aa^*aa^* = aa^*$$

Setting $y = ba^*b$, we have that

$$y^*y = b^*ab^*ba^*b = b^*aa^*aa^*b = b^*aa^*b = b^*bb^*b = b^*b$$

Also $y^* y = a^* a$, while

$$b = bb^*b = by^*y$$
, and $a = aa^*a = ay^*y$,

So it is enough to prove that $y^* = ay^*$. We have

$$ay^* = ab^*ab^* = ab^* = ba^* = bb^*ba^* = bb^*ab^* = by^*$$

In what follows we give the main result of this paper.

Theorem 2.5 In condition that *S* is a E^* – unitary inverse semigroup with zero, then can be appeared as a semilattice.

Proof: For proving the above theorem it is necessary to show that $a \land b$ exists for every $a, b \in S$. If there is not nonzero $h \in S$ such that $h \le a, b$, it is obvious that

 $a \wedge b = 0$ and it can be satisfied for the proof.

For doing this we can assume that there is a nonzero $h \in S$ in which $h \le a, b$. Our claim is that $ab^*b = ba^*a$.

Suppose that $k = a^*ab^*b$ and considering to our assumption $(h^*h \le a^*a, b^*b)$, we have $h^*h \le k$.

Substituting x = ak and y = bk,

$$\begin{cases} x^* x = ka^* ak = k^2 = k \\ y^* y = kb^* bk = k^2 = k \end{cases} \Rightarrow x^* x = y^* y$$

also

$$xh^*h = akh^*h = ah^*h = h = bh^*h = bkh^*h = yh^*h$$

Using the proposition (2.4) x = y will be achieved and so

$$ab^*b = aa^*ab^*b = ak = x = y = bk$$
$$= ba^*ab^*b = b(b^*b)a^*a = ba^*a$$

and finally

$$ab^*b = ba^*a \tag{1}$$

By applying the above argument to a^* , b^* , h^* and knowing that $h^* \neq 0$ and $h^* \leq a^*, b^*$ we have

$$a^*bb^* = b^*aa^*$$

so

$$\left(a^*bb^*\right)^* = \left(b^*aa^*\right)^*$$

and therefore Equation (1) can be modified to (2):

$$bb^*a = aa^*b \tag{2}$$

We have that $h \le a, b$ then $h = ah^*h$ and $h = bh^*h$, then we can show that

$$b^*ah^*h = b^*bh^*h = h^*h$$

Since *S* is a E^* – unitary and b^*a is dominated by h^*h , we have $(b^*a)^2 = b^*a$. By applying the same reasoning to a^*, b^* and $h^*, (ba^*)^2 = ba^*$ can be a result. Thus

$$\begin{cases} \left(b^*a\right)^* = b^*a\\ \left(ba^*\right)^* = ba^*\end{cases}$$

and hence $ab^*b = ba^*b = bb^*a$

$$ab^*b = bb^*a \tag{3}$$

By combination of Equations (1) to (3), Equation (4) will be appeared.

$$ab^*b = ba^*a = bb^*a = aa^*b \tag{4}$$

At the end we try to prove that ab^*b can satisfy the following condition

$$h \le ab^*b \le a, b$$

for every $h \in S$ such that $h \leq a, b$.

It is clear that $ab^*b \le a, b$ and as defined before $k = a^*ab^*b$, then we have $h^*h \le k$, and so

 $h = ah^*h = akh^*h = aa^*ab^*bh^*h = ab^*bh^*h = (ab^*b)h^*h$

Finally $h \le ab^*b$. It means that ab^*b is the join of a and b and this is the proof of theorem.

3. References

- M. B. Szendrei, "A Generalization of Mcalister's P-Theorem for E-Unitary Regular Semigroups," *Acta Scientiarum Mathematicarum*, Vol. 51, 1987, pp. 229-249.
- [2] M. V. Lawson, "Inverse Semigroups: The Theory of Partial Symmetries," Word Scientific, Singapore, 1998. <u>doi:10.1142/9789812816689</u>
- [3] J. Renault, "A Groupoid Approach to C*-Algebra, Lecture Notes in Mathematics," 1st Edition, Springer-Verlang, Berlin, Vol. 793, 1980.
- [4] J. M. Howie, "Fundamentals of Semigroup Theory," Clarendon Press, Oxford, 1995.
- [5] H. Clifford and G. B. Preston, "The Algebric Theory of Semigroups," American Mathematical Society, United States, Vol. 1, 1961.
- [6] N. Sieben, "C*-Crossed Products by Partial Actions and Actions of Inverse Semigroups," *Journal of the Australian Mathematical Society, Series A*, Vol. 63, No. 1, 1997, pp. 32-46.
- [7] R. Exel, "Inverse Semigroups and Combinatorial C*-Algebras," *Bulletin of the Brazilian Mathematical Society*, *New Series*, Vol. 39, No. 2, 2008, pp. 191-313.
- [8] M. V. Lawson, "Inverse Semigroups, The Theory of Partial Symmetries," Word Scientific, Singapore, 1998.