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Abstract 
 
The main aim of the current research has been concentrated to clarify the condition for converting the inverse 
semigroups such as S to a semilattice. For this purpose a property the so-called * unitaryE   has been de-
fined and it has been tried to prove that each inverse semigroups limited with * unitaryE   show the specifi-
cation of a semilattice. 
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1. Introduction 
 
1.1. Literature Survey 
 
Literature survey done by the authors show that a special 
class of semigroups possessing is formed by the *E   
unitary  inverse semigroups, sometimes also called 0   

* unitaryE  , which was defined by Szendrei [1] and has 
been intensely studied in the semigroup literature. See, 
for example, Kellendonk’s topological groupoid is 
Hausdorff when S  is * unitaryE  [2], and the related 
class of unitaryE   inverse semigroups have also been 
shown to provide Hausdorff groupoids [3]. In the current 
research the authors try to prove that each inverse semi-
groups limited with * unitaryE   show the specification 
of a semilattice. For this purpose, firstly we present ele-
mentary concepts as follows. 
 
1.2. Preliminary Definitions and Propositions 
 
A groupoid is a set G together with a subset 2G G G  , 
a product map  ,a b ab . 

From 2G  to G , and an inverse map 
1a a  (so 

that   11a a
  ) from G  onto G  such that: 

1) if     2, , , ,a b b c G  then     2, , ,ab c a bc G  
and    ab c a bc . 

2)  1 2,b b G   for all b G , and if   2,a b G  
then  1a ab b   and   1 .ab b a   

Note that 2G  is nothing but the set of all pairs 
 ,x y  in G G  for which xy  is defined, and 2G  is 

called the set of composable pairs of the groupoid 
G [3]. 

If   1,x G d x x x  is the domain of x  and 
  1r x xx  is its range. The pair  ,x y  is composable 

if and only if the range of y  is the domain of x . 
   0G d G r G   is the unit space of G , its elements 

are units in sense that  dx x x  and  r x x  [4]. 
By an inverse semigroup we mean a semigroup S  

such that for each a  in S , there exists a unique ele-
ment a  in S  with the following properties: 

,aa a a   and a aa a    
It is well known that the correspondence a a  is 

an involutive anti-homomorphism, i.e.,  ab b a
    

for all a  and b  in S . It is very common to denote it 
by  E S , the set of all idempotent elements of S , it 
means that 2a a  for all a  in  E S . It is clear that 
a a   for all a  in  E S . 

A very important example of an inverse semigroup is 
given by  S I X  the set of all partial one-to-one 
maps on a set X . So each element of  I X  is a bijec-
tion form a subset U  of X  onto another subset V  
of X . The set  I X  is a semigroup where the multi-
plication rule is given by composition of partial maps 
with the largest possible domain. 

For example, if  1 2, I X    with 1 1 1:U V   and 

2 2 2:U V  , then 

   1
1 2 2 2 1 1 2 1: V U V U        

is given by:  

    1 2 1 2 .a a     
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The element 1
  is taken to be 1

1
 . It is easily checked 

that  I X  is an inverse semigroup [3,5]. 
We recall that a relation   on a set X  is called a 

partial ordering of X  if for all , ,a b c X : 

1) a a  

2) a b  and b a  implies a b  

3) a b  and b c  implies a c . 

The following example is of great importance to us. 
Define   ,e f e f E S   to mean .ef fe e   It is 
clear that   is a partial ordering of  E S . We shall 
call   the natural partial ordering of  E S . 

An element b  of a partially ordered set X  is called 
an upper bound of a subset Y  of X , if y b  for 
each y  in Y . An upper bound b  of Y  is called a 
least upper bound or join of Y , if b c  for every up-
per bound c  of Y . If Y  has a join in X , it is clearly 
unique. Lower bound and greatest lower bound or meet 
can be defined similarly. 

A partially ordered set X  is called a semilattice  if 
every two elements subset  ,a b  of X  has a join and 
a meet in X ; it implies that every finite subset of X  
has both a join and a meet. The join (or meet) of  ,a b  
will be denoted by a b  (or a b )[3]. 

Definition 1.1 Suppose that S is an inverse semigroup 
and X  can be assumed that as a locally compact 
Hausdorff topological space. 

An action of S  on X  is a semigroup homomorph-
ism as follows: 

 : S I X   

aa   

such that 
1) for every a S  there is a continuous a  with 

open domain in X . 
2) the union of the domains of all the a  coincides 

with X . 
Proposition 1.2 Let S  be an inverse semigroup,   

an action of S  on a set X  and a S , then 

anda a a aa a a a
             

Proof: Since   is an action of S  on X  then 
 : S I X   is a semigroup homomorphism, so for 

every a S  we have        a a a a     , then 

a a aa
     , and simillary aa a a

       
With regard to the above text one may conclude that, 

1
aa

 
  , and if  e E S , so e  is the identity map 

on its domain. 
Since the range of each a  coincides with the do-

main of 1
aa

 
 , therefore it can be open as well as its 

domain. Also it can be mentioned that 1
a
 , is continu-

ous, so a  is necessarily a homeomorphism onto its 
range. 

For every  e E S  the domain (and range) of e  
can be denoted by eE , it means: 

: .e e eE E   

It is clear to show that the domains of both a  and 

a a
   is the same, and implies that the domain of a  is 

a a
E  . Likewise the range of a  is given by 

aa
E  . Thus 

:a a a aa
E E    is a homeomorphism for every a S . 

Briefly if e  and f  are in  E S  then we have 

e f ef    and e f efE E E  . 
Proposition 1.3 For each a S  and  e E S  we 

have:  a e aa aea
E E E    

Proof: Since N. Sieben [6], R. Exel [7] and Lawson [8] 
proved it, the authors use their result. 

Definition 1.4 Let   be the subset of S X  given 
by: 

  :
a a

ab S X b E      

and for every  1 1,a b  and  2 2,a b  in   we will say 
that    1 1 2 2, ~ ,a b a b  if 1 2b b  and there exists an 
idempotent e  in  E S  such that 1 ,eb E and 

1 2a e a e . 
It is clearly that the relation ~  is an equivalence re-

lation on   The equivalence class of  ,a b  will be 
denoted by  ,a b . 

Let   , : ,G a b a S b X    and put 

       21 1 2 2
2

1 2, , , : aa b a b GG G b b    

And for every      2
1 1 2 2, , ,a b a b G  define: 

     
   

1

1 1 2 2 1 2 2

1

1 1 1 1

, , ,

, , a

a b a b a a b

a b a b 

 





  





 

it is easy to see that G  is a groupoid [3] and the unit 
space  0G  of G  naturally identifies with X  under 
the correspondence 

   0, ,e Gb b X   

where e  is any idempotent such that Se E . We show 
G  semigroup as  , ,G S X . 

We would now like to give G  is a topology. Let 
a S  and U  be an open subset of 

a a
E   we define 

 ,a U  as follows:  

    , , :a U a b G b U     

The collection of all  ,a U  is the basis of a topol-
ogy on G , and also the multiplication and inversion 
operations on G  are continuous, therefore G  is a to-
pological groupoid. 
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2. Main Results 
 
Recall from [2] that an inverse semigroup S  is natu-
rally equipped with a partial order defined by: 

a b a ba a a S     

Proposition 2.1 Assume that S  is an inverse semi-
group which is a semilattice. Suppose that   is an ac-
tion of S  on a locally compact Hausdorff space X , 
such that for each a S , the domain 

a a
E  of a  is 

closed. Then  , ,G G S X  is Hausdorff. 
Proof:Suppose  ,a c  and  ,b d  are two distinct 

elements of  , ,G S X . The aim is to find two disjoint 
open subsets 1T  and 2T  of  , ,G S X  such that: 

   1 2 1 2, , , ,a c T b d T T T      

We consider two cases: 
Case 1): If  c d : 
Since X  is Hausdorff space then 

 1 2 1 2 1 2, open , , ,F F X c F d F F F        

Now let  1 1,
a a

T a F E   and  2 2,
b b

T b F E    
Since 1T  and 2T  are open set and 

  1 1, : ,
a a

T a k G k F E     

  2 2, : ,
b b

T b k G k F E     

It is clearly that: 

   1 2 1 2, , , anda c T b d T T T      

Case 2): If  c d : 
Since S  is a semilattice let h a b   so 

   , ,
h a h ah h

a c b c
h b h bh h





     
  

 

Then referring to what proposed in Definition 1.4. 

h h
c E  . But 

h h
E   is closed then 2 \

h h
T X E   can be 

open and 2c T . 
Now we can set T  as 2 a a b b

T E E   . But we 
know that     , :, kT a Ta k    and it is clear that 
       , , , , ,a c a T b c b T   . 

To do so it is enough to prove that  ,a T  
 ,b T   . 

Suppose that      , , ,l k a T b T    then: 

           
 

           
 

, , , , , ~ ,

, ,

, , , , , ~ ,

, ,

e

f

l k a T l k a k l k a k

e E S k E ae le

l k b T l k b k l k b k

f E S k E bf lf





    


    


   
     

 

Since  ef E S  and ef fe ,  e efk E E  , it can 

be replaced e  and f  with ef  and finally we have: 

,aef lef lef lfe bfe bef     

Therefore we can find an element  e E S  such 
that , , .ek E ae le le be    So    le le ael le

   
lel le ll lee le    , then le a , and similary le b , 

since h a b   thus le h , then le leh h , hence 
l le l leh h h h     , and finally 

el l l le h h
k E E E E      

But k T  that is contradicts. 
Definition 2.2 A zero in an inverse semigroup S  is 

an element 0 S  such that: 

0 0oa a a S     

Definition 2.3 An inverse semigroup S  with zero is 
said to be unitaryE   if for every ,e a S  one has 
that 2 2e e a a a    . 

In other words, if an element dominates a nonzero 
idempotent then that element itself is an idempotent. 

Proposition 2.4 If S  is a unitaryE   inverse se-
migroup and ,a b  belong to the defined semigroup S  
such that a a b b   and ae be  for some nonzero 
idempotent e a a  then .a b  

Proof: We define x aea . So x  is nonzero 
idempotent because: 

   *
e a a e a a a a e ea aa a         

Then e a aea a   (because of the ability of idempo-
tent elements for being commute) and we have  

.ba x ba aea bb bea bea aea x            

Therefore, we have x ba . Since S  is a E   
unitary  which implies that ba  is idempotent. Then 

 ba ba ab
     so ab  is idempotent as well. 

But, we have 

bb bb bb ba ab ab ba aa aa aa               

Setting ,y ba b  we have that 

y y b ab ba b b aa aa b b aa b b bb b b b                 

Also y y a a  , while 

, and ,b bb b by y a aa a ay y        

So it is enough to prove that y ay  . We have 

ay ab ab ab ba bb ba bb ab by                

In what follows we give the main result of this paper. 
Theorem 2.5 In condition that S  is a unitaryE   

inverse semigroup with zero, then can be appeared as a 
semilattice. 

Proof: For proving the above theorem it is necessary to 
show that a b  exists for every ,a b S . If there is not  
nonzero h S  such that ,h a b , it is obvious that 
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0a b   and it can be satisfied for the proof. 
For doing this we can assume that there is a nonzero 

h S  in which ,h a b . Our claim is that .ab b ba a   
Suppose that k a ab b   and considering to our as-

sumption  , ,h h a a b b    we have h h k  . 
Substituting x ak  and y bk , 

2

2

x x ka ak k k
x x y y

y y kb bk k k

 
 

 

   
 

  
 

also 

xh h akh h ah h h bh h bkh h yh h            

Using the proposition  2.4 x y  will be achieved and 
so 

 
ab b aa ab b ak x y bk

ba ab b b b b a a ba a

  

    

    

  
 

and finally 

ab b ba a                  (1) 

By applying the above argument to a , b , h  and 
knowing that 0h   and ,h a b    we have 

a bb b aa     

so 

   * *
a bb b aa     

and therefore Equation (1) can be modified to  2 : 

bb a aa b                 (2) 

We have that ,h a b  then h ah h  and h bh h , 
then we can show that 

b ah h b bh h h h       

Since S  is a unitaryE   and b a  is dominated by 
h h , we have  2

b a b a  . By applying the same rea-
soning to ,a b   and h ,  2

ba ba   can be a result.  
Thus 

 
 *
b a b a

ba ba

 

 

 

 

 

and hence ab b ba b bb a     

ab b bb a                    (3) 

By combination of Equations (1) to (3), Equation (4) 
will be appeared. 

ab b ba a bb a aa b                (4) 

At the end we try to prove that ab b  can satisfy the 
following condition 

,h ab b a b   

for every h S  such that ,h a b . 
It is clear that ,ab b a b   and as defined before 

k a ab b  , then we have *h h k , and so 

 h ah h akh h aa ab bh h ab bh h ab b h h              

Finally h ab b . It means that ab b  is the join of 
a  and b  and this is the proof of theorem. 
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