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Abstract 
 
Let M  be a simply connected complete Riemannian manifold with dimension 3n  . Suppose that the sec- 

tional curvature satisfies  
2

2

1M

a
b K 


   


, where   is distance function from a base point of M ,  

,  a b  are constants and 0ab  . Then there exist harmonic functions on M . 
 
Keywords: Harmonic Function, Riemannian Manifold, Negative Sectional Curvature 

1. Introduction 
 
The existence of the harmonic functions on a complete 
Riemannian manifold is a well known problem. In what 
follows, we consider the harmonic function f  is not a 
constant function, that is, ,  =f c c constant. If there is 
no restrictions imposed on the curvature, then it was 
proved [1] that there does not exist a harmonic function 
of the form   ,  1 < <pL M p  , on the manifold. If 

=p  , then it was proved [1] that there dose not exist 
any bounded harmonic function on a complete manifold 
with nonnegative Ricci curvature. On the other hand, by 
introducing the sphere at infinity  S  , Anderson- 
Scheon [2] and Sullivan [3] succeeded to prove the 
existence of the bounded harmonic functions on a com- 
plete simply-connected manifold with  

2 2 < 0,Mb K a     

where MK  represents the sectional curvature and 0a  , 
0b   are constants. It is naturally to consider whether 

the same conclusion holds only on the manifold with 
negative sectional curvature, i.e. 2 < 0Mb K  ? How- 
ever, this is still an open problem. 

Let M  be a complete manifold and o M  be fixed. 
Then we write  

   min ,oK c                (1) 

if for any minimal geodesic   issuing from o , the 

sectional curvature of the plane which is tangent to   is 
greater than or equal to  c  , where  c   is a mo- 
notone increasing function and   is the distance func- 
tion from the base point o  in the manifold. This notion 
was first introduced by Klingenberg [4]. By using the 
Toponogov-type comparison theorem with min

oK c  in 
[5,6], and using the approach of Anderson and Scheon 
[2], we are able to prove the following result: 

Theorem 1. Let M  be a complete simply-connected 
Riemannian manifold with dimension 3n  . If  

   
2

2 min max ,
1M M

a
b K K 


    


        (2) 

with  

   1 < 2 , 2 1 2 1 > 7,b a n a b           (3) 

then there exist bounded harmonic functions on the 
manifold M , where   is distance function from a 
given base point o  in M , 0ab  . 

A special case of the manifolds satisfying the theorem 
1 is with the following sectional curvature condition  

   
2 2

min max .
1 1M M

a a
K K 

 
    

 
     (4) 

In general, since   is large enough, the curvature in 
(4) is close to 0, one would conjecture that the behavior 
of this manifold would be much closer to the Euclidean 
spaces and hence there may not exist any bounded har- 
monic functions. Our theorem states that this conclusion 
is not true.  
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2. The proof of Theorem 1 
 
Let  2M c  be the complete simply connected surface 
of constant curvature c . We also assume that all 
geodesics have unit speed. 

Lemma 2. ([5-7]). Let M  be a complete Rieman- 
nian manifold and o be a point of M  with min

oK c . 
1) Let  : , ,  = 0,1, 2i io l M i   be minimal geode- 

sics with        1 2 2 0 1 10 = = ,  0 =l o l     and 
   2 0 00 = l  . Then, there exist minimal geodesics 
   2: , ,  = 0,1,2i io l M c i   with  
       1 2 2 0 1 10 = ,  0 =l l        and    2 0 00 = l    

such that  

   = ,  = 0,1,2i iL L i   

and 

         1 1 0 1 1 0, 0 , 0 ,l l              

         0 0 2 0 0 2, 0 , 0 .l l              

2) Let  : , ,  = 1,2i io l M i   be two minimizing geo- 
desics starting from p. Let    2: , ,  = 0,1,2i io l M c i   
be minimizing geodesics starting from same point such 
that          1 2 1 20 , 0 0 , 0             . Then  

         1 1 2 2 1 1 2 2, , ,cd l l d l l       

where cd  denotes the distance function in  2M c . 
If  max

oK c  , then we have the parallel result as 
Lemma 2. 

Let M  be a complete Riemannian manifold, o  a 
point of M  with    max

oK c  , and  c   a mo- 
notone increasing function. For any given 0 > 0 , it is 
obvious that    max

0 0,  0oK c      . By Lemma 
1 and the hyperbolic cosine theorem in   2

0M c  , we 
can easily prove the following lemma 

Lemma 3. Let M  be a complete Riemannian mani- 
fold and o  a point of M . For any given > 0r , let 

1 1 2, ,o x x  be three points in M  such that  
   1 1 1 2= , = ,d o x d o x . Suppose that (2) is true. De- 

note the ray from o  to 1x  by 1 , the ray from o  to 

2x  by 2  and the angle of 1  and 2  at o  by  ; 

 
 

   

1

1 2

2 1 ,
2 ln 1

2
, 2 ln 1 ,

d o o

a

d x x
b


 

 

 
 

   

         (3) 

where   is large enough and   is small enough. 
Now we consider a simply connected Riemannian 

manifold M  with negative sectional curvature. As usual, 
two rays 1  and 2  on M  are equivalent, that is, 

1 2   if and only if     1 2 d t t c   , for all 0t  . 

If we denote the set of all rays in M  by  , then the 
Matrin boundary at infinity is defined as   . 

If 1  and 2  are emanating from the same point o 
of M ,    1 20 = 0  , from (2),  

 
 12 1 ,

2 ln 1 ,
d o o

c
a


 

 
    

as 0t  , = 0 . This means that 1 2   if and only 
if 1 2=  . Then,  

   = = : remanating from a fixed point S o   and 
it is equivalent to the unite sphere oS  in oT M . 

Moreover, by Lemma 3, we can also construct a C  
topological structure on  =M M S   as [1]. By 
using this fact, we can prove the following Theorem 4, 
and Theorem 1 as its Corollary. 

Theorem 4. Let M be a simply connected Riemannian 
manifold with (2) and (3). For any   0C S   , there 
is a unique harmonic function    0u C M C M   
such that   =

S
u 


. 

Proof: We first fix the base point o . Let  S   be 
equivalent to the unit tangent sphere   11 = n

oS S  . From 
[1], without loss of generality, we may assume that 

  1oC S  . Since 0MK  , M  is diffeomorphic 
to nR . Denote     1, 1 = n

or S S    as the normal 
coordinate around o . Then,    = ,  1oS     . Now, 
we define an extension of   and still denote it by  , 
so that  

   , = , for all > 0.r r     

Then   is a differential function on  \ 0M . Write  

   
   

1 1

osc = ,sup
Bx y Bx

y x  


  

Now, we proceed to prove Theorem 4 via the follow- 
ing steps: 

1) 
 

1

1

1
osc = e

Bx
O







 
 
 
 

. According to the defi-  

nition of  , if  1xy B , then  

       = ,y x c             

where ,      is the geodesic sphere coordinate of ,  y x , 
respectively. By Lemma 3, we have  

      2 2 1 ln 1 1,xx y           

1

1e .c


 


    

2) Consider     such that 
1

1= eO






 
 
 
 

 .  

Let  0C R  , 1 0  ,  sup   1,1p    . Set  
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2

2

d
= .

d

xM

xM

y y y

y y

  


 



  

Then  

         

    
     

2

1

2

1

1
(1)

d
=

d

           = osc .sup

xBx

xBx

BxBx

y y x y

y y

y x

   
 

 

  




 





 

At the same time, we have  

      

  
       

0 0 = 0

2

02 = 0

=

            = d .
d

x x

y

M x x
yM

x x x

x
x x y

x x

  

 
 

 

  

 
  
 
 




 


 

Now it is not difficult to show that (c.f.[1,2])  

   1osc .Bx
x c     

3) Consider the function  

   
1

1
2= e ,δ = = 1

1

c
c

g C x c


 



  


. Then,  

 
3

2δ = 1 ,
2

c       

   

   

5 3
2

2 2

5 3

2 2

3
δ = 1 1

2 2

3
     = 1 1 .

2 2

c

c

   

  

 

 

          
        

 

The last equality is due to 
2

1  . Hence, we 
deduce the followings:  

           δ= e δ δ ,x xg x x x x          

                            
                             

             

2δ δ

2δ 2

5 3 3 1
3 1 2δ 2 δ 2 2 2 2

= e δ δ e δ 2 δ δ

    = e δ δ 2δ δ δ 2 δ δ

1 3 1
    = e 1 1 1 e 1 1 1 1

4 4 2

x x x x

x x

g x x x x x x x x x x

x x x x x x x x x x x x x

c c

 



 

    

     

            

 



       

            
              

                     
.

 

(4) 

For any fixed point p M , denote  0 = ,d o p , and denote  = ,d o x  for any  0,x B o  . Then 

   
2

2 min max

0

,
1M M

a
b K K 


    


                                 (5) 

which means that  
       

0 0 0

1 1 1 1
coth  1 ,

1 1 1

n a n a a n n
b 

  

   
    

  
                         (6) 

by (4), we have  

   

   

  

   

   

       

  

 

 
 

2 δ
3 2

δ
5 3 3 1

0 02 2 2 2

2 2 2
δ

3 2 5 3 3

2 2 2

1
e

14 1 1

1 1 1 13 1 1
       e coth

1 14 1 1 2 1 1

1 1 13 1
   e

1 14 1 1 4 1 1 2 1

g c

n b n a a n
c

n b n ac c c
ce





 

 
 

 
    

  
     





 

 
    

   
                

                    

   
 

     

  

 

 
 

    
 

2 2
δ

2 5 5 3 3

2 2 2 2

2
δ

3 1 1 1 11 3
   = e 1

4 1 1 14 1 4 1 4 1 1 2 1

7 2 1 1 4 1
   e < 0

1 4 1

c n b c n acc c c c

n b n acc
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provided that c  is small enough and by the conditions  

   1 < 2 , 2 1 2 1 > 7.b a n a b      

Hence,  
< 0.g  

It is obvious that    
 

δ 1 1
e e

1

c
x

x x


 




 


 so that  

there exists a constant 1c  such that 

 1 .c g       

According to the well-known Perron canonical har- 
monic function theorem, the barrier functions cg   
and cg   assure that there exists a harmonic function 
u  satisfying  

1 1 .c g u c g       

Now, it is easy to verify that u  satisfies the boundary 
conditions. Thus, Theorem 4 is proved. 
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