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ABSTRACT 

This paper describes the robust optimum design which combines the geometrical optimization method proposed by 
Hashimoto and statistical method. Recently, 2.5″ hard disk drives (HDDs) are widely used for mobile devices such as 
laptops, video cameras and car navigation systems. In mobile applications, high durability towards external vibrations 
and shocks are essentials to the bearings of HDD spindle motor. In addition, the bearing characteristics are influenced 
by manufacturing error because of small size of the bearings of HDD. In this paper, the geometrical optimization is car- 
ried out to maximize the bearing stiffness using sequential quadratic programming to improve vibration characteristics. 
Additionally, the bearing stiffness is analyzed considering dimensional tolerance of the bearing using statistical method. 
The dimensional tolerance is assumed to distribute according to the Gaussian distribution, and then the bearing stiffness 
is estimated by combining the expectation and standard deviation. As a result, in the robust optimum design, new 
groove geometry of bearing can be obtained in which the bearing stiffness is four times higher than the stiffness of 
conventional spiral groove bearing. Moreover, the bearing has lower variability compared with the result of optimum 
design neglecting dimensional tolerance. 
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1. Introduction 

Recently, demand of hard disk drives (HDDs) has been 
continued to expand because of development of informa- 
tion technology in industries. Especially, 2.5″ HDDs are 
widely used for many information devices such as lap- 
tops, digital video cameras and car navigation systems. 
Consequently, convenience and performance of informa- 
tion devices have been improving year by year. In the 
meantime, usage environments in which HDDs are used 
under the conditions occurring vibrations have been be- 
ing severe than before. Therefore, improvement of vibra- 
tion characteristics of HDDs has been strongly demanded. 
Hydrodynamic bearings, which are used in spindle motor 
of HDDs, are one of key machine elements to improve 
vibration characteristics of HDDs. The hydrodynamic 
bearings which mainly have grooves called the spiral or 
herring-bone groove are traditionally used for HDDs 
spindle motor. There are several researchers [1-7] who 
attempted to investigate the research related to the im- 
provement of vibration characteristics of the hydrody- 
namic bearings. However, they are still insufficient for a 
significant improvement of bearing characteristics. One 
reason is because the groove geometry is fixed on the 
spiral or herring-bone grooves. On the other hand, Hashi-  

moto and Ochiai [8] dealt with the geometrical optimiza- 
tion aimed at discovering the optimum groove geometry 
which have never found before and improving dramati- 
cally bearing stiffness of thrust air bearings. In addition, 
the higher performance of the bearing having optimum 
groove geometry is experimentally verified. Moreover, 
Ibrahim et al. [9] applied the same method of the geo- 
metrical optimization to thrust air bearings on HDD spin- 
dle motor and the effectiveness was theoretically dis- 
cussed. 

In the process of manufacturing thrust hydrodynamic 
bearings for 2.5″ HDDs, it is compulsory to maintain 
high dimensional accuracy due to high influence by 
manufacturing errors towards the bearing characteristics. 
Therefore, it is necessary to severely design considering 
the dimensional tolerance of design variables of the bear-
ings. In that case, a new designing method which treats 
the tolerance numerically in advance is reasonable com- 
pared with the conventional method which determines 
the tolerance by trial-and-error method. In the conven- 
tional designing method of the bearings, a deterministic 
method neglecting the dimensional tolerance of design 
variables is being mainly used. For that reason, there are 
several researchers [10-14] who attempted to investigate 
the influence of manufacturing errors on the bearing  
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characteristics through sensitivity analysis. However, as 
far as the authors know, there is no research which had 
carried out the optimum design with the consideration of 
manufacturing errors for the hydrodynamic bearings of 
HDD spindle motors. In this paper, the influence of di- 
mensional tolerance on bearing characteristics is con- 
ducted using the statistical method. And then, the robust 
optimum design based on the geometrical optimization 
combined with the statistical method [15] is applied to 
thrust hydrodynamic bearings of 2.5″ HDD spindle mo- 
tor. The results obtained are compared with the result by 
the conventional optimum design neglecting tolerance to 
verify the effectiveness of the proposed method. 

2. Geometrical Optimization and Analysis of 
Bearing Characteristics 

2.1. Geometrical Optimization 

In this paper, the geometrical optimization proposed by 
Hashimoto and Ochiai [8] is applied to thrust hydrody- 
namic bearings for 2.5″ HDD spindle motor to drastically 
improve the bearing stiffness. In the process of optimiz- 
ing the groove geometry, the initial geometry is estab- 
lished and a groove shape, which is likely to provide a 
maximal bearing stiffness, is determined by using the 
method of successive evolution from the initial geometry 
as shown in Figure 1. Therefore, spiral groove bearings 
are considered as the initial geometry to raise calculation 
efficiency because the spiral groove bearings have rela- 
tively high bearing stiffness compared with other types 
of bearings. The initial spiral groove geometries are 
flexibly modified using the cubic spline interpolation 
function as shown in Appendix I. The whole groove is 
partitioned into n parts in the r direction, and then each 
nodal point  ,i i iP r   is provided to the inter- 
section with the cubic spline interpolation function. At 
the time when a groove geometry is gradually evolved 

 1i   n
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Figure 1. Method of changing groove boundary geometry. 

from the previous stage (k step) to the present stage (k + 
1 step) shown by the broken line in Figure 1, the r coor- 
dinate of each nodal point  ,i i iP r   is fixed, and the θ 
coordinate is changed when the angle δ moves in the 
positive direction or negative direction, resulting to a 
new nodal point  i,i iP r v  . Then, the groove ge- 
ometry is revised, using the new coordinate value that 
can be obtained using this way, and gradually evolved 
until the value of the bearing stiffness becomes maxi- 
mum. 

2.2. Analysis of Bearing Characteristics 

In this paper, the calculation method of bearing charac- 
teristics is derived by applying the boundary-fitted coor- 
dinate system to adjust the geometrical optimization 
method. Moreover, in the process of analyzing the static 
and dynamic characteristics of the bearings, the perturba- 
tion method is applied to the Reynolds equivalent equa- 
tion. The Reynolds equivalent equation can be solved by 
using the Newton-Raphson iteration method, and the 
static component p0 and dynamic component pt of pres- 
sure are obtained. These detailed calculation method is 
shown in Appendix II. 

The load-carrying capacity W is obtained by the fol-
lowing integration: 

  2π 2

0 00 1
d dr aW p h p r r          (1) 

where pa indicates the atmospheric pressure. 
The minimum oil lubricating film thickness hrmin is 

simultaneously determined from the equilibrium condi- 
tion between the axial load acting on a thrust bearing and 
the bearing load-carrying capacity. The minimum oil lu- 
bricating film thickness hrmin is obtained by solving the 
following force balance equation: 

 min 0rW h mg              (2) 

The spring coefficient k and damping coefficient c can 
be obtained, respectively, by integrating the real and 
imaginary parts of the dynamic pressure components, pt, 
as follows: 

 2π 2

0 1
Re d dtk p r r             (3) 

 2π 2

0 1
Im d dtc p r r              (4) 

Finally, the bearing stiffness is given by the following 
equation. 

 22
fK k   c             (5) 

3. Estimation of Variability Using Statistical 
Method 

Designing of the bearings for HDD spindle motor is re-  
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quired the high bearing performance and quality. There- 
fore, in this case, the optimum design is applied to the 
bearings for obtaining high bearing performance. On the 
other hand, bearing performance is highly influenced by 
manufacturing error because of small size of the bearings 
of HDD. However, the conventional method of designing 
the bearings was conducted using deterministic method, 
which neglected the dimensional tolerance. Hence, con- 
sidering the influence of dimensional tolerance under 
product design is very important in terms of the quality 
and productivity of HDD spindle motors. 

Figure 2 shows a conceptual diagram between design 
variables and variability of bearing performance. The ver- 
tical axis shows the typical bearing performance and the 
horizontal axis shows the typical design variables, for 
example, groove depth, groove width ratio and so on. As 
can be seen in the figure, variability of bearing perform- 
ance shows non-uniform under the same range of dimen- 
sional tolerance. In the conventional optimum design 
neglecting tolerance, solution A can be obtained as opti- 
mized solution. Solution A is maximum value of bearing 
performance, but the variability becomes large when 
design variable is changed due to manufacturing error. 
On the other hand, variability of bearing performance of 
solution B is lower than that of solution A, although the 
bearing performance of solution A is better than solution 
B. That means, solution B has larger robustness of bear- 
ing performance compared with solution A. Therefore, it 
is necessary to find the design variable which can be ob- 
tained low variability with high bearing performance like 
solution B. 

Figure 3 shows the relationship between bearing per- 
formance and variability. The figure shows the trade-off 
correlation between an increase of the variability and the 
bearing performance. In addition, it is possible that the 
spatial distribution of bearing performance is a multimo- 
dal distribution because the hydrodynamic bearings have 

 

 

Figure 2. Variability of design variable and bearing per-
formance. 

 

Figure 3. Trade-off correlation between bearing perform-
ance and variability of bearing performance. 

 
relatively a lot of dimensions. In this case, it is important 
to treat multi-objective problem to obtain high bearing 
performance and robustness. Moreover, optimum design 
is needed to consider a statistical factor for designing of 
commercial HDDs. In this paper, the robust optimum 
design with high robustness is newly introduced to thrust 
hydrodynamic bearings. The evaluation method for the 
variability of the bearing performance using the statistic- 
cal method is described as follows. 

The variability of design variables is expressed by the 
probability density function, and then the robustness is 
estimated based on the expectation and standard devia- 
tion. 

In the robust optimum design of thrust hydrodynamic 
bearings, the design variables such as groove depth and 
groove width ratio are given by the following expression 
as the random variable vector s. 

 1 2, , ns s s s           (6) 

Figure 4 shows a conceptual diagram considering 
random variables s1 and s2. In the figure, a target value μi 
(i = 1 ~ n, where n represents the number of random vari- 
able) is the central value of the distribution of design 
variable, in which the design variable is assumed to dis- 
tribute according to the Gaussian distribution within the 
range of ±Δsi from the central value μi. Consequently, the 
marginal probability density function for the component 
si of random variable vector s can be expressed as fol- 
lows. 
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   ～n     (7) 

In this paper, the tolerance of the bearing dimension is 
considered as ±3σi. 
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Figure 4. Probability density function. 
 

When the marginal probability density functions of s 
are independent each other, the conjunctive probability 
density function is expressed as follows. 

         1 2 1p p p p if f s f s f s i n     ～s   (8) 

As can be seen in Figure 4, when the variability is 
given to the design variables by the Gaussian distribution, 
the bearing performance will be distributed at the same 
time. Therefore, in estimating the bearing performance, it 
is necessary to use the expectation and standard deviation. 
The expectation and standard deviation of bearing per- 
formance are obtained, respectively, as follows, 
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where q(si) indicates the bearing characteristics. 

4. Robust Optimum Design of HDDs  
Considering Dimensional Tolerance 

In this paper, the optimum problem is defined as maxi- 
mizing the bearing stiffness of thrust hydrodynamic bear- 
ings to improve vibration characteristic of HDDs. 

Figure 5 shows a schematic diagram of a 2.5″ HDD 
spindle motor with hydrodynamic bearings. A rotor which 
consists of a shaft, a hub, and two disks is supported by 
two thrust hydrodynamic bearings in the axial direction. 
In designing the bearings, we fixed the following design 
variables, in which outside radius of bearing r1 is 2.55 
mm, inside radius of bearing r2 is 1.25 mm, rotational 
speed of shaft ns is 4200 rpm, seal ratio  1s sR r r  is 
0.636, inflow angle β is 15 deg., rotor mass m is 18.6 g 
and oil lubricant viscosity μ is 1.308 × 10−2 Pa·s. The 
values are defined by referring specifications of an actual 
2.5″ HDDs. 

 

Figure 5. Schematic diagram of spindle motor of 2.5″ HDD 
and hydrodynamic thrust bearing, (1) Overall view of spin-
dle motor, (2) Spiral grooved thrust bearing; (a) Position of 
thrust bearings and (b) Groove geometry. 

 
In the present study, realizing an optimal design is first 

done by examining the magnitude of the bearing stiffness 
by changing the number of partitions of the cubic spline 
interpolation function in the r direction from two to six to 
process the optimal number of partitions. As a result, 
because the maximum value of the bearing stiffness is 
found when there are four partitions, the number of parti- 
tions in the r direction is fixed to four. In addition, 
groove depth hg, groove width ratio α and number of 
grooves N are given as design variables. Consequently, 
The design variable vector X consisting of the bearing 
dimensions is defined as follows: 

 1 2 3 4, , , , , ,gh N            (11) 

where 1 − 4 are extents of angle change from the initial 
geometry. 

In the robust optimum design, the dimensional tolerance 
of design variables is considered. In this case, it is essen- 
tial to consider the tolerance for all design variables. 
However, there is a possibility that computational time 
will be enormously large because of relatively large num- 
ber of design variables. Therefore, the bearing dimen- 
sions with high sensitivity on the bearing performance 
are checked through the sensitivity analysis. As a result 
of the sensitivity analysis, groove depth hg and groove 
width ratio α have high sensitivity to the bearing charac- 
teristics, which are the bearing stiffness K and oil lubri- 
cating film thickness hr. Consequently, the dimensional 
tolerances of groove depth hg and groove width ratio α 
should be considered. In this paper, we determined ex- 
perimentally the tolerance ranges of groove depth of Δhg 

= ±0.5, ±1.0, ±1.5, ±2.0 μm and groove width ratio of Δα 
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= ±0.03, ±0.05. 
On the other hand, as for the constraint functions, the 

upper and lower limits of the design variables in Equation 
(11) are considered. In addition, the allowable oil lubri- 
cating film thickness ha and non-negative damping coef- 
ficients c within variability are also considered as the 
constraints to guarantee the safety operation of the bear- 
ing. Moreover, the minimum groove width Lmin of grooved 
part as shown in Figure 6 is considered because there are 
some cases where the groove geometry will be in irregu- 
lar shapes. The minimum groove width Lmin should be 
larger than the diameter of the industrial tool da. Then, in 
this paper, the diameter of industrial tool of da = 0.10 
mm is determined with reference to prove diameter of 
industrial tool for an actual 2.5″ HDD spindle motor. The 
values of constraint conditions are shown in Table 1. 

In the robust optimum design, it is necessary to reduce 
the variability of bearing characteristic value. Therefore, 
in this paper, the value of the standard deviation of bearing 
characteristic value obtained by Equation (10) including 
3σ (F(X)) has to be less than 20% of the expectation 
value obtained by Equation (9). Then, the constraint 
equation is defined as follows, 

     0.2 3 0E F F X X      (12) 

All of the constraint conditions are summarized as the 
following inequality expression: 

   0 1 1ig i  ～X 8         (13) 

where the constraint functions in Equation (13) are de- 
fined as follows. 

 

 

Figure 6. Relationship between groove width and diameter 
of industrial tool. 

 
Table 1. Constraint conditions. 

Parameters Values
Minimum extents of angle change δimin(i=1 ~ 4) (deg.) −180 
Maximum extents of angle change δimax(i=1 ~ 4) (deg.) 180 
Minimum groove depth hgmin (μm) 5 
Maximum groove depth hgmax (μm) 15 
Minimum groove width ratio αmin 0.1 
Maximum groove width ratio αmax 0.9 
Minimum number of grooves Nmin 6 
Maximum number of grooves Nmax 12 
Allowable film thickness ha (μm) 5.0 
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(14) 

The objective function is expressed as follows: 

   f E KX              (15) 

The optimum design problem of thrust hydrodynamic 
bearings is formulated from the above equation as fol- 
lows: 

 
   

Maximize :

subjected to 0 1 18i

f

g i



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X

X
    (16) 

This optimum design problem is a typical nonlinear 
optimum design problem because the objective function 
and constraint functions are nonlinear including seven 
design variables. Therefore, the objective function has 
complicated multidimensional distribution. Consequently, 
at first several solutions are investigated through para- 
metric study to find some local optimum solutions. Then, 
only the global optimum solution will be calculated using 
sequential quadratic programming (SQP) [8]. 

To clarify the validity of present robust optimum de- 
sign, the results of the robust optimum design are com- 
pared with the results neglecting tolerance. Figures 7 and 
8 show the flowcharts of the present robust optimum 
design and the conventional optimum design neglecting 
tolerance, respectively. As shown in these figures, the 
process of obtaining the values of the expectation and 
standard deviation neglecting tolerance are different from 
that of the robust optimum design. The calculation method 
of these values is described as follows. 

In the optimum design neglecting tolerance, the same 
design variables and prescribed values used for the ro- 
bust optimum design are given. However, the constraint 
condition of variability in Equation (12) and minimum 
groove width Lmin are excluded. Moreover, the objective 
function neglecting tolerance is different from the func- 
tion of the robust optimum design because the dimen- 
sional tolerance is neglected. The objective function is 
defined as follows. 

 f KX                (18) 

The flow of the optimum design neglecting tolerance 
is shown in the range enclosed with single dotted line in 
Figure 8. The values of the expectation and standard 
deviation are calculated using the same tolerances of 
groove depth Δhg and groove width ratio Δα by Equa- 
tions (9) and (10). 
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Figure 7. Flowchart of present robust optimum design. 
 

5. Example of Optimized Results and  
Discussions 

Figure 9 shows the results of groove geometries and 
static pressure distributions, respectively. In the figures, 
the groups (1) and (2) show respectively the results ob- 
tained by the robust optimum design (tolerance range, 
Δhg= ±1.0 μm, Δα = ±0.05) and by the optimum design 
neglecting tolerance and the group (3) shows the result of 
spiral groove bearing. The optimized groove bearings by 
the robust optimum design and by the optimum design 
neglecting tolerance as shown in Figures 9(1) and (2) 
have new groove geometries with similar geometry of 
spiral groove bearing in the inner vicinity; with an oppo- 
site spiral geometry in the outer vicinity. In this paper, 
such types of bearings that have an outer vicinity bends 
are called modified spiral groove bearing. 
Table 2 shows the example of optimized results. As can 
be seen in Table 2, the values of bearing stiffness of 
modified spiral groove bearings is more than four times 
the value of spiral groove bearing. The bearing stiffness 
is increased with decreasing the oil lubricating film 
thickness because the relationship between the oil film 

 

Figure 8. Flowchart of calculation of objective function by 
conventional optimum design neglecting tolerance. 

 
thickness and the bearing stiffness is trade-off. The pres- 
sure of outer bearing boundary is decreased by the in- 
verse step effect as shown in Figures 9(1) and (2) by ac- 
companying the oil lubricating film thickness is de- 
creased. However, minimum oil lubricating film thick- 
nesses hrmin are the same value as the allowable film 
thickness (ha = 5.0 μm). Consequently, there is a low risk 
of contact between the bearing and housing. On the other 
hand, the value of minimum groove width Lmin by the 
robust optimum design is exceeded the constraint value 
of 0.10 mm, while the value of the optimum design ne- 
glecting tolerance is 0.034 mm. As can be seen in the 
Table 2, the number of grooves N obtained by the robust 
optimum design is reduced compared with the number of 
optimum design neglecting tolerance. Additionally, the 
extents of angle change are different from the changes of 
the optimum design neglecting tolerance. As a result, the 
optimized values of the number of grooves N and extents 
of angle change 1 − 4 are newly found to secure the 
minimum groove width. Therefore, in the robust opti- 
mum design, it is possible to determine the diameter of 
industrial tool under product design by providing the 
constraint condition for groove width and to reduce the 
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Figure 9. Bearing geometry and static pressure distribution of each optimum design and spiral grooved bearing (initial 
groove), (1) Robust optimum design considering tolerance (tolerance range, hg = ±1.0 m,  = ±0.05 ), (2) Optimum design 
neglecting tolerance and (3) Spiral grooved bearing; (a) Groove geometry and (b) Static pressure distribution. 

 
Table 2. Optimized results 

Parameters 
Robust opt. considering tolerance  

(tolerance range, Δhg = ±1.0 μm, Δα = ±0.05 ) 
Opt. neglecting tolerance Spiral groove 

Extent of angle change δ1 (deg.) −20.3 2.63 0 

Extent of angle change δ2 (deg.) 37.5 56.1 0 

Extent of angle change δ3 (deg.) −10.5 −28.7 0 

Extent of angle change δ4 (deg.) 18.3 4.18 0 

Groove depth hg (μm) 8.0 10.0 10.0 

Number of grooves N 6 12 12 

Groove width ratio α 0.56 0.50 0.50 

Minimum film thickness hrmin (μm) 5.0 5.0 9.1 

Minimum groove width Lmin (mm) 0.10 0.034 0.104 

Bearing stiffness K (N/m) 7.9 × 105 8.1 × 105 1.8 × 105 

 
manufacturing costs due to easy manufacturing of bear- 
ing grooves. 

Figure 10 shows a comparison of the results of robust 
optimum design and optimum design neglecting tolerance. 
In the figures, (a), (b) and (c) show the minimum oil lu- 
bricating film thickness within variability, the variability 
of bearing stiffness and the expectation of bearing stiff- 
ness, respectively. 

As can be seen in Figure 10(a), the values of minimum 
film thickness obtained by the optimum design neglect- 
ing tolerance are less than the allowable film thickness. 
On the other hand, the values of the robust optimum de- 
sign are exceeded the allowable film thickness for all 
tolerances. This means that there is a low risk of contact 
between the bearing and housing when the bearings are 
manufactured within the setting ranges of tolerance. 

In Figure 10(b), the vertical axis shows the ratio of 
expectation value and standard deviation of bearing 

stiffness. This means that when the ratio becomes smaller, 
the expectation becomes larger and standard deviation 
becomes smaller. The values of ratio obtained by the 
robust optimum design are less than the ratio by the op- 
timum design neglecting tolerance. In addition, the ten- 
dency of ratio becomes flat and the values have not in- 
creased for all tolerances of groove depth. As a result, it 
is confirmed that the robust optimum design is effective 
of suppressing the variability of bearing stiffness. 

As can be seen in Figure 10(c), the expectation of 
bearing stiffness by the robust optimum design is equiva- 
lent to the value neglecting tolerance when the tolerance 
of groove depth is set within Δhg = ±1.5 μm. On the other 
hand, the value is decreased from Δhg = ±1.5 μm to Δhg = 
±2.0 μm. Because the relationship between the oil film 
thickness and the bearing stiffness is trade-off, the ex- 
pectation of bearing stiffness is decreased with increasing 
the minimum oil film thickness in the tolerance range as  
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(a) 

 
(b) 

 
(c) 

Figure 10. Comparison of results of robust optimum design 
considering tolerance and optimum design neglecting tol-
erance: (a) Minimum oil lubricating film thickness; (b) 
Variability of bearing stiffness; and (c) Expectation of bear-
ing stiffness. 

 
shown in Figure 10(a). The reason why such result ob- 
tained is because of suppressing the variability of bearing 
stiffness by Equation (12). Consequently, the tolerance of 
groove depth of Δhg = ±1.5 μm is recommended to sup- 

press the variability with high bearing stiffness. 

6. Conclusions 

This paper described the methodology and sample of 
robust optimum design considering dimensional toler- 
ance based on the statistical method combined with the 
geometrical optimization for thrust hydrodynamic bear- 
ings of a 2.5″ HDD spindle motor. The conclusions are 
briefly summarized as follows. 

1) The optimized groove geometries obtained by the 
robust optimum design and by the conventional optimum 
design neglecting tolerance are the modified spiral groove 
with bends in the vicinity of the outer circumference of 
the bearing. The bearing stiffness of the modified spiral 
groove bearing becomes more than four times compared 
with the stiffness of spiral groove bearing. 

2) It is possible to determine the diameter of industrial 
tool under product design by providing the constraint 
condition for groove width. 

3) The expectation of bearing stiffness by the robust 
optimum design is equivalent to the value neglecting 
tolerance, and the standard deviation can be suppressed 
compared with the standard deviation neglecting toler- 
ance when the bearings are manufactured within the tol- 
erance of groove depth of Δhg = ±1.5 μm.  
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Nomenclature 

b1 : Width of groove (m) 

b2 : Width of land (m) 

c : Damping coefficient of oil lubricating film (N･s/m) 

da : Diameter of industrial tool (m) 

E(F(X)) : Expectation of bearing characteristics 

f(X) : Objective function (N/m) 

fp(X) : Probability density function 

g : Acceleration of gravity (m/s2) 

gi(X) (i = 1~ n) : Constraint function 

hg : Depth of groove (m) 

hr : Oil lubricating film thickness (m) 

k : Spring coefficient of oil lubricating film (N/m) 

K : Bearing stiffness (N/m) 

N : Number of grooves 

ns : Rotational speed of shaft (rpm) 

Pi (i = 1~n) 
: Nodal points partitioning cubic spline interpolation 
function in the r direction 

p0 
: Static component of oil lubricating film pressure  
(absolute pressure) (Pa) 

pa : Atmospheric pressure (Pa) 

pt 
: Dynamic component of oil lubricating film pressure 
(Pa/m) 

r : Coordinate of radial direction (m) 

r1 : Outside radius of bearing (m) 

r2 : Inside radius of bearing (m) 

rs : Seal diameter (m) 

Rs : Seal diameter ratio (=rsr1) 

Tr : Friction torque of bearing surface (nm) 

W : Load-carrying capacity of bearing (n) 

X : Vector of variables used in calculations 

 : Groove width ratio (=b1(b1 + b2)) 

 : Inflow angle (deg.) 

r : Equipartition space of r (m) 

 : Coordinate of circumferential direction (rad) 

i 
: Angle of initial geometry (spiral curvature) at the ith 
nodal point (rad) 

(F(X)) : Standard deviation of the bearing characteristics 

i
: Extent of angle change from initial geometry (spiral 
curvature) at the ith nodal point (rad) 

δi 
: Extent of angle change during evolution at the ith 
nodal point (rad) 

 : Viscosity of oil lubricating film (Pa･s) 

 : Density of oil lubricating film (kgm3) 

 : Coordinates of change based on boundary-fitted  
coordinate system (m) 

 : Coordinates of change based on boundary-fitted  
coordinate system (rad) 

f : Squeeze frequency of the rotating shaft (rad/s) 

Subscripts 

Max : Maximum value of state variables 

Min : Minimum value of state variables 

Appendix I 

The cubic spline function is a cubic polynomial equation 
in each section of  1,i ir r   . The condi-
tion required for the cubic spline function is a continuity 
of the second order derivative of the function at each 
nodal point. 

 1, 2, ,i   n

The cubic spline interpolation function is expressed as 
the following equation. 
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Considering that   0ir    for  and 0i  1i n  , 
 ir    1i   n  are given as follows: 

1A d                (I-2) 
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where d in Equation (I-3) is expressed as the following. 

   1 1

1
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1
2

2n nd r    nr        (I-6) 

An arbitrary groove geometry can be represented by 
finding the spline function in all sections of the target 
groove geometry using Equations (I-1) and (I-2). 

Appendix II 

When optimizing the groove geometry, it is necessary to 
perform a sequential analysis of characteristics of a bear-
ing with a groove geometry modified in succession by 
the finite difference method, but because of the r-θ polar 
coordinate system, direct processing is rather different to 
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realize. Therefore, an analysis of the bearing stiffness is 
performed first by using a boundary-fitted coordinate 
system as shown in Figure 11 [16,17] and transforming 
a complex groove geometry into a simple fanlike geome-
try. A boundary transformation function used for the 
transformation is given as 

r                 (II-1) 
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 (II-2) 

The following Reynolds equivalent equation can be 
obtained from the equilibrium between the mass flow 
rates of oil inflowing into and outflowing from the con-
trol volume due to the shaft rotation and the squeezing 
motion: 

2 1 2 1 2 1 2 1I III II IV I II III IVQ Q Q Q Q Q Q Q Q                (II-3) 

where Q , Q  indicate the mass flow rates, across the 
boundary of   = const. and across the boundary of   
= const. as shown in Figure 12. On the other hand, Q  
indicates the mass flow rate due to squeezing motion 
inside the control volume. 

Q , Q  and  are expressed, respectively, as 
follows: 
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Then, in Equation (II-3), subscripts l and 2 and I-IV  

 
(a) Original bearing geometry   (b) Transformed bearing geometry 

Figure 11. Bearing geometry transformation based on the 
boundary-fitted coordinate system. 

 

 

Figure 12. Definition of control volume. 
 

indicate the domains in the control volume. 
Assuming that variations of the bearing clearance are 

microscopic, the minimum oil lubricating film thickness 
h and pressure p can be expressed by the following equa-
tion: 

0 0
f fj t

th h e p p p e
j t          (II-6) 

In that case, ε indicates the amplitude of small varia-
tions of the oil lubricating film thickness and p0 and pt 
express a static component and a dynamic component, 
respectively. 

The substitution of Equation (II-6) into Equation (II-3) 
and the negligence of terms of small magnitude of ε of 
above second order allow the introduction of two equa-
tions for terms ε of orders 0 and l as follows: 
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In that case, subscript 0 indicates a static component 
of the mass flow rate determined from Equation (II-4) 
and subscript t similarly indicates a dynamic component. 

Solving Equations (II-7a) and (II-7b) in turns by the 
Newton-Raphson iteration method, the static and dy-
namic components, p0 and pt, are obtained.

 


