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Abstract 
 
In this paper, we introduce the concept of (4/3) bandwidth interval based forecasting. The historical en- 
rollments of the university of Alabama are used to illustrate the proposed method. In this paper we use the 
new simplified technique to find the fuzzy logical relations. 
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1. Introduction 

For planning the future forecasting plays an important 
role. During last few decades, various approaches have 
been developed for forecasting data of dynamic and non- 
linear in nature. Fuzzy theory [1] has been successfully 
employed to prediction. Many studies on forecasting 
using fuzzy logic time series have been discussed such as 
enrollments, the stock index, temperature and fi- nancial 
forecasting. Some researchers used time invariant model 
and some used time variant model. The traditional statis-
tical approaches can not predict problems in which the 
values are in linguistic terms.  

After introduction of fuzzy sets by Zadeh [1], Song 
and Chissom [2] presented the definition of fuzzy time 
series and outlined its model by means of fuzzy relation 
equations, and approximate reasoning. They applied the 
model for forecasting under fuzzy environment in which 
historical data are of linguistic values. In that article, they 
showed that a universal forecasting method using fuzzy 
sets can be derived from the model of his process. After 
then many researchers ([2-7]) used this data to forecast. 
Cheng et al. [8] presented the trend-weighed fuzzy time 
model for TAIEX forecasting. Song et al. [2] and [9] 
used the relationship model, in which they constructed a 
relation matrix to relate the fuzzified enrollments of year 
(i – 1) and year i. Chen [3] presented a method which has 
the advantage of reducing the calculation time and sim-
plifying the calculation process. Chen et al. [10] used the 
differences of the enrollments to present a method to 
forecast the enrollments of the University of Alabama. 

Huang [11] extended Chen’s [3] work and used simpli-
fied calculations with the addition of heu- ristic rules to 
forecast the enrollments. Chen [4] presented a forecasting 
method based on high-order fuzzy time series for fore-
casting the enrollments of the University of Alabama. 
Most of the forecasting methods require fuzzy relation. 
All such methods have following drawbacks:  

1) Framing of fuzzy relation requires a lot of computa-
tions. 

2) Computation cost is very high. 
However, obtaining accurate forecast of student enroll-

ment is not an easy task, as many factors determine the 
impact of the enrolment numbers. So, in the proposed 
method we introduced the interval based forecasting, wh- 
ich gives most plausible range of enrollments. 

2. Basic Concepts of Fuzzy Time Series 

Let U = {u1, u2, u3, u4, ···, un} be the universe of dis-
course and let A = |fA (u1)/u1| + |fA (u2)/u2 + ··· + |fA (un)/un| 
be the fuzzy set defined on U. Here fA: U[0,1] is the 
membership function of A, fA (ui),  i  [1,n] indicates 
the grade of membership of ui in the fuzzy set A. 

2.1. Fuzzy Time Series 

Let X(t) (t = 0,1,2, ···) be the universe of discourse and 
the fuzzy set defined on X(t) be fi(t) (t = 0,1,2, ···). Then 
F(t) = fi(t) t = 0,1,2, ···, i = 1,2, ··· the collection of all 
fuzzy sets defined on X(t) is called a fuzzy time series of 
X(t) (t = 0,1,2, ···). 
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2.2. Fuzzy Relation 

If F(t) is caused by F(t – 1), denoted by F(t)  F(t – 1), 
then this relationship can be represented by F(t) = F(t – 1) 
* R(t, t – 1), where * denotes the composition operator 
and R(t, t – 1) is a fuzzy relation between F(t) and F(t – 1). 

2.3. First Order Model 

The model in which the relation R(t, t – 1) is a fuzzy re-
lation between F(t) and F(t – 1) is called the first order 
model of F(t).  

2.4. Time Invariant Fuzzy Time Series 

If in first order model of F(t) relation R(t, t – 1) = R(t – 1,  
t – 2) for any time t, then F(t) is called time invariant 

fuzzy time series. 

2.5. Time Variant Fuzzy Time Series 

If in first order model of F(t) relation R(t, t – 1) ≠ R(t – 1, 
t – 2) for any time t, then F(t) is called time invariant 
fuzzy time series. 

3. Proposed Method 

We now discuss our proposed method. The historical 
data and proposed method are shown in Table 1. Repeat 
Steps 1-3 of the method of Chen and Hsu [7] as follows. 
Step 1: Define the universe of discourse U = [13 000, 20 
000] and partition it into several even and length intervals 
u1 = [13 000, 14 000], u2 = [14 000, 15 000], u3 = [15 000, 
16 000], u4 = [16 000, 17 000], u5 = [17 000, 18 000], 

 
Table 1. Historical data and proposed method. 

Year Actual data Fuzzified input Fuzzified output Calculated enrollmnt Forecasted interval 

1971 13 055 A1    

1972 13 563 A2 A1 13 250 [12 104, 14 396] 

1973 13 867 A2 A2 13 750 [12 604, 14 896] 

1974 14 696 A3 A2 13 750 [12 604, 14 896] 

1975 15 460 A5 A3 14 500 [13 354, 15 646] 

1976 15 311 A5 A5 15 375 [14 229, 16 521] 

1977 15 603 A6 A5 15 375 [14 229, 16 521] 

1978 15 861 A7 A6 15 625 [14 479, 16 771] 

1979 16 807 A9 A7 15 875 [14 729, 17 021] 

1980 16 919 A9 A9 16 833 [15 687, 17 979] 

1981 16 388 A8 A9 16 833 [15 687, 17 979] 

1982 15 433 A5 A8 16 500 [15 354, 17 646] 

1983 15 497 A5 A5, A6 15 500 [14 354, 16 646] 

1984 15 145 A4 A5, A6 15 500 [14 354, 16 646] 

1985 15 163 A4 A4 15 125 [13 979, 16 271] 

1986 15 984 A7 A4 15 125 [13 979, 16 271] 

1987 16 859 A9 A9 16 833 [15 687, 17 979] 

1988 18 150 A10 A8, A9 16 667 [15 521, 17 813] 

1989 18 970 A11 A10 18 125 [16 979, 19 271] 

1990 19 328 A12 A11 18 750 [17 604, 19 896] 

1991 19 337 A12 A12 19 500 [18 354, 20 646] 

1992 18 876 A11 A12 19 500 [18 354, 20 646] 
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u6 = [18 000, 19 000], u7 = [19 000, 20 000]. 
Sort the intervals based on the number of historical en- 

rollment data in each interval from the highest to lowest 
and find the interval having largest number of data. Re- 
divide this interval into four equal parts. Find the interval 
having second largest number data and re-divide it in 
three equal length sub-intervals find the interval having 
third largest number of data and re-divide it in two equal 
length sub-intervals. If there are no data in any interval 
then discard this interval. In this case the new distribu-
tion is shown in Table 2. 

Step 2: Re-divide the intervals and rename them as 
follows: u1 = [13 000, 13 500], u2 = [13 500, 14 000], u3 
= [14 000, 15 000], u4 = [15 000, 15250, u5 = [15 250,15 
500], u6 = [15 500, 15 750], u7 = [15 750, 16 000], u8 = 
[16 333, 16 667], u9 = [16 667, 17 000], u10 = [18000, 18 
500], u11 = [18 500, 19 000], u12 = [19 000, 20 000]. 

Step 3: Define each fuzzy set based on the re-divided 
intervals and fuzzify the data shown in Table 1, where 
fuzzy set Ai denotes a linguistic value of the data re- 
presented by a fuzzy set. 

A1 = very4 few = 1/u1 + 0.5/u2  

A2 = very3 few = 0.5/u1 + 1/u2 + 0.5/u3 

A3 = very2 few = 0.5/u2 + 1/u3 + 0.5/u4 

A4 = very few = 0.5/u3 + 1/u4+ 0.5/u5 

A5 = few = 0.5/u4 + 1/u5+ 0.5/u6 

A6 = moderate = 0.5/u5 + 1/u6 + 0.5/u7  

A7 = many = 0.5/u6 + 1/u7 + 0.5/u8 

A8 = very many = 0.5/u7 + 1/u8 + 0.5/u9 

A9 = too many = 0.5/u8 + 1/u9 + 0.5/u10 

A10 = too many2 = 0.5/u9 + 1/u10 + 0.5/u11 

A11 = toomany3 =0.5/u10 + 1/u11 + 0.5/u12 

A12 = too many4 = 0.5/u11 + 1/u12 

For simplicity the membership values of fuzzy set Ai 
are either 0, 0.5, 1. Notice that we have not displayed the 
membership value 0. 

Now we give the steps of our proposed method. 
Step 4: Fuzzify the data on Table 1. The reason for 

fuzzifying is to translate crisp values fuzzy sets to get a 
fuzzy time series. Now establish fuzzy logical relation-
ships based on fuzzified data as “Aj Ak” means if the 
fuzzified enrollments of year (n – 1) is Aj then the fuzzi-
fied enrollments of year n is Ak. 

Step 5: By Table 3 it is clear that the fuzzy logical re-
lationship groups are as follows. 

Step 6: The fuzzified output is obtained by fuzzified 
input of previous years if 1) fuzzified input of nth year is 
Ai then fuzzified output of (n + 1)th year is also Ai (as in 
years 1971,1972, ···). 2) If the fuzzified input of nth year  

Table 2. Frequency of data. 

Intervals No. of data 

[13 000,14 000] 3 

[14 000,15 000] 1 

[15 000,16 000] 9 

[16 000,17 000] 4 

[17 000,18 000] 0 

[18 000,19 000] 3 

[19 000,20 000] 2 

 
Table 3. Logical groups. 

Serial No. Fuzzy logical relationship groups 

1 A1→A2 

2 A2→A2, A2→A3 

3 A3→A5 

4 A4→A4, A4→A7 

5 A5→A4, A5→A5, A5→A6 

6 A6→A7 

7 A7→A9 

8 A8→A5 

9 A9→A9, A9→A8, A9→A10 

10 A10→A11 

11 A11→A12 

12 A12→A11, A12→A12 

 
is Ai and in previous years we have got more relations as 
AiAj, AiAk, ··· then the fuzzified output will be (Aj, 
Ak, ···) (as in years 1983, 1984, 1988). 

Step 6: The fuzzified output is obtained by fuzzified 
input of previous years if 1)fuzzified input of nth year is 
Ai then fuzzified output of (n+1)th year is also Ai (as in 
years 1971,1972, ···). 2)If the fuzzified input of nth year 
is Ai and in previous years we have got more relations as 
AiAj, AiAk, ··· then the fuzzified output will be (Aj, 
Ak, ···) (as in years 1983, 1984, 1988). 

Step 7: Output values are the mid-values of the inter-
vals in which the fuzzified output occurs. 

Step 8: Next we calculate the mean, standard devia-
tion() of output and interval by formula [output –2/3, 
output +2/3]. 

Step 9: Now we can plot graphs of intervals lower 
limit of forecasted interval(LL of fore), upper limit of 
forecasted interval(UL of fore) and actual data to see that    
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Figure 1. Graph of actual data and interval. 
 
most of the actual data comes in the range of interval. 

4. Conclusions 

The development of technology and programming of lan- 
guages with expert systems has considerably reduced the 
burden of decision makers. With regard to classical me-
thods, fuzzy set theory give solutions in a quicker easier 
and most sensitive way.  

In this proposed method there is no need of relation- 
matrix, so it reduces its calculation. It also reduces the 
next calculation for output by this relation-matrix. 

The most remarkable thing in this method is that we 
give the most plausible range of forecasting, which is in 
the form of interval rather than a single value. It is also 
remarkable that in normal curve this interval is in the 
range ±3 but in our method it is in the range of ±2/3. 
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