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ABSTRACT 

The purpose of reoptimization using approximation methods—application of knowledge about the solution of the initial 
instance I, provided  to achieve a better quality of approximation (approximation ratio) of an algorithm for determining 
optimal or close to it solutions of some “minor” changes of instance I. To solve the problem Ins-Max-EkCSP-P (reopti-
mization of Max-EkCSP-P with the addition of one constraint) with approximation resistant predicate P exists a poly-

nomial threshold (optimal)   q P -approximation algorithm, where         12 2 1k P
1

2 2q P d P
q P

   

  -

 

     

( d P the threshold “random” approximation ratio of P). When the unique games conjecture (UGC) is hold there ex-

ists a polynomial threshold (optimal) Z  -approximation algorithm (where 
1

Z 2
Z

   and -  Z the inte-

grality gap of semidefinite relaxation of Max-EkCSP-P problem Z) to solve the problem Ins-Max-EkCSP-P. 
 
Keywords: C-Approximation Algorithm; Reoptimization; Approximation Resistant Predicates; Integrality Gap; Unique 

Games Conjecture (UGC) 

1. Introduction 

In the constraint satisfaction problems (or CSP problems), 
there are many variables and a set of constraints (defined 
by predicates), each of which depends on a number of 
variables, and the goal is to find such assigning values to 
variables that satisfy the maximum number of constraints.  

More formally, CSP problem Q is defined by a set of 
predicates over a finite domain    1,2, ,q q  . Each 
instance of problem Q consists of a set of variables V and 
a set of constraints on it. The goal is to find the assignment 
to variables that satisfies the maximum number of con-
straints. In general, the predicates can be replaced with 
actual payoff functions, and the goal is to maximize the 
total payment. A large number of fundamental optimiza-
tion problems, such as Max Cut and Max k-Sat, there are 
examples of CSP problems.  

Most of the CSP problems are NP-hard and so to solve 
them exactly in a reasonable time is hardly possible. 
Therefore we considered an effective approximation al-
gorithm for solving such problems. For the maximization 
problem saying that the algorithm is the C-approximation 
algorithm, if for any instance gives a solution with objec-  

tive function value no less than  1
1OPT C

C
 

0

, where  

OPT—the global optimum. In this C is called the ap-
proximation ratio. Such a definition can be given to 
minimization problems.  

For the problem Q an upper bound of approximation 
ratio is established, if there exists a polynomial C-ap-
proximation algorithm for solving Q. For the problem Q 
the lower bound of approximation ratio c is established, if 
for any  

c
 there is no polynomial approximation 

algorithm for Q where the approximation ratio   (or 
strictly less than c) is achieved. If C = c, then, for the 
problem Q the threshold of approximation ratio is estab-
lished (is equal to C = c). The corresponding algorithm is 
called the threshold or optimal (and the approximation 
ratio-optimal).  

A fundamental question for a given NP-hard problem is 
to determine for which values you can rely on efficient 
(polynomial) C-approximation algorithm. This is a large 
research area in theoretical computer science with its 
positive and negative results. 

The problem of establishing lower bounds for the ap-
proximation ratio (like any problem of obtaining lower 
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bounds for the complexity) is a very difficult task. For this 
problem there is the name of inapproximability or the 
hardness of approximation. Great influence on the de-
velopment of methods for obtaining lower bounds  the 
famous PCP theorem [1] and discrete Fourier analysis to 
test the properties of problems (property testing) are pro-
vided [2,3].  

Beginning with Goemans and Williamson [4,5] for 
Max Cut, semidefinite programming (SDP) has become 
the main tool in the construction of approximation algo-
rithms for the CSP problems. For many of the problems 
are built SDP relaxations and apply appropriate proce-
dures for the probabilistic rounding the solutions were 
obtained.  

As already noted, the problem of inapproximability has 
been solved successfully for many of the problems due to 
PCP theorem. In particular, Hastad [6-8] showed that 
Max-E3-Lin-2 and Max 3-Sat are NP-hard to approximate 
with ratios 2   and 8 7 

P NP

ln n

2

 respectively. This means 
that a simple random algorithm for assigning is the best 
(optimal) for these problems, if  or that ratios 2 
and 8/7 are the threshold. In [9] is showed (also involving 
PCP theorem) that the set covering problem has a thresh-
old approximation ratio equal to .  

In studying the problem of inapproximability for gen-
eral constraints satisfaction problems (in particular with 
the predicates of arity 2), such progress was not achieved. 
The most promising approach to obtaining strong results 
(thresholds of approximation ratios)—the so called Unique 
Games Conjecture (UGC), introduced by S. Khot [11-14]. 
Unique games conjecture (UGC) is one of the most im-
portant open problems in modern theoretical computer 
science because of the large number of strong results in 
inapproximability that follow from the UGC. For exam-
ple,  —the hardness of approximating Vertex Cover 
[12], Max Independent Set [15], Multi Cut [16].  

Recently, a close relationship between the concepts of 
the approximation ratio, the inapproximability ratio and 
integrality gap of simple SDP relaxation (defined as the 
maximum ratio of the SDP solution to the real optimum) 
has been established. From the truth of UGC, it follows 
that the simple SDP relaxation gives the optimal ap-
proximation ratio for CSP. For the first time link between 
the SDP rounding schemes for relaxation and results in 
innapproximability based on the UGC, was noticed in [13] 
for Boolean CSP of two variables. In general, in [17-19] 
proposed the rounding schemes by which the optimal 
approximation ratio for each CSP problem, assuming the 
true UGC, is achieved. 

The concept of reoptimization [20-26] is as follows. Let 
Q-some NP-hard (perhaps NP-complete) problem, I-the 
initial problem instance of Q, the optimal solution of 
which is known. We propose a new instance 

The question arises: how can we effectively utilize the 
knowledge of the optimal solution of I for the calculation 
of exact or approximate solution of the instance I  ? The 
purpose of reoptimization using approximation methods - 
application of knowledge about the solution of the initial 
instance I, provided either to achieve a better quality of 
approximation (approximation ratio), or a more efficient 
(in time) algorithm for determining optimal or close to it 
solutions, or execution of the first and second points.  

Such results for the reoptimization of discrete optimi-
zation problems are known. When an elementary dis-
junction is inserted reoptimization of Max Weighted Sat 
(weighted satisfiability problem for maximum) approxi-
mated with the ratio of 0.81, while Max Weighted Sat - 
approximable with ratio 0.77 [25]. When inserting a ver-
tex in the graph reoptimization of Min Vertex Cover 
(minimum vertex cover of a graph) can be approximated 
with the ratio of 1.5, Min Vertex Cover-with the ratio of 
2 [25]. When inserting a vertex (terminal or not) reopti-
mization of Min Steiner Tree (minimum Steiner tree) can 
be approximated with the ratio of 1.5, Min Steiner Tree- 
approximated by the ratio  1 ln 3 2 1.55   [21].When 
you insert or delete an item from a set, the set covering  

I   of the 
problem Q, received some “minor” changes of instance I.  

problem is approximable with ratio 
1

2
ln 1m

   

1 p m

, where  

m—the number of elements. A similar result occurs 
when you insert or delete an arbitrary number of 
 



 elements of the set [26]. It should be noted a 
series of papers on the problem of reoptimization of trav-
eling salesman problem (TSP-Travelling Salesman 
Problem) [20-22,24]. For example, the problem of Min- 
imum Metric TSP (Min TSP—the traveling salesman 
problem with the minimum metric distances) approxi-
mable with ratio 1.5, its reoptimization when inserting a 
new unit—with ratio of 1.34, reoptimization of this prob-
lem when you change the distance—with ratio of 1.4 
[25]. For the general traveling salesman problem (Min 
TSP) are unknown estimates of approximation ratio as 
for herself, and for different versions of reoptimization.  

The main results of this paper are as follows. We in-
vestigated the reoptimization versions of constraint sat-
isfaction problems with predicates of arity k (Ins-Max- 
EkCSP-P) by adding of any constraint. To solve the 
problem Ins-Max-EkCSP-P (reoptimization Max-EkCSP- 
P) with approximation resistant predicates there exists a 
polynomial threshold (optimal)  q P

    

—approxima- 
tion algorithm, where  

   11
2 2 2 2 1kq P d P P

q P
         

 d P —the threshold “random” approximation ratio). (
When the unique games conjecture (UGC) is hold there 

exists a polynomial threshold (optimal)  Z —appro-  
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 ximation algorithm (where 
1

Z 2
Z

 


   and Z —  

the integrality gap of semidefinite relaxation of Max- 
EkCSP-P problem Z) to solve the problem Ins-Max- 
EkCSP-P. 

2. Preliminaries 

Present the necessary notations and definitions [6,28,31]. 
Under the predicate P of arity k we mean the map 

. For notational convenience, the 
input data with a value of −1 is interpreted as “true”, value 
of 1-as “false”. If the predicate P accepts an input value y 
then 

   ,1 0,1
k : 1P

  1P y  , else . Thus, the set of values 
accepted by the predicate P, is denoted as 

  0P y 
 1 1P . Logic 

AND, OR and XOR with two variables is denoted as 
,x y x y  and x y



, respectively. For integer k de-
note predicates kOR, kAND and kXOR as a logical OR, 
AND and XOR of the k variables, respectively. If 

1 , then k , , kx x   1kXOR  1, ,x x  has odd parity, 
else even parity. Literal—a Boolean variable or its nega-
tion.  

Definition 1. Suppose there is a predicate  
   ,1 0,1

k 
m

 , ,z z

: 1P . An instance of the problem Max- 
CSP-P consists of weighted constraints, each of them 
is a k-tuple of literals 

1 ki i  drawn from the set 
 , , ,1 1n n, ,x x x x

 1, , n

 . All variables in the tuple are dif-
ferent. Constraint is satisfied if and only if P accepts a 
tuple. The solution is the assignment of truth values to  

x x  1
, ,

ki i iz z

w

P

. Value of the solution is ,  
1

m

i

w P



where i  is (not negative) weight of i-th constraint. The 
goal is to maximize this value. When P depends on no 
more than k literal Max-CSP-P will be called Max- 
kCSP-P, if in P exactly k literals-then Max-EkCSP-P.  

Along with the problems of the type Max-CSP-P dis-
cussed problems such as CSP-P, where the goal is to find 
such assignment, that all constraints are satisfied (kCSP-P 
and EkCSP-P similarly defined).  

Definition 2. Two k-arity predicates P and   have 
the same type if and only if there exists a permutation  
on 

π
   1, ,k k

 x P a x

  1,1 

  ,   1,1
k

x 

P

 and a , such that  k

  π,k k ka x1 1 π 1, ,P x  for all . 

If P and  have the same type, then an instance 
Max-CSP-P can be expressed as an instance Max-CSP-P', 
rearranging the tuples according to the mask, i.e., these 
problems are equivalent.  

Definition 3. Problem Max-kCSP-P, where each con-
straint is disjunction of no more than k literals is a problem 
Max-k-SAT. If each constraint contains exactly k literals, 
that is the problem Max-Ek-SAT. 

Definition 4. Problem Max-kCSP-P, where each con-
straint is a product of no more than k literals equal to a 

constant, is the problem Max-k-LIN. If each constraint 
contains exactly k literals, that is the problem Max-Ek- 
LIN. 

Let w Iopt  is the value of the optimal solution of in-
stance I .  

Definition 5. The algorithm A is C-approximation al-
gorithm for the maximization problem if for all instances I  

 of the problem  1
, optw A I w I

C
   , -w A I   , where 

the value of the solution of algorithm A for the input I. In 
this talk, that A has the approximation ratio C. For prob-
abilistic algorithms  , -w A I the expected value of ran-
dom elections of algorithm A.  

The predicate P is approximation resistant (and the 
corresponding problem Max-CSP-P), if to find a solution 
Max-CSP-P, that is much better than expected value of 
random assignment, is NP-hard. Because of random as-
signment accept any P-constraint with probability  
   12 1kd P P 

   : 1,1 0,1
k

P  
0

, we have the following definition.  
Definition 6. The predicate  is 

called approximation resistant if for any constant  

  

 
to find a solution x of instance I of the problem Max- 
CSP-P such, that the value x no more than  

  
11

optd P w I


 NP

0

 , is -hard. 

Definition 7. The problem Max-CSP-P is always ap-
proximable, if for any  0 there exists   

  

 and an 
efficient algorithm, which is based on an instance, where  

 11
d P 

some 



  

-part of constraints may be si-

multaneously accepted, find the assignment, that accept 

no more than   11
d P 




   : 1,1 0,1
k

P  

P

-part of the constraints.  

Definition 8. The predicate  is 
called hereditary approximation resistant if all the predi-
cates   which are consequences of P (i.e.  
      1 1P y P y  

   1
d P

, for all y) are approximation 
resistant. 

Theorem 1 [8]. The problem Max-CSP-P admits a 
polynomial approximation algorithm with approximation  


. ratio 

Proof. Let us have an instance with m constraints. 
Random assignment accepted any given constraint with a 
probability  d P  d P m and, thus, accepted   con-
straints on average. Since the optimal assignment ac-
cepted no more than m constraints, we have the random 

approximation algorithm. That random algo-
rithm may be derandomized dy the method of conditional 
expectation. 

   1
-d P



Remark 1. For approximation resistant predicates P 
threshold approximation ratio of the problem Max-CSP-P 
is attained (Theorem 1) and equals  
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        1
12 1k P




 2 2k 
3k 

 4 4k

1
q P d P


  . 

This value is called the threshold “random” approxi-
mation ratio.  

We have the following results on approximation resis-
tant predicates of Max-EkCSP-P problems. There is no 
predicate of arity , which are approximation 
resistant [8]. If  the problem Max-E3-LIN is he-
reditary approximation resistant [6], and it exhausts all of 
approximation resistant predicates of arity 3 [29]. Ap-
proximation resistant predicates of arity   are 
studied in [28]. There are 400 different predicates (up to 
permutations of variables and their negations). Among 
them, 79 were identified as approximation resistant, 275- 
not as approximation resistant, the status of the remaining 
46 predicates could not be determined. 

Present the main results for approximation resistant 
predicates of arity 3 (Max-E3CSP-P).  

Theorem 2 [6]. For an arbitrary 0  NP
2
 it is -hard 

to approximate Max-E3-LIN with ratio 
- 3-

. In other 
words Max E LIN

0
 is approximation resistant. 

Theorem 3 [6]. For an arbitrary   NP it is -hard 

to approximate Max-E3-LIN with ratio 
8

7


 , , 1P x y z 

. In other 

words Max-E3-LIN is approximation resistant. 
Theorem 4 [6]. Let P the predicate of arity 3 such, that 

 for any x, y, z, satisfying the equation xyz = 
1, then CSP, determined by P, is approximation resistant. 

Theorem 4 remains true if we replace the equation xyz 
= 1 by xyz = −1. Generalization of Theorem 4 is the fol-
lowing theorem. 

Theorem 5 [8]. Predicate P of arity 3 is approximation 
resistant, if and only if it is a consequence of the odd 
parity or even parity.  

Consider the following predicates of arity 3:  

 
     



3

1 2 3

3

x x x 

 0,1

  
 

1 2 3 1 2

1 2 3 1 2 3

1 2 3 1 2

1 2 3 1 2 3

, ,

,

, ,

, , .

XOR x x x x x x

NTW x x x x x x

OXR x x x x x x

OR x x x x x x

  

 

  

  

 

The above results can be summarized in the following 
assertion. 

Theorem 6. Predicates XOR, NTW, OXR, OR are ap-
proximation resistant predicates. Among them XOR, 
NTW, OXR-hereditary approximation resistant predi-
cates.  

Following [30,31] we introduce a generalization of the 
CSP problem (GCSP problems), where instead of predi-
cates with values from , payoff functions with 
values from  1,1  to be used. 

Definition 9 (Λ-GCSP problem). Λ-GCSP problem is 
defined as    , ,q k  where   0,1, , 1 ,q q 

   

  

 P : 1,1
t

P q t k , a lot of payoff functions.     

P
The maximum number of inputs of the payoff function 

 


 is the dimension of the problem .  
Definition 10. An instance  of the problem Λ-GCSP 

is defined as  , ,V W  V , where 
  , , y : variables taking values from 1 m  q ; V y
 V  consists of the payoff functions that are applied to 

subsets S of variables V of size no more than k. More 
precisely, for a subset 1 2 1, ,t m  
payoff function S VP

   , , ,
t

S s s s  
  is applied to the variables 

 , , y ; 
1 tS s s

 positive weights 
y y

 SW w  satisfy 
,

1SS V S k
w

 
 , 

S W  denote the set S, chosen according to prob-
ability distribution W. 

The goal is to find the assignment of variables that 
maximize the expected total weight or total weight, i.e.  

maximize    
 ,

S S S
S W S m S k

E P y w P y S
  

      (denote this  

 opt  ).  maximum as 
Note, that if the payoff functions P are predicates, and 

the problem Λ-GCSP is unweighted  S 1w  , then 
 opt   will be just the maximum number of accepted 

constraints.  
We introduce the predicate 1 2 1 2 ,XOR x x x x  . In 

the future, as an example, we consider the problem Max 
Cut. 

Definition 11 (Max Cut). For a given undirected graph 
 ,G V E

 ,V
 with set vertices V and edges E of Max Cut is 

the problem of finding a partition 1 2C V  of the 
vertices  1 2 1 2,V V V V V V   , that maximizes the 
size of the set  V V E 

:w E R
1 2 . For a given weight function 

 , weighted Max Cut problem is to maximize  

 
 1 2e V V E

w e
 
 .  



Let us consider in more detail the problem Max Cut. 
For a graph  ,G V E

V

 with set vertices V and edges E 
this problem (the maximum cut in the graph) is defined as 
follows: find a partition V on 1  and 2V  to maximize the 
number of edges, that form a cut, i.e. lies between the two 
parts. If each vertex i associate a Boolean variable 
 1, , 1,1 2i i ix x i V x i V    

1i jx x

, then the problem can be 
viewed as Max-E2CSP-XOR or Max-E2-LIN with the 
equations of the form  .  

3. On Computational Complexity of  
Reoptimization 

Consider an arbitrary unweighted Max-EkCSP-P problem 
Z (Definition 1). Let  , , , , ,x x x  

e E
1 1n nV x  the set of 

variables, E-the set of constraints. The constraint   
is denoted as    , , , 2e x x e n

1 ke e i    with a special 
order of the variables (relative to V). The assignment is a 
map  : 0,1V  , the assignment   accepted con-
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straint e, if   , , 1x  


   
1

, ,j j
ke e

x 
 
 



1 i k 

P x 
 OPT I

      1 2, , , -mE e e e 
 je E

   2j
ie n  1 ,j m 

1 ke e . We denote by 
 the maximum part of the constraints accepted 

by any assigning an arbitrary instance I of the problem Z.  
Let an instance I of the problem Z such, that  

the set of m constraints. The con-  

straint  is denoted as ,   je x

,  with a special order of 
the variables (relative to V). An instance I   of the prob-
lem is obtained from I by adding an arbitrary  1m  -th 
constraint  (the same structure, as  1me    ,1je j m  ). 
Define reoptimization version of the problem Max- 
EkCSP-P. 

Problem Ins-Max-EkCSP-P. Input. Arbitrary instance 
I of the problem Max-EkCSP-P, x —the optimal solu-
tion of instance I. 

Result. Find the optimal solution of instance I   (ob-
tained on the basis of I, as described above) of the problem 
Max-EkCSP-P, using x . 

Purpose. Find x, that maximizes the number of ac-
cepted constraints of instance I  . 

Useful and interesting are challenges to establishing of 
-hardness of reoptimization versions of optimization 

problems. Using the results of [27] (in particular Theorem 
2), we propose a criterion for determining of NP-hardness 
of reoptimization. The essence of the criterion for the 
most of NP-hard problems is that in order to show NP- 
hardness of reoptimization versions suggestions are based 
on polynomial Turing reducibility of the original problem 
to its reoptimization version. 

NP

Lemma 1. Let P-NP-hard problem and mod-P-some 
local modification to P. If there exists a polynomial algo-
rithm A, which for any instance I of the problem P com-
putes: 
1) instance I  mod - for ; P
2) the optimal solution x  for I  ; 
3) a sequence of local modifications of the type mod (no 

more than a polynomial), that transforms I   into I, then 
the problem mod-P is NP-hard.  

Proof. Reduce P to mod-P using a polynomial Turing 
reducibility. Because of P is NP-hard, and that such (i.e., 
NP-hard) will be mod-P. 

Let q—the number of local modifications of the type 
mod for A that I   is converted into an instance I. Sup-
pose that there exists a polynomial algorithm A1 (with 
complexity p) for mod-P. Then, using A1 exactly q times 
since with I 

 p

q p

, we find the optimal solution for I. At the 
same time as the number of calculations  and time of 
each calculation , polynomial in the size of P, we 
obtained polynomial reducibility (with the complexity 

). Lemma is proved. 

 q

2k 
Using Lemma 1, it is possible for specific predicates P 

from NP-hardness of Max-EkCSP-P (at ) set NP- 
hardness of Ins-Max-EkCSP-P. For example, we show 

how to do it for Max-Ek-Lin.  
Theorem 7. The problem Ins-Max-Ek-Lin is NP-hard. 
Proof. We use Lemma 1. As P we take a NP-hard 

problem Max-Ek-Lin [8], but as a mod-P-problem Ins- 
Max-Ek-Lin. Let I—an arbitrary instance of the problem 
Max-Ek-Lin (it corresponds to a system L of m linear 
equations). Let 

1 2 ki i ix x x b    -one of these 
equations (we take it as I  ). Construct in polynomial time 
an assignment of values to vector 1 n , ,x x x  , which 
makes this equation acceptable. We assign the set of 
 , ,1 nx  , , , arbitrary values of truth. If 

1 2 ki i ix x x x  
satisfies equation I   then the build is completed, other-
wise any value   

li
x l k  is reversed, resulting in the 

equation I   will be accepted in polynomial time, i.e. 
point 1) and 2) of Lemma 1 are satisfied. As I   can be 
transformed into I no more than m modifications mod-P 
(i.e., add no more than m equations), point 3) of Lemma 1 
is also fulfilled and the theorem is proved.  

4. Reoptimization of Constraint Satisfaction 
Problems with Approximation Resistant 
Predicates 

Theorem 8. If logk O n  and for the problem Max- 
EkCSP-P exists a polynomial  -approximation algo-
rithm, then for the problem Ins-Max-EkCSP-P (reopti-
mization Max-EkCSP-P) exists a polynomial   

 
—  

approximation algorithm, where 
1

2 


 

    ,iE e i m 

. 

Proof. We apply the approach discussed in [25,26]. Let 
I- an instance of the problem Max-EkCSP-P, which con-
sists of a system of constraints  and 
optimal solution  , -x w x  the number of accepted con-
straints in the system E by solution x
 1me

. Adds a constraint 
  to the system, the result is an instance I   of the 

problem Max-EkCSP-P, let Ix - the best solution of it. If 

I

  does not accepted constraint , then  1me  xx   is the 

optimal solution of instance I   of the problem Ins-Max- 
E2CSP-P, then 

    1Iw x w x 
                   (1) 

x(on the left side write down the condition, that  - the 
best solution, and the right, that the optimal solution does 
not accepted constraint  1me  ). Suppose Ix

 1me
  is accepted 

the constraint   and there are l ways in which the 
constraint is satisfied (obviously, ).  2kl 

  iWe construct l approximate solutions x i l
 1me

 as 
follows. Take i-th assignment, which accepted  . 
From the constraint system we remove  and for the 
constraints, that remain (including the result of assign-
ment) use a polynomial 

 1me 

- approximation algorithm, we 
obtain an approximate solution ix . The result is 

     1 1 1
1 1 1i

I Iw x w x w x
  

 
           (2) 
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Multiplying (1) on 
1

1


  and adding with (2) we ob-

tain 

   

   

 

1
1

1 1
1 1

i

I

w x w x

w x

w x



1 1
1I Iw x

  








 
  

 
   

       
   




 

    

Among the solutions x i and x  choose the best (i.e., 
with the largest value of the objective function w) and is 
denoted by x . We have 

      

 

1
1 1 max

1
2 ,

Iw x

w x






 

   
 
 

  
 

, iw x w x 

 

and    1

2 1 Iw x  w x





2k cn

 logk O n

. To the algorithm is polyno- 

mial was sufficient to require that  (n-the total 
number of variables, c = const), which means  

 in the theorem. Thus, as a result of this 
algorithm, an approximate solution x  of the instance I    

with approximation ratio   1
2 


   is obtained. It is 

clear that at all times  2 1 


  
1

.  

Theorem 9. If for a problem Max-EkCSP-P exists a 
polynomial threshold (optimal)  -approximation algo-
rithm, and for the problem Ins-Max-EkCSP-P (reoptimi-
zation Max-EkCSP-P), there exists a polynomial  -ap- 
proximation algorithm, then    

    ,iE e i m 

.  
Proof. Let I- an instance of the problem Max-EkCSP-P,  

which consists of a system of constraints   

and optimal solution x  1me. Adds a constraint   to the 
system, the result is an instance I   of the problem Ins- 
Max-EkCSP-P. Let -x  the solution of Ins-Max-EkCSP- 
P, obtained by the algorithm of Theorem 6. The solution 
x  is the best (more on the value of the objective function) 
of the solutions x , and   ,i l l 2k

 

x i , it is obtained 
by a polynomial approximation algorithm with approxi-  

mation ratio 
1

2 


 



. The proof is by contradic-  

tion. Let     and - such, that      . 
Since the function     is increasing in   and  
          , it follows, that   . But this 

contradicts the fact, that for the problem Max-EkCSP-P 
exists a polynomial threshold (optimal)  -approxima- 
tion algorithm (i.e., for solutions ix  to be applied poly-

nomial-time algorithm with approximation ratio  , less 
than  , that is impossible).   

Theorem 10. If for a problem Max-EkCSP-P exists a 
polynomial threshold (optimal)  -approximation algo-
rithm and  logk O n

 

, then for the problem Ins-Max- 
EkCSP-P (reoptimization Max-EkCSP-P), there exists a 
polynomial threshold (optimal)  

 

-approximation  

algorithm, where 
1

2  .  


The proof follows from Theorems 8 and 9 
Corollary 1. If logk O n  and the predicate P ap-

proximation resistant, then for the problem Ins-Max- 
EkCSP-P (reoptimization of Max-EkCSP-P), there exists 
a polynomial optimal  

 

r P -approximation algorithm,  

 1 12 1

2

k

k

P
r P

 


 q P
     1

q P d P


  

where . 

Proof. Since the predicate P is approximation resistant, 
according to Remark 1, the algorithm of Theorem 1 for 
Max-EkCSP-P is optimal -approximation algo-
rithm, where ,  12 1kd P P 

  q P

    

. 
Hence, by Theorem 10 for Ins-Max-EkCSP-P there exists 
a polynomial threshold (optimal) -approxima-
tion algorithm, where  

   11
2 2 2 2 1kq P d P P

q P
       

 

. 

Example 1. Consider the problem Max-E3CSP-XOR 
with the appropriate reoptimization version Ins-Max- 
E3CSP-XOR. By Theorem 6, the predicate XOR- is he-
reditary approximation resistant (there is proof of this fact 
in [28]). We apply Theorem 10 (or more precisely, Cor-  

 13, 1 4k Pollary 1)  and obtain proposition.  

Proposition 1. For the problem Ins-Max-E3CSP-XOR 
(reoptimization of Max-E3CSP-XOR) there exists a 
polynomial optimal approximation algorithm with an ap-  

proximation ratio 
3

2
.  

5. Integrality Gaps of Semidefinite  
Relaxation 

For each instance , ,V W  

 sdp 

V  (Definition 10) is 
constructed semidefinite (SDP) relaxation [30] (which is 
not presented here). Let -solution of SDP re-
laxation (clearly,    sdp opt  

 
 

). We introduce the 
notion of integrality gap for semidefinite relaxation of the 
constraint satisfaction problems. 

Definition 12. Integrality gap of Λ-GCSP problem is 

defined as sup
sdp

opt




      
 

The notion of integrality gap for some relaxation (not 
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only semidefinite) is important, because it allows to de-
sign approximation algorithms for solving discrete opti-
mization problems with a given approximation ratio. The 
following theorem holds.  

Theorem 11 [31]. For the problem Λ-GCSP with non- 
negative payoff functions there exists a polynomial ap-
proximation algorithm with approximation ratio no more 
than integrality gap 

This theorem can comment on such arguments. First, 
we solve the problem 

. 

SDPgen  (general SDP relaxation of 
the problem Λ-GCSP), let gen  the solution of it. Ap-
plying some probabilistic scheme of rounding, from so-
lution gen  we obtain an approximate solution appr   of 
the original problem Λ. By Definition 12 we obtain 
   gen appr  (where  denotes the 

weight of the solution), then  
w   w   w 

     1 1
opt

  

  appr genw w     

and, by definition 5, we received an 

v

—approximation 
algorithm. 

Note, that the calculation (estimation) of integrality 
gaps of relaxations is in itself a difficult research task. For 
many problems it is still unsolvable. However, even 
without knowing the specific values of the integrality gaps 
of  relaxations, one can argue about the existence of 
threshold (optimal) approximation algorithms for opti-
mization problems (which will be noted later). 

To illustrate, consider the Max Cut problem. Let i -a 
unit vector in Euclidean space, which corresponds to a 
Boolean variable ix . We have the following SDP re-
laxation of Max Cut: 

 
 

,

11
max ,

2
i j

i j E

v v

E 

   
 
  

 , 1ii n v  

-v v v

, 

where i j the scalar product i  and jv . We define 
an integrality gap MC  of this relaxation:  

 
 

SDP

OPT

G

G

  
 
  

 GsupMC
G

  , where SDP —the optimum 

of relaxation.  
Theorem 12 [5].  

 0,π

π
max

2

1 cπ

2

MC 

1 cos

os
1.138,c

c








 




   
 


  

where c  is the “critical angle” at which the maximum is 
attained. 

Goemans and Williamson give random rounding algo-
rithm (now known as the random hyperplane rounding 
algorithm) that for any solution of SDP relaxation find a 
cut in a graph with a value no less, than  times 

once expected SDP solution (note that 

1 MC

1GW MC  , 
where GW 0.878567   a known Goemans-Williamson 
constant). Thus, the approximation algorithm not only 
finds an approximate optimum value, but also gives an 
approximate cut. This feature is characteristic of most 
algorithms based on SDP and LP (linear) relaxation. 

Theorem 13 [10]. For any 0  there exists a graph 
 
  ,G V E  such, that 

1 cosπ

2
c

c

SDP G

OPT G







  

 
 

. Thus 

1 cosπ
sup

2
c

MC
G c

SDP G

OPT G





      
  

, combining with 

Theorem 12, we obtain 
1 cosπ

2
c

MC
c







  . 

A lower bound for integrality gap is a graph ,G V E , 
where the bound is attained. Corresponding instance of 
the problem is Integrality Gap Instance (IGI). 

So, for Max Cut managed to find the exact value of the 
integrality gap of SDP relaxation.  

6. Unique Games Conjecture and  
Reoptimization 

Unique Games Conjecture (UGC) was introduced by 
Khot [11] as a possible way to obtain new results on 
strong innapproximability. We formulate the UGC in 
terms of Unique Game Problem.  

Definition 13. A Unique Game Problem is a constraint 
satisfaction problem, which is defined as follows. There is 
a directed graph  ,G V E , whose vertices represent 
variables and edges-constraints. The purpose is to as-
signing a label to each vertex from the set [n]. Constraint 
on the edge  ,e v w E  is described by a bijection 

    π : n ne . Labeling the vertices :L V n  satis-
fies (accepts) a constraint on the edge  ,e v w , iff 

    π L v L w  OPT U

 
 

e . Let  denote the maximum 
part of constraints, which may be satisfied by any label-
ing:  

 
:

1
max satisfied

L V n
OPT U e E L e

E

     
  

, 0

. 

Unique Games Conjecture (UGC) [11]. For any 
   ,n n there exists a constant   

   

 such that, 
for this instance of unique game problem  
  , , , πU G V E n e Ee  is NP-hard to distinguish 

between two cases: 
  1U YES case:    OPT

 NO case:  T UOP  . 
A typical technique to obtain the results on innap-

proximability can be described as follows. The source is 
the following argument. Suppose P- an arbitrary optimi-
zation (to be specific to a maximum of) problem. Under 
the  . -gapc s  version of the problem P (notation 
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,c s

 T I c
-Gap P

OP  I s
) we understand the problem, for which either 

, or OPT  for any instance I P . 
Consider the NP-complete problem 3-Sat (3-Satisfi-
ability). Arbitrary 3-Sat formula (E3-CNF formula) is the 
conjunction of a set of clauses, where each clause is the 
disjunction of three Boolean variables or their negations. 
The goal is to determine the assignment of a Boolean 
variable, such that the formula is logically true (accept-
able). Suppose that there exists a polynomial reducibility 
of  to ,c s  for some 3-Sat Ga -p P 0 s c  , that is, re-
ducibility, which displays a 3-Sat formula   to an in-
stance I of the problem P such that: 

(YES case): If   has an assignment, that makes it 
acceptable, then  TOP I c ; 

(NO case): If   has no assignments, that make it ac-
ceptable, then  OPT I s . 

This reducibility implies that if there exists a polyno-
mial algorithm with approximation ratio strictly less than  
c

s
 for the problem P, then it is possible to efficiently  

determine whether a 3SAT formula is satisfiable, and 
hence . Thus, under the standard assumption, 
that  this reducibility—the source of results on 
inapproximability of the problem P. We start from the 
PCP (Prababilistically Checkable Proof) Theorem [1] in 
one form or another for some NP-complete language (for 
example, 3-Sat). We construct a reducibility to the prob-
lem (language), which inapproximability to install (for 
example, ,c s ). Constructed PCP verifier for the 
problem , which is in the form of a test (dictatorship) to 
the Boolean function that is responsible to P. Using the 
elements and some of the results of Fourier analysis of 
Boolean functions, estimated completeness c of the veri-
fier (the lower bound of the probability of accepting the 
test, that a Boolean function-dictatorship or YES case) 
and soundness s of verifier (the upper bound of the 
probability of not accepting the test, that Boolean function 
is far from dictatorship or NO case). It follows that P NP- 
hard to approximate with a ratio smaller than c/s. This is a 
common inapproximability. 

P NP
P NP

-Gap P
P

 sdp 


If not proceed from the PCP theorem, but from the 
unique game conjecture (UGC) in the above reducibility, 
we receive inapproximability based on UGC or condi-
tional inapproximability.  

Let  the solution of SDP relaxation of in-
stance  of GCSP problem  . In [30] to get closer to 
the optimal solution proposed scheme of rounding 
(Rounding Scheme, RS). In this paper, studies are being 
conducted in the language of integrality gap curve and 
unique games hardness curve. We describe the result with 
an integrality gap coefficient  . We will assume that 

. const

blem   and 

k 

pro any 
Theorem 14 [30]. Assuming the UGC, for any GCSP 

0   it is NP-hard t

  with ap roximation o -p  rati   . 
Using Theorems 11 and 14, we get a result. 

 GCSP 
an

Corollary 2 [30]. Assuming the UGC for any
d any 0   rounding scheme RS determines the ap-

proximati tio in the range on ra   of optimal polynomial 
algorithm, i.e. for any GCSP pr blem   there exists a 
polynomial threshold (optimal) 

o
 -ap roximation al-

gorithm.  
Consider

p

 an arbitrary unweighted Max-EkCSP-P prob- 
lem Z (definition 1). Let  1 1, , , , ,n nV x x x x    the set 
of variables, E—the set nstraint 
e E

 of constraints. The co
  is denoted as    , , , 2e x x e n

1 ke e i    with 
l order on the varia nment 

is a map 
specia bles (relative to V). Assig

 : 0,1V  , assignment   accepts con-
straint e, if     1x  . e denote by . 

1
, ,

ke eP x  W
 OPT I  the m ts accepted by an 

 assigning for instance 
aximum part of constrain

arbitrary I  of the problem Z . 
Let  SDP I  denote the optimu  SDP relaxation f 
Raghavendra [30], we define an integrality gap  

m  o

 
 

SDP
sup

OPTZ
I Z

I

o approximate 

I




    
  

. In [31] showed how to round a  

solution and find assignment with the approximation ratio  

close to Z  (theorem 11). Let 
c

Z s
  , then the result of  

Raghave [30] in this case ca  presented as a ndra n be

 15 [14]. Suppose there is an instance 
theorem.  

Theorem I   of 
M  ax-EkCSP-P problem Z such, that  SDP I c  and 

 OPT I s  . Then for any 0   there exist , 0    
ial reducibility fr e instance of  

game problem to the instance I of problem Z such, that: 
 (YES case): If 

and polynom om th  unique

  1OPT U   , then  OPT I c   ; 
 (NO case): If  UOPT  , then OP s T I   . 

In particular, ass ming the UGC, i P-hard to apu t is N -
proximate Z with ratio strictly less than Z . 

Corollary 3. Assuming the UGC,  every Maxfor - 
EkCSP-P problem Z there exists a polynomial threshold 
(optimal) Z —approximation algorithm. 

The pro ollows from theorems 11, 14 anof f d 15. 
 into 

in
Note that theorem 15 converts the integrality gap
approximability gap. Roughly speaking the idea is to 

use integrality gap instance (IGI) of SDP relaxation for the 
construction of a dictatorship test and combining it with 
an instance of unique game problem. The value of the 
result of Raghavendra is that even without knowing ex-
plicitly the exact value of integrality gap, you can set an 
optimality of corresponding polynomial approximation 
algorithm (using IGI). For example, in [32] showed that 
although for Grothendieck’s Problem integrality gap GK  
(the famous Grothendieck’s constant) are still unknown, 
based on the UGC it is NP-hard to approximate the 
problem of Grothendieck with an arbitrary ratio less than 

GK  ( GK -approximation algorithm is optimal). Constant 
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K  ca be calculated with some error n   in the time 
endent only on 

G

dep  .  
Theorem 16. Su ose pp t  unique game conjecture 

(U

problem with in
 

hat a
GC) is hold. Let Z is any unweighted Max-EkCSP-P  

 
tegrality gap supZ




I Z OPT I
 
  

 and  

k = , then for the prob s-Max-EkCSP-P (reop-

SDP I  

const lem In
timization of Max-EkCSP-P) there exists a polynomial 
threshold (optimal)  Z  -approximation algorithm,  

where   1
2Z

Z

 


  . 

roof follows by a ng corollary 3 to theorem 
10

ple 2. Consider the problem Max Cut. In
no

The p

xam

pplyi
. 
E  our 
tation, this is a problem Max-E2CSP-XOR, and reop-

timization version—the problem Ins-Max-E2CSP-XOR, 
obtained by adding an arbitrary edge to Max Cut. By 
theorems 12 and 13 integrality gap of SDP relaxation of  

problem Max Cut is 
1 cosπ

1.138c


   . Then  
2

llows proposition 2. 

MC
c

from theorem 16 fo
ames conjecture 

(U
Proposition 2. Suppose that a unique g
GC) is hold. Then for the problem Ins-Max-E2CSP- 

XOR (reoptimization of Max Cut) there exists a polyno-
mial threshold (optimal)  MC  -approximation algo- 

rithm, where  
 

1
2 1.121    .  MC

MC


7. Conclusions 

m Ins-Max-EkCSP-P (reoptimization To solve the proble
of Max-EkCSP-P) with approximation resistant predicates 
there exists a polynomial threshold (optimal)   q P - 
approximation algorithm, where  

        12 2 2 2 1kq P d P P
q P

      

( 

1  

d P —the threshold “random” approximation ratio of
). N

un

 
P te that the property of the approximation resistance 
may be stronger than the property of NP-completeness of 
corresponding decision problem. Since in this case the 
effective computation can not gives anything more than a 
random assignment of truth values to variables. 

Using the results of [30,31] it can be argued, that if t

o

he 
ique games conjecture (UGC) is hold, then there exists 

a polynomial threshold (optimal)  Z  —approximation 
algorithm to solve the problem In -EkCSP-P (reop-
timization of Max-EkCSP-P), where 

s-Max

Z —the integrality 
gap of SDP relaxation of Max-EkCSP problem.  

The results of this work greatly depend on the truth of
-P 

th
 

e unique game conjecture (UGC). Note that if U- the 
unique games problem, the UGC can be formulated as 

follows:  1 ,  —gap version of the unique games 
problem  1 ,U-U Gap    is NP-hard problem. Along 
with the pr plexity class relationships with 
respect to inclusion (for example, ?P NP ) it is one of 
the major open problems of modern cal computer 
science. Even if the UGC is false, you may find that 

1 ,-Gap U

oblems of com

 theoreti

   is hard in the sense of undecidability in 
 time, and such (a weak) hardness can be ap-

plied to all problems, where the hardness show up on the 
basis of UGC. 

polynomial
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