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ABSTRACT 

In this paper, we propose a deteriorating items inventory model with constant demand and deterioration rates, and 
mixed cargo transportation modes. The transportation modes are full container load (FCL) and less than container load 
(LCL). Deteriorating items, such as specialty gases which are applied in semiconductor fabrication, deteriorate owing to 
environmental variation. Exact algorithms are proposed to determine the optimal inventory policies over a finite and an 
infinite planning horizon. Numerical examples are given to illustrate the proposed solution procedures. In addition, 
when the deterioration rate is large, the results of the proposed model perform better compared to the inventory model 
proposed by Rieksts and Ventura (2008). 
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1. Introduction 

In this paper, we study a deteriorating items inventory 
model with mixed cargo transportation (full container 
load, FCL, and less than container load, LCL) over a 
given finite planning horizon. The customer’s demand 
per unit time d is constant and shortage is not allowed. 
The retailer places orders to its supplier and goods are 
transported by cargos. FCL and LCL cargoes are used. 
LCL is a shipment of cargo by which goods do not fully 
fill the container. The remaining space of the Less than 
Container may be filled with goods of other shippers. 
Generally, the transportation cost per unit under FCL is 
cheaper than LCL. Therefore, if goods can fill an entire 
container, FCL cargo will be the first choice. 

In this paper, the assumptions are as follows: 1) sup- 
plier capacity is unlimited; 2) the delivery time is con- 
stant; 3) the salvage of inventory is zero; 4) the retailer 
needs to satisfy customers’ demand and shortage is not 
allowed. The retailer intends to determine the optimal 
order interval in order to minimize the total cost.  

In Taiwan’s semiconductor fabrication industries, 
many manufacturers need to import raw materials from 
abroad, such as certain specialty gases which may dete- 
riorate owing to environmental variation. This research is 
motivated by a Taiwanese gas importing company. The 
gas importing company makes gas supply contracts with 

customers for a certain time period, and the contracts 
indicate that the retailers shall supply raw materials to 
meet customers’ demands within a given time period. 
FCL and LCL are allowed. For example, Company A is 
the top supplier of electronic specialty gases in Taiwan, 
and its’ customers include many international semicon- 
ductor manufacturing companies. Company A also pro- 
vides the on-site gas generation system that includes 
small membrane cabinets, packaged plants, large air 
separation and hydrogen/carbon monoxide plants and 
industrial gas pipelines. Generated Gas Systems benefit 
customers by not only providing economical gas supply 
but also creating environmental advantages through re- 
duced truck deliveries. In the gas generation system, 
since gas leakage cannot be completely prevented or 
avoided owing to miss operation or gas pipeline deterio- 
ration and failure, the gas monitoring system is built to 
detect the amount of gas leakage. In addition, Company 
A has signed supply contracts with various semiconduc- 
tor manufacturing companies to supply various types of 
bulk gas, bulk specialty gas, and electronic chemicals. 
Under these contracts, Company A is obliged to supply 
gas to meet customers’ demand ( HdT ) within a finite ho- 
rizon HT  and shortage is not allowed. However, Com- 
pany A needs to order gas from foreign suppliers in order 
to satisfy customers’ demand for bulk gas, bulk specialty 
gas, and electronic chemicals. In addition to a fixed or- 
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dering cost (K), each order payment also includes fees 
related to the quantity of transportation containers and 
the number of items of LCL shipping.  

After the termination of the contract, the surplus in- 
ventory still belongs to Company A and customers only 
need to pay for the quantity which they have used. Since 
surplus inventory of industrial gas in the on-site gas gen- 
eration system may be disposed with additional costs, 
Company A therefore expects to reserve no surplus pro- 
duct after the termination of the contract. According to 
the above-mentioned situation, Company A should con-
struct its own inventory model so as to determine the 
optimal order interval.  

In this paper, we refer to Company A as retailer. We 
develop a deteriorating items inventory model with 
mixed cargo transportation to determine the order inter- 
val of goods over a given finite planning horizon. The 
model is formulated to minimize the retailer’s expected 
cost. The following costs are considered. 1) The dete- 
riorating costs of gas d : the percentage of gas which 
has deteriorated per unit time is 

C
 . The purchase cost 

per unit of gas multiplying by the deterioration rate   
equals to d ; 2) Holding cost h per unit time: the hold- 
ing cost per unit is the sum of interest, insurance and the 
holding cost; 3) Setup cost K per order; 4) Transporta- 
tion cost: two kinds of transportation costs are considered. 
The first one is FCL cost which is calculated based on 
the number of containers used multiplying by the con- 
tainer fee per unit 

C

FC . The other one is LCL cost. 
Then we define the conditions for the existence of the 

optimal solution and develop a procedure to determine 
the optimal order interval. The rest of this paper is or- 
ganized as follows: The assumptions and notations for 
the proposed model, the optimal ordering model and the 
solution procedure are proposed in Section 3. Some nu- 
merical examples are performed in Section 4. Finally, 
conclusions and future study are stated in Section 5.  

2. Literature Review 

In this paper, we propose the deteriorating items inven- 
tory model to determine the optimal order interval over 
the finite planning horizon. The retailer can receive 
goods with mixed cargo transportation (FCL and LCL). 
Nowadays mixed cargo is commonly used in interna- 
tional air or sea cargo shipping industry. The deteriorate- 
ing items inventory model with mixed cargo transporta- 
tion (FCL and LCL) in this paper fall into the categories: 
1) continuous review inventory problem with bi-modal 
transportation cost (Rieksts and Ventura [1]); 2) deterio- 
rating items inventory model with deterministic demand 
and fixed lifetime (Goyal & Giri [2], Li et al. [3]). Bi- 
modal transportation problem discussed by Rieksts and 
Ventura [1] is truckload (TL) transportation and less than 

truckload (LTL). In fact, the inventory problem of the 
mixed cargo and bi-modal transportation cost are identi- 
cal except that vehicles used. In TL and LTL, the vehicle 
is a truck but the vehicle becomes a container in our 
study. Thus, this paper reviewed recent studies of 1) con- 
tinuous review inventory problem with bi-modal trans- 
portation cost; and 2) deteriorating items inventory 
model with deterministic demand and fixed lifetime.  

Rieksts and Ventura [4] classified continuous review 
inventory models with bi-modal transportation cost as 
four types. The first type is TL with no freight discount. 
TL with no freight discount is that the cost per load does 
not change with the number of truckloads (Aucamp [5] 
and Lippman [6]). The second type is TL with quantity 
or freight discount, TL with quantity or freight discount 
is TL shipments with discounts on the cost per load or 
quantity as the number of truckloads increase (Lee [7], 
Hwang et al. [8], Tersine et al. [9]). The third type is TL 
and LTL with no freight discount. TL and LTL inventory 
models are discussed and compared simultaneously in 
this category (Adelwahab and Sargious [10]), Swenseth 
and Godfrey [11], Rieksts and Ventura [1]). The Fourth 
type is TL with other delivery. TL with other delivery is 
TL and LTL inventory models with the other options of 
delivery (e.g. shipping to each retailer directly or ped- 
dling deliveries to a customer (Burns et al. [12]), the 
shipment from origin, in-transit to the destination (Lar- 
son [13])). 

Two extensive survey papers on deteriorating items 
inventory models have been published by Goyal & Giri 
[2] and Li et al. [3]. Studies of deteriorating items inven-
tory model with deterministic demand fixed lifetime are 
discussed respectively as follows; 1) deteriorating items 
inventory model with deterministic demand: Li et al. [3] 
classified deteriorating items inventory model with de- 
terministic demand as five types of demand: fixed de- 
mand rate (Chung and Lin [14], Benkherouf et al. [15]), 
uniform demand (Heng et al. [16], Raafft et al. [17], Goh 
et al. [18]), time-varing demand (Yan and Cheng [19], 
Giri et al. [20], Teng et al. [21]), stock-dependent de- 
mand (Chung et al. [22], Giri and Chaudhuri [23], Bhat- 
tachaya [24], Wu et al. [25]) and price-depend demand 
(Wee [26], Wee and Law [27]); 2) deteriorating items 
inventory model with fixed lifetime: Li et al. [3] classi- 
fied deteriorating items inventory model with fixed life- 
time as two deteriorating rates: a constant deteriorating 
rate (Ghare and Schrader [28], Shah and Jaiswal [29], 
Padmanabhana and Vratb [30], Bhunia and Maiti [31]) 
and time-varing deteriorating rate (Bhunia and Maiti [32], 
Abad [33], Mukhopadhyay et al. [34], Mahapatra [35]).  

The inventory models with a bi-modal transportation 
cost proposed by Rieksts and Ventura [1] is closely re- 
lated to our problem. In this paper, we develop a more 
general deteriorating items inventory model with mixed 
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cargo transportation to determine the optimal order in- 
terval, and the model of Rieksts and Ventura [1] is a 
subset of the proposed model. Under proposed model, 
the two types of transportation costs and the deteriorating 
cost of goods are formulated respectively in the deterio- 
rating items inventory model to decide the optimal order 
interval. 

3. Problem Formulation 

3.1. Notations 

The related notations are given as follows: 
x   : integer operator, integer value equal or greater 

than x. 
x   : integer operator, integer value equal or less than 

x. 
 : the constant deterioration rate of a unit gas volume 

per unit time, where 0 1 
C

0C 
 

. 

d : the unit deteriorated cost per unit gas volume per 
unit time, . d

I t
d
h

: on hand inventory at time t. 
: demand rate is constant and known.  
: holding cost per unit item per unit time. 

HT
n

: period of the whole planning horizon. 
: order times during the entire period HT . 

K : set up cost per order; . 0K 
FC : the unit container cost. 

s : shipping cost of LTL per unit item. 
Q

CQ
 C T

T CQ

: the order quantity per cycle. 
: container maximum capacity.  

: the total transportation cost per cycle. 

Qc : the consumption duration for  that includes 
real demand and deteriorated items,  

 lnQcT d 1TQ     

T 0T 

1

. 

Decision variables: 
: order interval.   

Intermediate variables: 
: the space defined by 


    1

Qc QcT T T

 

   

  

2

1

ln

Qc Qc

F

T T T T T

d C s

     

 
 

: the decision space defined by     

   
  

2 ln

1

Q Q

Q T

T T T T d

T T T Q

1FC s        

T 
1

T 
2

 

     
 

1 : optimal order interval in  over infinite plan-
ning horizon. 

2 : optimal order interval in  over infinite plan-
ning horizon.  

3.2. Problem Assumptions and Formulation 

3.2.1. Infinite Planning Horizon Model 
The mathematical model is formulated to determine the 
order interval with mixed cargo transportation for mini- 
mizing retailer’s total cost. The customer’s demand is a 
constant rate of d units per unit time. The inventory dete- 
rioration rate   is the percentage of a unit gas volume 
deteriorated per unit time. Therefore the inventory level 
will decrease owing to customer’s demand and gas dete- 
rioration. Thus, the differential equation representing the 
inventory status (Ghare and Schrader [28]) is given by:  

   d d 0,I t t I t d   0 t T 

 0

         (1) 

  0I TQ  and with the boundary condition I  . 
The solution of (1) is:  

     exp ,I t Q d t d      0 t T      (2) 

The order quantity per cycle can be written as:  

   exp 1Q d T    

d T

,           (3) 

where T is the order interval. For ignorance of lead time 
and impermissible shortage, the optimal ordering policy 
is to place order when the inventory level is zero (zero 
inventory policy). Under the zero inventory policy to 
determine order quantity Q is equivalent to determine the 
order interval T, i.e., order quantity Q is equal to   
plus total deteriorating quantities per cycle. Now we will 
formulate the retailer’s total cost function per cycle, 
denoted as  T

*T
 T

TC , and determine the optimal order 
interval  for infinite planning horizon.   

The items considered in TC  are total holding 
costs, total deteriorating costs, total set up costs and total 
transportation costs. The total cost function per unit time, 
denoted as  PTC T , is given as follows:  

  Total holding costs Total deteriorating costs

            + Total set up costs Total transporation costs

TC T  


 

(4) 

  



Total holding costs

Total deteriorating costs Total set up costs

Total transporation costs

PTC T

T



 



 

(5)  

The relevant items in (4) are formulated respectively 
as follows:  

1) Total holding cost per cycle 

   2

0
d d exp 1

T
h I t x h T T        

 Q dT

  (6) 

2) Total deteriorating costs per cycle: total deteriorate- 
ing quantities per cycle is  and total deterio- 
rated costs is   dQ dT C . By (3), we get 
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      expdQ dT C d T     1 ddT C     (7) 3) Total set up costs per cycle is K. 
4) Total transportation costs per cycle:  

 

        ( ) min exp 1 , 1Qc F Qc Qc Qc FC T T T C s d T T T T T T C                         

Q

           (8) 

 
Because the unit item transportation cost with FCL is 

cheaper than it with LCL transportation, therefore FCL 
cargo is used first when order quantity Q is larger than a 
container maximum capacity C . The remaining goods 
are defined as C C  that will be transported 
by LCL or FCL. Goods transportation cost with FCL is 
charged by the amount of a container fee multiplied by 
total numbers of container used. Goods transportation 
cost with LCL is charged by unit transportation fee 

Q Q Q Q   

s  
multiplied by remaining quantities. We assume CsQ  > 

FC

T T

. 
Now we will discuss the relationships between T and 

Qc . Qc  is the consumption length for quantity C  
that includes real demand plus deteriorated items. The 
relationship between  and T  is defined as follows 
by (3). 

Q

CQ Qc

   expC QT    1Q d .         (9) 

Then  is: QT

 lnQcT d 1CQ               (10) 

The numbers of FCL cargo used per cycle is between 

CQ Q    and   , i.e., 1CQ Q   

 1C C C CQ Q Q Q Q Q Q .     (11)           

In other words, the order interval T is between 
 and  1QcT T QcT T    , i.e.,  

 1Qc Qc Qc QcT T T T T T T         (12)        

If C  is not an integer, then we must consider 
whether the remainder will be transported by FCL or 
LCL. The remaining quantities is equal to  

Q Q

 CQ Q Q Q    C  that will be transported with LCL 
when FC  is less than or equal to  s C CQ Q Q Q     , 
otherwise that will be transported with FCL. By (3) the 
remaining quantities  C CQ Q Q Q    are also equal to  

     exp 1Qc Qcd T T T T           
. 

Therefore the remainder transportation cost is considered 
as follows: 

       min exp 1 ,Qc Qc Fd T T T T C            
s . 

(13) 

Then the total transportation cost per cycle C T

 

 is: 
 

       
       

min exp 1 ,

exp 1 , 1 ,

Qc F Qc Qc F

Qc F Qc Qc Qc F

C T T T C s d T T T T C

T T C s d T T T T T T C

 

 

               

 min                       

      (14) 

    

Let  

     exp 1 1Qc Qc Qc Fs d T T T T T T C                 Qc FT T C   , 

 

then    ln 1Qc FT T T T d C sQc           . There- 
fore we define  


    

1

1

Qc Qc Qc Qc

F

T T T T T T T T

d C s 

           

       ln 
    (15) 

and 

   

  
2 ln 1

1

Qc Qc F

Qc Qc

T T T T d C s

T T T T

          

     
 (16) 

In 1 , the transportation cost of remainders with LCL 
is cheaper than that with a full cargo. In , remainders 
are transported with FCL. 

2

Hence C T

 

 can be reformulated as follows: 
 

      
 QcT T C   

1

2

exp 1 for ,

1 for .

Qc F Qc Qc

F

T T C s d T T T T T
C T

T

                   
 

              (17) 
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Substituting (6)-(17) into (5), the inventory problem 

over infinite planning horizon can be converted to prob- 
lem A as follows:  

(Problem A) 
 

          
    

  

2min . exp 1 exp 1

/ ,

d

Q F

PTC T d h T T d T dT C

min exp 1

/ 1

Qc Qc

Qc F

K s d T T T T

T T C T

             

   

T T C

                 

    

0T 
 PTC T 1 2

           (18) 

subject to . 
We reformulate  on space  and   respectively as follows:  

          

     
1

2 exp 1 exp 1

exp 1

d

Qc Qc Qc F

PTC T d h T T d T dT C K

s d T T T T T T C T

    

 


              

                 

 

           (19) 

and 

           
2

2

 
exp 1 exp 1 1d Qc FPTC T d h T T d T dT C K T T C T    


                      (20) 

 
After formulating the inventory problem over infinite 

planning horizon, in the following section, we will dis- 
cuss about this problem over finite planning horizon. 

3.2.2. Finite Planning Horizon Model 
Suppose the finite planning horizon denote as H

tory problem over finite planning horizon is formulated 
as follows:  

(Problem B) 

T
n

. We 
assume the total order times is  in HT  and the cor- 
responding order intervals are 1 i n , respec- 
tively. Given the total cost of the whole planning horizon 

, , , ,t t t 

HT  , , i nt t 

   1
1

, , , , ,
n

i n i
i

TC t t t n TC t


  

1

n

i H
i

t T


 0n  0it 

 is denoted as TC . Thus the inven-  1 , , t

min.     (21) 

subject to , and , . 

Where TC t ti  is the total cost occurred in i , and 
according to (18),  iTC t  can be expressed as follows.  

 

            exp 1 exp 1i i i i i d it h t t d t dt C K C t                 

 

2TC d  .          (22) 

and  

         min { exp 1 , 1i i Qc F i i Qc Qc i Qc FC t t T C s d t t T T t T C  .                       

 , ,i nt 1


2T 

        (23) 

 
In problem B, we must find the optimal values of n 

and  to minimize . it 1, ,TC t t 

3.3. Optimal Ordering Policy 

3.3.1. Optimal Ordering Policy over the Infinite  
Planning Horizon 

We first prove that the optimal ordering policies for infi- 
nite and finite planning horizon problems as shown in 
(18) and (21) will satisfy the zero inventory policy in 
proposition 1.  

Proposition 1. The optimal ordering policy for equa- 
tion (18) and (21) will satisfy the zero inventory policy. 

Proof. See appendix A. 
We will show  and  are both 

convex functions in proposition 2. Then we can deter- 
mine optimal order interval T  and  for the two 
spaces respectively. 



 
1

PTC T
  

2
PTC T



Proposition 2. For a given Qc  , T T  
1

PTC T


 
and  

2
PTC T


 are convex functions, i.e.,  

 
1

2 2 0PTC T T


   
2

2 2 0PTC T T


   and . 

Proof. See appendix B. 
Proposition 3. For a given QcT T   1T, there exist a   

 
1

1

0

T

PTC T

T



and a  2 0,T    such that  and 



 
2

2

0

T
T


PTC T




 for the two spaces respectively, where 
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    
  

 

 

       

1
1

2 2

0

( ) exp  

1 exp 1

T

Qc F QcT

d

T Arg PTC T T

Arg K T T C s d T T T

d h C s T T T

 

   


   


1

0

Qc T                

            

                 (24) 

and 

    
          2 21 0T   

T

1T
T

2
2

( )

0

1 + 1 exp

T

T Qc F d

T Arg PTC T T

Arg K T T C d h C T T   


   

            

     (25) 

 
 C T ) in However, when 1  or 2T  is not in its spaces, in such 

condition, we will consider the end points to replace  
or . 2

Proof. See appendix C. 
In proposition 2 and 3, QcT T  

*T
 PTC T

 is assumed known.  

In order to find the optimal value  for minimizing  
 in problem A, we first determine the optimal  

order interval without considering the transportation cost  

item ( PTC T 3
*T

, denoted as T  by proposi- 
tion 4. Then with proposition 5 we show  is in the  
interval  3 3, 1Qc Q Qc QcT T T T T T         

   
. 

  Proposition 4. Let PTC T TC T C T T ,   

 

3

0
T

PTC T

T


 3 0,T    such that there exist a 



   

, 

where 

           2 2
3 0 1 exp 1 0dT TT Arg PTC T T Arg K d h C T T T                   

T

    (26) 

Proof. See appendix D. 
Proposition 5. The optimal order interval * for prob-  

lem A is in the interval  , 1Qc QcT T T T T T       3 3Qc Q  . 

Proof. See appendix E. 

By Proposition 5,  * , 1Qc QcT T T     3 3Qc QT T T T   . 

The interval  3 3, 1Qc Q Qc QcT T T T T T         
 

 is divided  

into 1  and 2  as shown in (15) and (16). By propo- 
sition 2 and 3, we obtain the optimal values of 1T   and 

2  respectively. Proposition 6 is provided to find opti- 
mal order interval  for problem A.  
T 

*T
Proposition 6. There exists an optimal order interval 
 in problem A, and  is determined by the follow- 

ing procedure:   

*T *T

Step 1: Find  by proposition 4, then let  3T

3Qc

Step 2: Find  by proposition 3. If  
QcT T T T       . 

1T

   
1 3 3,

ln 1

Qc Qc Qc Q

F

T T T T T T

d C s

cT

 

       
     



T T 

 PTC T

 

then set 1 1  by proposition 2 and 3, and go to step 4. 
Otherwise, go to step 3. 

Step 3: Compare  for the two end points. Set 

 
   

1

1

1 3

3

arg mim ,T Qc Qc

F Qc Qc

T P T T T

PTC C sd T T T







  

   

2T

TC  
 

and go to step 4. 

Step 4: Find  by proposition 3. If  

   

 
2 3

3

ln 1 ,

1

Qc Qc F

Qc Qc

T T T T d C s

T T T

         
     

T T

 

then set 2 2  by proposition 2 and 3, and go to step 
6. Otherwise, go to step 5. 

 PTC T  for the two end points. Set  Step 5: Compare 

   

  3 1Qc QcPTC T T T


    
2

2

2 3arg mim ,T F Qc QcT PTC C sd T T T


    

     

 

and go to step 6. 
Step 6: Optimal order interval  

  
1 2

*
1 2arg mim ,TT PTC T T PTC T T 

 


*n
*n

 

 

3.3.2. Optimal Ordering Policy over the Finite  
Planning Horizon 

We first determine the upper bound of optimal order 
times  by Proposition 7.  

Proposition 7. The optimal order times  over fi- 
nite planning horizon is at most 32 min , .H QcT T T    

Proof. See appendix F. 
By proposition 7, the upper bound of order times n is 

 3H Qc
2 min , .T T T    Proposition 8 and 9 will show the 
order intervals over finite planning horizon in the optimal 
order policy may not be equal, and the difference be- 
tween any two order intervals is not more than Qc . We 
also find the lower and upper bounds for the order inter- 

T
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 Qc Qc FT nT T t vals.  
Proposition 8. Let i  and t jt  be any two order in- 

tervals in the optimal ordering policy, then i j Qct t T 

t

.  
Proof. See appendix G. 
Proposition 9. Any order interval i  in the optimal 

ordering policy over finite planning horizon is satisfied  

    1Qc QcnT T 

 

Qc Qc iT nT T t T      . 

Proof. See appendix H. 
Proposition 9 shows the lower bound of any order in- 

terval in optimal ordering policy is Qc Qc  . 
Based on proposition 8 and 9, Proposition 10 will show 
that order intervals in the optimal ordering policy have at 
most two types. 

T nT T 

 

Proposition 10. Under the given order times n, we 
know the order intervals in the optimal ordering policy 
have at most two types, Qc Qc LT T t T n  where  

   0 lnt d

and 

1L FC s        

   where  

   ln 1F F Qcd C s t T      

1n 1n n

. 

Proof. See appendix I. 
Based on proposition 8, 9 and 10, we assume that there 

are  (0  ) order times with order interval length  

   Qc Qc FT nT T t    1 and n n  order times with order 

interval length   Qc Qc LT nT T t     over finite plan-  

ning horizon HT  i.e.,  

   
    

1

1 .

H Qc Qc F

H Qc Qc L H

n T nT T t

n n T nT T t T

   

     

   (27) 

 , , , ,TC t t t 1 i n can be denoted as  Therefore 
 , ,  ,1 L F , and the problem B can be converted to 

problem B1 as follows: 
TC n n t t

(Problem B1) 

          
            
          

2

2
1

, ,  , exp 1

exp 1 1  

exp 1

L F F H Qc Qc F H Qc Qc

F H Qc Qc F H Qc Qc d H Qc F

L H Qc Qc L H Qc Qc

n n t t n d h t T nT T t T nT T

d t T nT T d t T nT T C K T nT C

n n d h t T nT T t T nT T

  

 

  

              

                       

               

1 1minTC

          
      

1

exp 1

L H Qc Qc L H Qc Qc d

L H Qc F

t T nT T d t T nT T C K

s d t T nT C 

              

          

expd  

 (28) 

subject to  

   0 lnL Ft d 1C s       , 

    1ln F F Qcd C s t T      

 
, 

 
    

1

1

 

 .

H Qc Qc F

H Qc Qc L H

n T nT T t

n n T nT T t T

   

     

 

 

In problem B1, we let 

r H H Qc QcT T n T nT T   ,          (29)  
then Lt  in problem B1 can expressed as a function of 

Ft  as follows: 

   1 1 L r Ft T n t n n   .           (30) 

 , , ,1 L F can be denoted as  TC n n t tTherefore 
 , ,1 FTC n n t , and problem B1 can be transformed to 

problem B2 as follows:  
(Problem B2) 

          
         
        

     

2
1 1

2
1 1 1

1 1

min , , exp

exp 1

exp  /  ( )

F F H Qc Qc F H Qc

F H Qc Qc F H Qc Qc d

r F H Qc Qc

r F H Qc

TC n n t n d h t T nT T t T nT T

d t T nT T d t T nT T C

n n d h T n t n n T nT T

T n t n n T nT

  

 

 



           

                 

             

        

1Qc
   

     
           

 

        (31) 

          

1 1

1 1

1 1 1 1

1 exp

1

 exp 1

Qc r F

H Qc Qc r F H Qc Qc d

H Qc F r F

T d T n t n n

T nT T d T n t n n T nT T C

nK n T nT n C n n s d T n t n n

 

 

          

              

                  
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subject to  

         
 
1 1

1

1 ln

,

r

F r

T n n n d C

t T n

1F s


        

 
 

    ln 1F F Qcd C s t T       . 

In Problem B2, the two constraints about Ft  are 
combined as follows. 

 

                   1ln 1 , ln 1 min ,r F F F r Qcd C s d C s t T n T               



1 1max 1T n n n      (32) 

i.e., 

              1 1 1 1max  ln 1 , ln 1 min ,r F F F r QcT n n d C s n d C s n t T n T                         .  (33) 

In (33), if  

               1 1 Fmax 1 ln 1 , ln 1r FT n n n d C s d C s                     

 
is larger than   1min ,r QcT n T  1, , F, then problem B2 has 
no feasible solution. 

By proposition 11, we will show 1 , , FTC n n t

*

 in 
problem B2 is a convex function. Then we can determine 

Ft

1n

 to find the optimal cost in problem B2. 

Proposition 11. For a given  and n, TC n n t
 

 
is a convex function, i.e., 2 2

1, , 0F Fd TC n n t dt  , and  

 
there exist a Ft  such that 1, ,

0
F

F

F t

TC n n t

t







 

, where 

 

    
         
          

1 1

1 1 1

1 1

 1 exp

exp exp

exp exp 0.

F F F H Qc Qc

r F H Qc Qc d F H Qc Qc

H Qc Qc r F

t d h n t T nT T

T n t n n T nT T n n C t T nT T

T n t n n T nT T s T n t n n

 

  

 

             

1 1r F

, ,TC n n t

                      

                 

    (34) 

 
Proof. See appendix J.  
Given n and 1 , we get n Ft  by proposition 11, but 

Ft
*

 may not satisfy (32), i.e., the optimal order interval 

Ft  will be considered the two end points of (32). There- 
fore an algorithm in proposition 12 is provided to find 
the optimal ordering policy over finite planning horizon.  

Proposition 12. The optimal ordering policy over fi-
nite planning horizon is determined by the following 
procedure:  

Step 0: Initialize , * 0Ft  * 1n  ,  and *
1 0n  *TC  

T T xn
. 

Calculate Qc , 3  (by proposition 4) and ma  (by 
proposition 7), let n = 1 and n1 = 0. Go to step 1.  

Step 1: Set  r H H Qc  , find the 
lower bound L and upper bound U of 

QcT T n T nT T  
Ft

 

 as follows:   

     
    

1

1

max  ln 1 ,

*ln 1

r F

F

L T n n d C s

n d C s      

 

 

       

   

 min ,  *U T n T
L U

 

and . Go to step 2. 1r Qc

Step 2: Check whether   is satisfied. If L U  
is hold, go to step 3, otherwise go to step 5. 

Step 3: Find Ft  by proposition 11. If Ft

1n t

 is not in the 
interval [L, U] then we consider two conditions 1) if 

, let F L 1Ft L  n 1n t; 1) , let F U  1Ft U n . 

Go to step 4. 
   

 

Step 4: Calculate 1, , FTC n n t . If *
1, , FTC TC n n t , 

then set  *
1, , FTC TC n n t *, F Ft t *

1 1 n n *n n, ,  . 
Go to step 5. 

Step 5: If 1 , set  and go to step 2, 
otherwise go to step 6. 

< n n 1 1 1n n 

< n n 1n n  1 0nStep 6: If max , set  and  . Go to 
step 2, otherwise go to step 7.  

Step 7: Print , , *n *n *
1 Ft

*

*n *
1n

 

 and TC . 
The optimal ordering policy is as follows: 
There are  order times where  order times with  

order interval length * *
H Qc Qc FT n T T t 

 
* *

1n n and   

order times with order interval  * *
H Qc Qc LT n T T t 

  , where  

   * * * * *
1 1L r Ft T n t n n    *TC, the optimal cost is . 

4. Computational Study 

With two examples given by Rieksts and Ventura [1], we 
demonstrate our proposed solution procedures for infinite 
and finite planning horizons with considering deteriorate- 
ing item. We will show that the approach proposed by 
Rieksts and Ventura cannot be applied to deteriorating 
items. The results for each example are also shown in 
Table 1. 
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Example 1a. (Infinite planning horizon) Suppose the 
customer demand rate (d) =2 units/month, and and the 
other relevant parameters are given as follows: container 
maximum capacity ( CQ ) is 20 unit, holding cost (h) = $ 
1/unit/month, set up cost per order (K) = 200/per order, 
unit container fee ( FC ) = $60.2/unit, and goods trans- 
portation cost with LCL (s) is charge by $3.75/unit per 
unit good. (The infinite example in [1]). 

Example 1b. Data are given by Example 1a, and addi- 
tional data are given as follows: the deterioration rate ( ) 
is 0.05 and the unit deteriorated cost per unit gas volume 
per unit month ( C ) is $ 0.5/unit/month. d

With our proposed solution procedure stated in propo- 
sition 6, in step 1 we find that 3  = 11.484 by proposi- 
tion 4 and 

T

3 Qc   =1. In step 2, we find that  = 
11.1749 by proposition 3, and  

T T  1T

   1 8.1093, ln

14.8578 ,

Qc Qc

Qc Qc

T T T T d

T T T

1FC s    

*
1T T

2T

   
    

 

we set 1  = 11.1749 and go to step 4. In step 4, we 
find that  = 13.9267 by proposition 3 and  

   

 
2 ln 1

14.8578, 1 16.2186 ,

F Qc QcT T T   

 Qc Qc

T d C s

T T T

     

   
 

then we go to step 5. In step 5, we compare  PTC T

2
 

for the two end points in  and set  

  

   
 

2

*
2

3

arg mim

1

arg mim 41.3837,41.9541

T F

Qc Qc

T

T PTC C sd

PTC T T T


 

   



2
3 ,  

14.8578

Qc QcT T T


  



  
 

1 2

*
1 2

37 11.1749

TC T
 



 

then we go to step 6. In step 6, optimal order interval  

 * *arg mim ,

arg mim 39.4301, 41.38

T

T

T PTC T P


 

and optimal total cost per month is 39.4301. 
Example 2a. (finite planning horizon) Suppose the 

customer demand rate (d) = 1 units/month, period of the 
whole planning horizon ( HT ) = 5 month and the other 
relevant parameters are given as follows: container 
maximum capacity ( CQ ) is 4 unit, holding cost (h) = 
$2/unit/month, set up cost per order (K) = 25/per order, 
unit container fee ( FC ) = $1000/unit, and goods trans- 
portation cost with LCL (s) is charge by $500/unit per 
unit good. (The finite example in [1]) 

Example 2b. Data are given by Example 1a, and addi- 
tional data are given as follows: the deterioration rate ( ) 
is 0.2 and the unit deteriorated cost per unit gas volume 
per unit time ( ) is $0.5/unit/ month.  dC

*
With our proposed solution procedure in proposition 

12, in step 0, initialize Ft
*n *n

*TC
 = 0,  = 1, 1  = 0, 

  n
3.09185T

, let n = 1 and 1  = 0. And we find that 

Qc  , 3  = 3.95019 and max  = 4 by propo- 
sition 4 and 7, then we go to step 1. In step 1, set 

T n

5 2.93893 1.617rT n n    2.06107, we find    
 1min ,  * 0r QcU T n T 

 
 and  

     
    

1

1

max  ln 1 ,

*ln 1 0.22579

r F

F

L T n n d C s

n d C s

 

 

       

    

< n n = 1n
T

[ , ]n t L U

 

then go to step 2. In step 2, L > U, we go to step 5. In 
step 5, 1 , let 1  and go to step 1. In step 1, 

r  = 2.06107 and L = U = 2.06017. Go to step 2. In step 
2, L = U, go to step 3. In step 3, we find 1 F   
by proposition 11, let 1F 1t L n U n  

 ˆ 2062.71Ft 
= 2.06107. Go to 

step 4. In step 4, calculate TC  and 
 *

1, , FTC TC n n t  * ˆ 2062.71FTC TC t 
* 2.06107t t  * 1n

, ,  

F F , 1   and . Go to step 5. In 
step 5, 1 , go to step 6. In step 6, max  and set 
n = 2 and go to step 1. We repeat the algorithm until 

* 1n 
= n n  < n n

max 4n n 
* 2062.71TC  * 1n

. At the termination of algorithm, we find 
,  , 1  and Ft , i.e., 

The optimal ordering policy is: there are 1 order times 
with order interval length 5 over finite planning horizon 

* 1n  * 2.06107

HT  = 5 and optimal total cost is 2062.71. 
From Table 1, we know when the deterioration rate 

( ) approach to zero, our results are identical to those 
obtained by Rieksts and Ventura’s model. However in 
the scenario with considering deteriorating item, Rieksts 
and Ventura’s model is not work well.  

In Figure 1 we show the differences of costs per unit 
time between the two infinite models which increase 
with the increased value of the deterioration rate ( ). 
Similarly, Figure 2 shows the cost differences between 
the two finite models which increase with the increased 
value of the deterioration rate ( ). When the deteriora- 
tion rate ( ) is large, Rieksts and Ventura’s model does 
not work well. However, the proposed model can obtain 
the optimal cost.  

5. Conclusion 

In this paper we propose approaches to resolving the 
problems of the deteriorating items inventory model with 
mixed cargo transportation (FCL and LCL) to determine 
the optimal order interval and to minimize the cost per 
unit and the total cost over infinite and finite planning 
horizon. The optimal order intervals over infinite and 
finite planning horizons are derived and the solution 
procedures are proposed. Numerical examples are also 
illustrated. From example, when the deterioration rate ( ) 
approaches to zero, our results are identical to those ob- 
tained from Rieksts and Ventura’s model. The differences   
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Table 1. Comparison between this study and Rieksts and Ventura (2008). 

 Rieksts & Ventura (2008)  Proposed model 

example 1a 
0  0dC ,  

Optimal solution over infinite 
planning horizon  

Optimal order interval = 13.6 
optimal cost per unit time = 34.7 

Optimal order interval = 13.6 
optimal cost per unit time = 34.7 

example 1b 
0.05 0.5dC 

0

  ,  
Optimal solution over infinite 

planning horizon  
With the order interval = 13.6 obtained in  
example 1a, the cost per unit time = 40.3358 

Optimal order interval = 11.1749 
Optimal cost per unit time = 39.4301

example 2a 

  0dC 

0.2 0.5dC 

,  
Optimal solution over finite 

planning horizon  
1 order interval = 5. optimal cost = 1050 

1 order interval = 5 
the optimal cost = 1050 

example 2b 
 ,  

Optimal solution over finite 
planning horizon  

With 1 order interval = 5 obtained in example 
2a, the cost = 2338.1  

1 order interval = 5 
the optimal cost = 2062.71 

 

 

Figure 1. The differences of cost per unit time vs. the deterioration rate (in example 1a and 1b: infinite planning horizon case). 
 

 

Figure 2. The differences of cost vs. the deterioration rate (in example 2a and 2b: finite planning horizon case). 
 
of costs between the two models increase with the rising 
deterioration rate ( ). The results of the proposed model 
perform better compared to the inventory model pro- 
posed by Rieksts and Ventura [1] when deterioration rate 
( ) is large. It would be of interest to extend the model 
to situations where the retailer receives random demand 
before the customer’s real demand occurs.  
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 Appendix A 

Proof of Proposition 1: Rieksts and Ventura [1] pre- 
sented proofs similar to proposition 1 and proposition 
7-10. Proof is given by contradiction. Let  I t

 Q t
 denote 

the inventory level at time t and  denote the quan- 
tity ordered at time t. Suppose there is an optimal order- 
ing policy that does not satisfy the zero-inventory order- 
ing property at time  that is the order time closest to 
time 

t
HT  and . We consider another ordering 

policy at time (

  0 I t

t I t d 
   

). The holding cost of this 
adjusted policy is reduced by hQ t I t d  . This con- 
tradicting the optimality of ordering policy, therefore the 
optimal ordering policy over finite planning horizon will 
satisfy the zero inventory policy. The similar argument 
can extend to infinite planning horizon. 

Appendix B 

Proof of Proposition 2: 
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 is a increasing function and  
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Proof of Proposition 3: Redefine  
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Appendix D 

Proof of Proposition 4: We get  
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 PTC T  is a convex function. Redefine therefore 
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Therefore we can find  0,T  
 PTC T

3  that is the optimal 
order interval that minimize . 

Appendix E 

Proof of Proposition 5: The statement  
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Proof by contradiction.  is the optimal order inter- 
val that minimize  (defined in proposition 4). 
Only the average holding and setup costs included in 

 represent a convex function with a minimum 
in .  

 C T
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Suppose that the optimal order interval  of  
 is not on the interval   
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Qc Qc   is at a minimum since full cargo loads 
are used. This implies that the average cost at T  is 
greater than the cost at  QcT T    1 QcT

*T

. A similar ar-  

gument also shows that the cost at  is greater than  
the cost at Qc Qc  . This contradicting the optimality 
of , therefore the optimal order interval T  of  

T T T 
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Proof is given by contradiction. 
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Appendix F 

Proof of Proposition 7: 
Suppose that there are  2 min , 1T T T  

t t

3H Qc   order 
times in the optimal ordering policy. This implies that 
there are at least two order intervals,  and 


 such 

that  3in T0 mt t    ,T
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 PTC T
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2



Qc . Consider a ordering 
policy that is identical to the optimal ordering policy 
except that the order intervals t  and  are com- 
bined into a single order interval. Because the average 

holding and setup costs included in  represent 
a convex function with a minimum in 3  and  

3      

t t t t T

, the average holding and setup cost 
the adjusted policy is lower than the optimal ordering 
policy. Otherwise the average transportation cost is not 
increased in the adjusted policy since  

Qc       . Thus the total cost of the adjusted 
policy is less than the optimal ordering policy. This con- 
tradicting the optimality of ordering policy, therefore the 
optimal order times over finite planning horizon is at 
most  

32 min , .H QcT T T     

t

Appendix G 

Proof of Proposition 8: Proof is given by contradiction. 
Suppose that the optimal ordering policy has at least two 
order intervals  t and   such that Qc . We 
consider another ordering policy that is analogous to the 
optimal ordering policy with two order intervals  

Qc

t t T  

t t T   and Qct t T  . In the adjusted policy, the 
set up cost and transportation cost are kept unchanged, 
but the holding cost of the adjusted policy is reduced by 

 hdT t t T  Qc Qc . This contradicting the optimality of 
ordering policy, therefore i j Qct t T  .   

Appendix H 

Proof of Proposition 9: Proof is given by contradiction. 
Suppose that there exist an order interval  

 i H Qc Qct T nT T   in the optimal ordering policy. Let  
 j Ht T n  for arbitrarily j and m be the cardinality of 

the set   j Hj t T n . Because  i H Qc Qct T nT T     

and i j Qct t T   (proposition 8),  

 H Qc Qc Qc iT nT T T t  . In two cases,    
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   0 i H Qc Qc Qct T nT T T    2)  
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t

,  

considering another ordering policy that is analogous to 
the optimal ordering policy with two order intervals  
and t  . For case 1), let  H Qc Qct T nT T   

  and  

  j H Qc Qc it t T nT T t m     . Because the average  

holding and setup costs in cost function is a convex func- 
tion of t and i jt t t t  

t
, then the holding cost and set 

up cost of the adjusted policy (order intervals , t
,i j

) is 
less than the policy ( t t ). And transportation cost are 
kept unchanged since  
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and  H Qc Qc  . Hence the total cost of the 
adjusted policy is less than the optimal ordering policy in 
case 1). For case 2), let 
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t t t t m    , then the  

holding cost and set up cost of the adjusted policy is re- 
duced due to equality of order intervals. And transporta- 
tion cost are kept unchanged since  
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Hence the total cost of the adjusted policy is less than 
the optimal ordering policy in case (2). This contradicts 
the optimality of ordering policy. Similar argument is 
also hold in  1Qc QcnT T  iti Ht T   . Therefore, if  
is an optimal order interval with n order times,  
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Appendix I 

Proof of Proposition 10: Proposition 10 is equivalent to 
the statement as follows:  and  are any two order 
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Proof is given by contradiction. Suppose that two or- 

der intervals   and tt   in the optimal ordering policy 
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In the adjusted policy, the set up cost and transportation 
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Appendix J 

Proof of Proposition 11: Given n and 1 , minimizing 
the objective function 
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Therefore we can find  that minimizes  

 , , FTC n n t . 
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