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Abstract

In this paper, we generalize H () -accretive operator introduced by Zou and Huang [1] and we call it
H (--)-¢ - -accretive operator. We define the resolvent operator associated with H (-,-) - ¢ -7 -accretive
operator and prove its Lipschitz continuity. By using these concepts an iterative algorithm is suggested to
solve a generalized variational-like inclusion problem. Some examples are given to justify the definition of
H ( ) - ¢ - 7 -accretive operator.
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1. Introduction

Variational inclusion problems have emerged as a po-
werful tool for solving a wide class of unrelated problems
occuring in various branches of physical, engineering,
pure and applied sciences in a unified and general frame
work.

In 2001, Huang and Fang [2] firstly introduced the
generalized m -accretive mappings and gave the defini-
tion of resolvent operator for the generalized m -accre-
tive mappings in Banach spaces. Also, they have shown
some properties of their resolvent operator. Since then,
Fang and Huang, Lan, Cho and Verma and others
introduced and studied several generalized operators
such as H-accretive, (H-7)-accretive and (A7) -ac-
cretive mappings. For example, see [3-16] and references
therein.

In 2008, Zou and Huang [1] introduced H () -accre-
tive operator, its resolvent operator and applied them to
solve a variational inclusion problem in Banach spaces.
In this paper, we generalized H (-,-) -accretive operator
to H(.-)-¢-n-accretive operator and define its resol-
vent operator. Further, we prove the Lipschitz continuity
of resolvent operator and apply these new concepts to
solve a variational-like inclusion problem. Some example
are constructed.
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Copyright © 2011 SciRes.

2. Preliminaries

let X be a real Banach spaces with its dual X", (-) be
the duality pairing between X and X~ and 2* (respec-
tively CB(X)) denote the family of non-empty subsets
(respectively, closed and bounded subsets) of X. The

generalized duality mapping J,: X 2% s defined
by
*, q a-1

3 ()= {F X i x D)= 1] =[x wxex,
where g>1 is a constant. In particular, J, is the
usual normalized duality mapping. It is known that,
I, () =|x[""3,(x) for x=0 and J, is single-
valued if X" is strictly convex. If X is a real Hilbert space,
then J, becomes the identity mapping on X.

The modulus of smoothness of X is the function
Py 1[0,0) > [0,0) defined by

1
e (0)=sup {3 (b v+ be=yl) - <2 <t}
A Banach space X is called uniformly smooth, if

t
im2 U .
t—0
X is called q-uniformly smooth, if there exists a
constant C >0 such that

Py (t)<Ct', g>1.
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306 R. AHMAD

Note that J, is single-valued if X is uniformly
smooth. The following inequality in q -uniformly
smooth Banach spaces has been proved by Xu [17].

Lemma 2.1. Let X be a real uniformly smooth
Banach space. Then X is q-uniformly smooth if and
only if there exists a constant C, >0 such that for all
X,yex,

[+ vl <[+ ay. 3q (x)+ Co I

Definition 2.1. Let A B: X —» X and
7m,H: X xX — X be the single-valued mappings.
i) A issaidtobe n-accretive, if

<Ax—Ay,Jq(77(x,y))>20, X, yeX;

ii) A s said to be strictly 7 -accretive, if A is 7-
accretive and equality holds if and only if x = y;

iii) H(A-) is said to be « -strongly 7 -accretive
with respect to A, if there exists a constant « >0
such that

(H (Axu)-H (Ayu), 3, (n(y)) 2 -

VX, y,U e X;

iv) H(,B) is said to be g -relaxed 7 -accretive

with respect to B, if there exists a constant >0
such that
(H (uB)=H (1,By), 3, (n(x ) > (-B)|x-
VX, y,ue X;

v) H(,) is said to r -Lipschitz continuous with
respectto A, if there exists a constant r, >0 such that

||H (Ax,u)-H (Ay,u)"ﬁ nlx-y[. vx.yueX.

In a similar way, we can define the Lipschitz continuity
of the mapping H (-,-) with respectto B.

vi) n is said to be 7 -Lipschitz continuous, if there
exists a constant z >0 such that

ln(xy)|<elx-y], wxyeX.

Definition 2.2. Let N,7: X xX — X be the single-
valued mappings. Let M : X x X — 2* be multi-valued
mapping.

i) M issaidtobe 7 -accretive, if
<u—v,Jq(77(x,y))>20, Vx,yeX, ueM(xz),
veM(y,z), foreach fixed zeX;

ii) M is said to be strictly 7 -accretive, if M is 7-
accretive and equality holds if and only if x=vy;

iii) N is said to t-relaxed 7 -accretive in the first
argument, if there exists a constant t >0 such that

(N(xu)=N(y.u), 3, (n(xy))) = ~t[x=y[",
VX, y,ueX,
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iv) N is said to be ¢&-Lipschitz continuous in the first
argument, if there exists a constant £ >0 such that

IN(xu)=N(y,u)|<&x-y|, vxyueX.
Similarly, we can define the Lipschitz continuity of N
in the second argument.

3. H(:,+)-¢-n-Accretive Operator

In this section, we generalize H (-,) -accretive operator
[1] and call it H(-) - ¢ - » -accretive operator and
discuss some of its properties.

Definition 3.1. Let ¢,A,B: X > X,

H,n:XxX — X be the single-valued mappings. Let
M: X xX — 2% be a multi-valued mapping. M is said
to be H(--)-¢-n-accretive operator with respect to
mappings A and B, if for each fixed ze X,
¢oM(-,z) is n-accretive in the first argument and
(H(AB)+goM(-2))(X)=X.

Remark 3.1. If ¢(x)=Ax, VxeX and VA1>0,
M(,)=M(-) and n(x,y)=x-y then H(.:)-¢-
17 -accretive operator reduces to H (-,-) -accretive opera-
tor, which was introduced and studied by Zou and Huang
[1].

Example 3.1. Let X =R. Let Ax=0, Bx=sinx,

H(Ax,By)=Ax+By and M(x,z)=x*+2*, VxeX
and for each fixed ze X . Let
0 X—y
oM (X,2)=—| M (X, =2 d s =—,
#oM (x2)= =M (x2)]=2x and n(xy)="5

Then
<¢o M(X,z)—¢oM (y,z),n(x,y)> :[ZX—Zy,%}
=(x-y) =

which means that ¢oM (-,z) is 7 -accretive in the first

argument. Also, for any xe X , it follows from above
that

(H(AB)+¢oM(-2))(x)=H(AX,Bx)+goM(x,2)
=0+sinX+2x =2x+sin X,

which means that (H (A B)+¢eM(-z)) is surjective.
Thus M is H () - ¢ -7 -accretive operator with respect
to mappings A and B.

Example 3.2. Let X, A, B, H, 7 and M are same as in
Example 3.1. Let goM (X, z) e Then

(H(AB)+¢oM(-2))(x)=H(AX,BX)+goM(x,2)

X +Z2

=sinx+e ,

which shows that Oe(H (AB)+goM(-2))(X), that
is (H(AB)+¢oM(-z)) is not surjective, hence M is
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not H(--)-¢-n-accretive operator with respect to the
mappings A and B.

Theorem 3.1. Let H(AB) be « -strongly 7-ac-
cretive with respect to A, S -relaxed 7 -accretive with
respect to B, a>/4. Let M be an H(--)-¢-7-
accretive operator with respect to mappings A and B.

Then the operator (H(A,B)+goM (-,z))_1

valued for each fixed ze X .
Proof. Forany givenuand ze X, let

x,ye(H(A,B)+¢oM (-,z))_l(u).Then
—H (Ax,Bx)+uegoM(x,2),
—-H (Ay,By)+uegoM(y,z).

is single-

S:]nce ¢oM(-,z) is 5 -accretive in the first argument,
0s<—H(Ax, Bx)+u—(—H (Ay,By)+u),J,(n(x, y))>
=—<H(Ax, Bx)—H (Ay, By),J (n(x,y))>
=—(H (Ax,Bx)—H (Ay,Bx)+H (Ay, Bx)
—H (A, By).J, (n(x.¥)))
= —(H (AX,Bx)—H (Ay, Bx),Jq( (%))
< (Ay,Bx)—H (Ay,By),J, (n(x )>

<—alx=yI'+ Blx-y[ =—(a-8) IIX— ' <o.

Since a> f#,wehave x=y andso
(H(AB)+goM (~,z))71 is single-valued. This com-
pletes the proof.

Definition 3.2. Let H(AB) be « -strongly 7 -
accretive with respect to A and /S -relaxed 7 -accretive
with respect to Band a> 3. Let Mbean H(--)-¢-
n -accretive operator with respect to mappings A and B.
Then for each fixed ze X , the resolvent operator
RHCI47 % 5 X is defined by

M(.2)
(H(AB)+¢oM(-2)) " (u), YueX.

H()-¢-n (u) =
Theorem 3.2. Let H(A,B) be « -strongly 7-ac-

RM(«,Z)
cretive with respect to A, f -relaxed 7 -accretive with

respectto B, > £ and n is r -Lipschitz continuous.

Let M:XxX—>2" is a H(,)-¢-n-accretive
operator with respect to mappings A and B. Then the

q-1
resolvent operator R E Z))¢ T:X > X is -Lips-
chitz continuous i.e.,

R () — RR )4 ”(v)“ ||u vl

Yu,ve X and each fixed ZGX.
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Proof. Let u,ve X,
operator, it follows that

then by definition of resolvent

-1

Ru " (W)=(H(AB)+peM(:2))" (u),

and
R ()= (H(AB)+geM (22))" (v
Then
a-H(A(RI7 () BRI W)
e¢oM( ;I'Ej:'z))g’”(u),z),
and

ego M( Wit ”(v),z).
Let Pu=Ru(1*7(u), Pv=Ry\*"(v)
Since ¢oM (-,z) is n-accretive in the first argument,
we have

<u—H(A(Pu),B(Pu))—(v—H(A(Pv),B(Pv))),
3, (n(Pu,Pv))) >0
<u—v,J (Pu,Pv)) > < (A(Pu),B(Pu))
—H (A( ) 3, (n(Pu,Pv))).
It follows that
lu —v||||77(Pu, Pv)||0'71 > <u -v,J, (n(Pu, Pv))>

> (H (A(Pu),B(Pu))—H (A(Pv),B(Pv)),

Jo(7(Pu,Pv)
+(H(A(Pv),B(Pu))—H (A(Pv),B(Pv))
J,(n(Pu, Pv))>
> a|Pu-Pv|' - B|Pu- Pv||q >(a-p)|Pu-Py|’
Ju=v]z** IIPu—PVII“’l > (a=p)|Pu—Py[’
[Pu—Py]<— ||u vl
q-1
ie. [RyC) (u)—RJE::B;*"” (W) <=5 lu-vl.
This completes the proof.
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4. An Application for Solving Generalized
Variational-Like Inclusions

In this section, we apply H (-,-) - ¢ - 77 -accretive operator
for solving generalized variational-like inclusions.

Let S,T,G:X —CB(X) be the multi-valued map-
pings. AB,g: X > X, H,N,7:XxX —> X be sin-
gle-valued mappings. Suppose M : X xX —2* be a
multi-valued mapping such that M is H(--)-¢-7-
accretive operator.

We consider the following problem of finding xe X ,
ueS(x), veT(x) and zeG(x) and

0eN(uv)+M(xz). (4.1)

Problem (4.1) is called generalized variational-like
inclusion problem.

Below are some special cases of our problem:

i) If X is real Hilbert space and M (-, z) is maximal
monotone operator then a problem similar to (4.1) was
introduced and studied by Huang [18].

ii) If T=G=0, S is single-valued and identity
mapping and N(--)=N(:) and M(,-)=M(:) then
our problem reduces to the problem considered by Bi et
al. [19], thatis find ue X such that

0eN(u)+M(u).

It is clear that for suitable choices of operators in-
volved in the formulation of problem (4.1), one can
obtain many variational-like inclusions studied in recent
past.

Lemma 4.1. Let X be a q-uniformly smooth Ba-
nach space. G,S,T:X — CB(X) be multi-valued map-
pings, A,B:X — X be single-valued mappings and
¢: X — X be amapping satisfying
d(x+y)=¢(x)+¢(y) and ker(¢)={0}, where
ker()={xe X :4(x)=0}. Let H,N,7:XxX —>X
be the single-valued mappings. Let M : X x X — 2% be
a multi-valued mapping such that M is H(--)-¢-7-
accretive operator. Then (x,u,v,z) where xeX ,
ueS(x), veT(x) and zeG(x) is a solution of
problem (4.1) if and only if (x,u,v,z) satisfies

x= Ry 1" [H (A BX)-goN(uv)].  (42)

Proof. Let (x,u,v,z) where xe X, ueS(x),
veT(x) and zeG(x) satisfies the Equation (4.2),
i.e.,

x-R ’7[H AX,Bx)—goN (u,v)].
Using the definition of resolvent operator, we have
x=(H(AB)+¢oM (,z)) [H(Ax,Bx)~goN (u,v)]
< H(AXBx)—goN (u,v)e H (AX,BX)+¢oM (x,z)

Copyright © 2011 SciRes.

< 0epoN(u,v)+goM(x,2)
< 0ed(N(u,v)+M(x2))
< ¢(0)eN(u,v)+M(u,z) < 0eN(uv)+M(xz).

This completes the proof.

Based on Lemma 4.1, we define the following algori-
thm.

Algorithm 4.1. Let G, S, T, A, B, H, N,
¢, n and M all are same as in Lemma 4.1. For any
given X, € X, Uy eS(X,), V,eT(%) and
z,€G(X) and 0<e<1, compute the sequences
{x.}, {u.}, {v,} and {z,} by the following iterative
scheme:

o = R TH (A, B) - N (0,0, (4)

u, eS( )
. (4.4)
” n_ n+1||<D( ) S(Xn+1))+€ "Xn_xn+1 ;
v, €T(X,),
" (4.5)
Vo =Vt | < D(T (%), T (Xaa)) € %0 = X
G ,
4 €6(x) (46)

|20 = 2] < D(G

n=0,42,--,
on CB(X).

Theorem 4.1. Let X be q-uniformly smooth Ba-
nach space and A,B,¢: X — X be the single-valued
mappings. Let H,N,7: X xX — X be the single-va-
lued mappings and G,S,T:X —CB(X) be multi-va-
lued mappings. Suppose M : X x X — 2% be a multi-
valued mapping such that M is H(--)-¢ -7 -accre-
tive operator with respect to mappings A and B .
Assume that

) ¢(x+y)=¢(x)+¢(y) and ker(¢)={0};

i) H(AB) is «a -strongly 7 -accretive with respect
to A and g -relaxed 7 -accretive with respectto B ;

iii) H(--) is r-Lipschitz continuous in the first
argument and r, -Lipschitz continuous in the second
argument;

iv) ¢oN(,-) is & -Lipschitz continuous in the first
argument and &, -Lipschitz continuous in the second
argument;

V) ¢oN(--) is t-relaxed 7 -accretive in the first
argument;

vi) n is r -Lipschitz continuous;

(xn),G(xn+1))+e”+l %, = x

n+1||?

where D(-,-) is the Hausdorff metric

vi) S, T and G are D -Lipschitz continuous
with constant A, A4, and Ag respectively;
) H(v)-o
Rty ()= Ru %) (9] < Az =20
A>0, Vz,,2,,€X;
AJOR
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iX) ‘Q/(G +1,)! +qtAd + & 4 [(r1 +r, )q_1 + rq’lﬂg’l} +C, &8 <

Then (x,u,v,z) where xe X, ueS(x),
veT(x) and zeG(x) isasolution of problem (4.1),
and the sequences {x }, {u,}, {v,} and {z,} de-
fined in Algorithm 3.1 converge strongly to x, u, v
and z, respectivelyin X .

Proof. Using Algorithm 4.1, Lipschitz continuity of
resolvent operator and condition (viii), we have

| Rt T4 [H (A%, Bx,)=go N (u,,v, )]
)n‘f”[H (AX, 1, BX, ;) —=¢oN (U, 4, H)}H
g ~poN@U,v,)]

~peN (U )|
) #oN (Uy1:Vr1) ]

X

$-n

Ru(
5 H (Ax,,Bx,)

[H(
))¢ n[H
ZJ"’[
) [H(AxMBx )= BN (U 4.V, )]
2 )—#oN(u,,v,)

—(H (A%,3,BX, ;) =#oN (U, 1V, , ||+/1||z Zo 4|

Y
+R£

2 )—H(AX, ;. Bx. )

(BN ()N (0, )|
TN (%)M (0,09, )]
+ Az, = 2,4

4.7
Now, we estimate

||H ((A%,,Bx,))~H (Ax, 1, BX, ;)

—(oN(u,,v,)—poN(u,,v,)
<|[H (A%, Bx,)—H (A%, ;,Bx, )| =a (g N (u,.v,)
=N Uy ) 3 (7(U5.0,0))) —a{#o N (u,.v,)
~¢oN(u,y,v,),J [H (Ax,,Bx,)—H (Ax,;,Bx, )]
=34 (n(u,, m))> oN (Uy vy )= #o N (U, 1., )
s"H (Ax,,Bx,)—-H nl|| —q<¢Nu V,)
g (U,1.%,). 0, (n(un )+ g o N (ug.v,)
—poN (U, .V, ) ["H (A%, Bx,)- H(Axnfl,anfl)"q*l

LY FA PR )

(4.8)

q

q

Copyright © 2011 SciRes.

— Sy

Since H(A,B) is r -Lipschitz continuous in the first
argument and r, -Lipschitz continuous in the second
argument, we have

|H (Ax,,Bx,)=H (AX, ;,Bx, , )|
=[|H (Ax,,Bx,)—H(Ax, ,,
+[[H (A%, Bx, ) = H (Ax, 1, Bx,, )|

Xoa#1 [%0 =0l = (0 1), [ =,

( Me)

< ] "Xn -
and hence

IH (AX,, BX, )~ H (A%, 1,BX, )||q <(n+6) % = x| -
(4.9)

Since S is D-Lipschitz continuous with constant A
and using (4.4), we have

0,0y < DS 6,8 ()€, =,

<Js % - oo < (2 ") [% =%,
(4.10)

Since, ¢oN(-,-) is t -relaxed # -accretive in the
first argument and using (4.10), we have

(89N (U, ) =00 N (U 1v,), 3 (7(U.0,1))

(4.11)
> —tfu, —u,, ' = —t(is + g”) %, = %"

xH|| +&" ||xn

As, ¢oN(--) is & -Lipschitz continuous in the first
argument, H(--) is r -Lipschitz continuous in the first
argument and r, -Lipschitz continuous in the second
argumentand 7 is 7 -Lipschitz continuous, we have

(U V)~ 40N (U 1.,

[ (A B = H () )]

<&, =unaf[ (5 +) ™ P —x
#7u, — ]

<& (g + €)%y =Xl (5 +1) ™ o =30

-]

=& () () e (A )"

(4.12)

— q
+7¢ l(/is +e”)

Also

(Un Vi) =4 N (Uy 1, ,)

<& "un _Un-1|| <& (/15 +e )"Xn - Xn—l"
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#oN(uy,v,)—goN(u, v, ) <& (/15 +e" )q %, =%, - (4.13)
Using (4.9), (4.11), (4.12) and (4.13), (4.8) becomes
|H (Ax,.Bx,)-H (Axn_l,an_l)—(¢oN(un,vn)—¢oN(un_l,vn))|q
<(n+6) % =X Jrqt(/iS +e" )q %, = %,a| + qgl(/%s +e" )[(rl +r,)" +rq’1(ﬂs Jrer‘)q_l}"xn — X, 4
+Co& (A +€ )q (%, = Xo[
| () e at(a e rag (4 e (men) etz e ) a4 vl lx - xalf
|H (A%, Bx, )= H (Ax, 4, BX, ;)= (¢ N (U, v, ) = #o N (U, 1, v, )|
q . (4.14)
< *{/[(rl +1,)° +qt(/1S +e”) +q§l(/15 +e”)[(r1 +10,) 7+ 20 (A +e”)q‘1]+Cq§f (ﬂs +e”) %, = X4
Since @#oN(--) is &, -Lipschitz continuous in the 252(/17 +€”)||Xn -l (4.15)

second argument, and using the D-Lipschitz continuity
of T with constant A; and (4.5), we have

$oN(u,,,v,)-¢oN (un—llvn—l)” <& Vo = Vi |
<& (DT (%) T (1)) +€" % = x04])
<& (2 I = xall+ €, =,

Using (4.14),(4.15) and (4.16), (4.7) becomes

Also, using D-Lipschitz continuity of G with constant

A and (4.6), we have
[20 =20 € DG (%,),6 (%)) " [, =%,

< g %0 = Yo+ € %0 = Xa ]| (/IG +e" )||xn ~ X4l
(4.16)

q-1

fa-le| 2

ﬂw[(rﬁ r,)’ +qt(;ts +e”)q +q§l(ﬂs +e”)[(r1 +r,)" +rq’1(/15 +e”)q_l}+cq§lq (/13 +e”)q:|

+& (A +€") }Lﬂ(ﬂc +e) }”xn ~ Xy a])s

or

Xp =X, < 0(&" )%, = X, 4] where

q-1

0(6n):|:;_ﬂ|:(</|:(rl +r,) +at(4 +€") +ag (4 +€n)|:(r1 +5,) 7 e (A +e”)q_l}+cq§f' (4 +e”)q}

+& (A +€") }M(% +e") }

Since 0< ¢ <1, it follows that 49(5”)—>¢9,as n—> o Where

N e = B

o —

From (ix), it follows that <1, and consequently
{x,} is a Cauchy sequence in X. Since X is a Banach
space, there exists xe X , such that x, —>x as
n—o.

From (4.4), (4.5) and (4.6) of Algorithm 4.1, it follows
that {u,}, {v,} and {z,} allare Cauchy sequences in
X, that is there exist u,v and ze X such that
u, »>u, v, »>v and z, -z as n-—co. Now, using
the continuity of operators S, T, G, A, B, H,

Copyright © 2011 SciRes.

#oN, n and M and by Algorithm 4.1, we have
x=RyCAP7H (A%, BX)—go N (u,v)].
Now, we shall show that u e S(x)
(05 () <fu-u, ]+ (5.5 ()
<Ju-u,[+D(S(x,).5(x))

<fu-u, |+ s [, = x| —> 0 as n — .
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This implies that d (u,S(x))=0, since
S(x)eCB(X), it follows that u e S(x). Similarly, we
can prove that veT(x), zeG(x). This completes the
proof.
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