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Abstract 
 
This paper deals with the optimality conditions and dual theory of multi-objective programming problems 
involving generalized convexity. New classes of generalized type-I functions are introduced for arcwise 
connected functions, and examples are given to show the existence of these functions. By utilizing the new 
concepts, several sufficient optimality conditions and Mond-Weir type duality results are proposed for 
non-differentiable multi-objective programming problem. 
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1. Introduction 
 
Investigation on sufficiency and duality has been one of 
the most attraction topics in the theory of multi-objective 
problems. It is well known that the concept of convexity 
and its various generalizations play an important role in 
deriving sufficient optimality conditions and duality re-
sults for multi-objective programming problems. The 
concept of type-I functions was first introduced by Han-
son and Mond [1] as a generalization of convexity. With 
and without differentiability, the type-I functions were 
extended to several classes of generalized type-I func-
tions by many researchers, and sufficient optimality cri-
teria and duality results are established for multi-objec- 
tive programming (vector optimization) problems in-
volving these functions (see [1-12]). Another meaningful 
generalization of convex functions is the introduction of 
arcwise connected functions, which was given by Avriel 
and Zang [13]. Singh [14] and Mukherjee and Yadav [15] 
discussed some properties of arcwise connected sets and 
functions. Bhatia and Mehara [16] investigated some 
properties of arcwise connected functions in terms of 
their directional derivatives and established optimality 
conditions for scalar-valued nonlinear programming 
prblems involving these functions. Mehar and Bhatia [17] 

and Davar and Mehra [18] studied optimality conditions 
and duality results for minmax problems and fractional 
programming problems involving arcwise connected and 
generalized arcwise connected functions, respectively. 

In this paper, we first introduce new classes of gener-
alized convex type-I functions by relaxing definitions of 
arcwise connected function and type-I function. We pre-
sent some sufficient optimality conditions and dual theo-
rems for non-differential multi-objective programming 
problem under various generalized convex type-I func-
tions assumptions. This paper is divided into four sec-
tions. Section 2 recalls some definitions and related re-
sults which will be used in later sections, and introduces 
new classes generalized convex type-I functions. In Sec-
tion 3 and Section 4, the sufficient optimality conditions 
and Mond-Weir type duality results are established for 
non-differential multi-objective programming problem 
involving these generalized convex functions, respec-
tively. 
 
2. Preliminaries 
 
In this section, we first recall some concepts and results 
related arcwise connected functions. Let  be the n - 
dimensional Euclidean space and  be the set of all 
real numbers. Throughout this paper, the following con-
vention for vectors in  will be followed: 

nR
1R
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G. L. YU  ET  AL. 244 

x y  if and only if i ix y ， ,  1, 2, ,i n 
x y  if and only if i ix y 1, , , but 2, ,i n x y , 

x y≮  is the negation of x y
n

. 

Definition 2.1. (See [15]) A subset X R  is said 
to be an arcwise connected (AC) set, if for every x X , 

, there exists a continuous vector-valued functions u X
 ,x u : 0,1H X

,x u

 , called an arc, such that 

 0H x ,  1,x uH u . 

Definition 2.2. (See [15]) Let f  be a real-valued 
function defined on an AC set nX R . Then f  is 
said to be an arcwise connected function (CN) if, for 
every x X , , there exists an arc u X ,x uH  such 
that 

  ) 1     ,x uf H f x f u   , for 0 1   

Definition 2.3. (See [13,14]) Let nX R  be an AC 
set, and Let f be a real-valued function defined on . 
For any 

X
x X

,

 , , the directional derivative of f 
with respect to 

u X

x uH  at 0 


 is defined as 

   ,

0
mli

x uf H f


 x

 
, 

provided the limit exists and is denoted by  
. If   , 0x uf H

 ,x u

0
mli

H x








 , 0x uH 


 

exists and it is denoted by , then vector  
 is called directional derivative of  0,x uH 

,x uH  at  
0  . 

Consider the following multiobjective programming 
problem: 

 
  0,

f x(MP)

       

   

   

min

  s.t.   ,g x x X 
 

where : mf X  R , : pg X R , X is a nonempty 
open AC set of . Let F denote the feasible solutions 
of (MP) assumed to be nonempty, that is 

nR

 n g x : 0x R F . 

Definition 2.4. A point x X  is said to be a Pareto 
efficient solution of problem (MP), if    f x f x  for 
all x X . 

Definition 2.5. A point x X  is said to be a weak 
Pareto efficient solution of problem (MP), if  
   f x f x  for all x X . 
Along the lines of [1,5], we now define the following 

classes of functions. 
Definition 2.6.  ,i jf g , 1,2, ,i m   and  

1, 2, ,j  p , is said to be CN-d-type-I with respect  

to * ,x x
H , at *x X  if there exist an arc  

 * ,
: 0,1

x x
H X  such that for all x X , 

      *
*

,
0i i i x x

f x f x f H   

and 

    *
*

,
0j j x x

g x g H   

Definition 2.7.  ,i jf g ,  and  1,2, ,i m 
1, 2, ,j p  , is said to be quasi-CN-d-type-I with re-  

spect to * ,x x
H  at *x X  if there exist an arc  

 * ,
: 0,1

x x
H X  such that for all x X , 

      *
*

,
0 0i i i x x

f x f x f H   , 

and  

    *
*

,
0 0j j x x

g x g H 0    . 

Definition 2.8.  ,i jf g ,  and  1,2, ,i m 
pj ,,2,1  , is said to be pseudo-CN-d-type-I with re-  

spect to  at  if there exist an arc  
xx

H
,* Xx *

 * ,
: 0,1

x x
H X  such that for all , Xx

      *
*

,
0 0i ix x if H f x   f x , 

and 

    *
*

,
0 0j jx x

g H g x     0 . 

Definition 2.9.  ,f gi j ,  and  1,2, ,i m 
pj ,,2,1  , is said to be quasipseudo-CN-d-type-I  

with respect to  at  if there exist an arc  
xx

H
,* Xx *

 * ,
: 0,1

x x
H X  such that for all , Xx

      *
*

,
0 0i i i x x

f x f x f H   , 

and  

    *
*

,
0 0j jx x

g H g x     0 . 

Definition 2.10.  ,f gi j ,  and  1,2, ,i m 
1, 2, ,j p  , is said to be pseudoquasi-CN-d-type-I  

with respect to  at 
xx

H
,*

*x X  if there exist an arc  

 * ,
: 0,1

x x
H X  such that for all , Xx

      *
*

,
0 0i ix x

f H f x f x    i , 

and 

    *
*

,
0 0j j x x

g x g H 0    . 

To show the existence of the CN-d-type-I functions 
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we give the following example: 
Example 2.1. Define a set 2X R  as 

  2 2
1 2 1 2 1 2, : 1, 0, 0X x x x x x x     . 

Then x is an AC set with respect to  , : 0,1x yH X  
given by 

        1 2 1 22 2 2 2
, 1 1 21 , 1x yH x y x         2y  

 1 2,x x x X  ,    1 2, 0y y y X     ,1 . 

Define , :f X R :g X R  as 

 
2 2
1 2 1 2, if 1 and 1

0, otherwise,

x x x x
f x

  
 


 
2
2 1 2, if 1 and 1

0, otherwise,

x x x
g x

  
 


*


 

 

f and g are not differentiable at  1,1x X 

 
. How-  

ever,  and   * ,
0

x x
f H  * ,

0
x x

g H  existed, and  

they are given by 

  *

*

,

2 2
1 2 ,

    0

, if both components of 1

0, otherwise,

x x

x x

f H

x x H



  


   *

*

2
2 ,

,

, if both components of 
0

0, otherwise,
x x

x x

x
g H

 




H



 

 
1


 

where  1 2,x x x . It is obviously that  , f g  is CN-d- 
type-I at .  * 1,1x 
 
3. Sufficient Optimality Conditions 
 
In this section, we establish sufficient optimality condi-
tions for a feasible solution x  to be a weak Pareto effi-
cient solution for (MP) under the CN-d-type-I and pseu-
doquasi-CN-d-type-I assumptions. 

Theorem 3.1. Suppose that there exist a feasible solu-
tion x F  and  1, , P    , 0   such that 

  , 0 0   T
x xf H g x    X   (3.1) 

  0j jg x  , 1, 2, ,j p          (3.2) 

If  ,i j f g  is CN-d-type-I with respect to ,x xH  at 
x , then x  is a weak Pareto efficient solution for (MP). 

Proof Suppose that x  is not a weak Pareto efficient 
solution of (MP). Then there is a feasible solution x  of 
(MP) such that 

( ) ( )i if x f x  for any . 1,2, ,i m 

By CN-d-type-I assumption on , we get 
if

      ,0 0i i i x xf x f x f H    for any . 1,2, ,i m 

Thus, 

  , 0i x xf H 0  for any . 1,2, ,i m 

So, we have 

  ,
1

0
m

i x x
i

f H



 0 .          (3.3) 

It yields from (3.1) that 

  ,
1

0
p

j j x x
j

g H 



 0 .         (3.4) 

from CN-d-type-I assumption on jg , we get 

    , 0j j x xg x g H  , for any . 1, 2, ,j p 

Since   0  and Equation (3.2) holds, we can get 

    ,0 0j j j j x xg x g H     , for any . 1, 2, ,j p 

Therefore, 

  ,
1

0 0
p

j j x x
j

g H 



 , 

which contradicts to (3.4). 
Theorem 3.2. Suppose that there exist a feasible solu-

tion x F  and  1, , P    , 0   such that (3.1) 
and (3.2) hold. If  ,i j jf g  is pseudoquasi-CN-d-type- 
I with respect to ,x xH  at x , then x  is a weak Pareto 
efficient solution for (MP). 

Proof Since (3.2) holds and x F , by pseudoquasi- 
CN-d-type-I hypothesis on j jg  at x , for all x X  
we have 

  * ,
0 0j j x x

g H   . 

Thus 

  * ,
1

0
p

j j x x
j

g H 



 x X .   (3.5) 0  for all 

Let x  not be a weak Pareto efficient solution for 
(MP). Then there is a feasible solution x̂  for (MP) such 
that 

   ˆi if x f x  for any . 1,2, ,i m 

from pseudoquasi-CN-d-type-I hypothesis on if  at x , 
it yields 

  ˆ, 0i x xf H 0  for any . 1,2, ,i m 

so, 

  ˆ,
1

0
m

i x x
i

f H



 0 .          (3.6) 
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Combing (3.5) and (3.6), we get 

     ˆ ˆ, ,
1 1

0 0
pm

i x x j j x x
i j

f H g H 

 

   0 . 

But this is a contradiction to (3.1). The proof is com-
pleted. 

Remark 3.1. For the functions ( )f x  and ( )g x  in 
Example 2.1, we consider the programming problem 
(MP). Let 1  , we are easy to get that 

     ˆ ˆ, ,0 0 0   T
x x x xf H g H x   X  , 

which implies that  1,1x   is an optimal solution (is 
also weak Pareto efficient) of (MP). 
 
4. Duality Results 
 
Now, in relation to (MP) we consider the following 
Mond and Weir type dual under the CN-d-type-I and 
generalized CN-d-type-I assumptions. 

        
     

1 2

, ,

(DMP)  max , , ,

   s.t.   0 0 0 for all 

m

T T
y x y x

f y f y f y f y

f H g H y  



 



F
 (4.1) 

 
1

0
p

j j
j

g y


 ,             (4.2) 

0  , ,       (4.3)  1 2, , ,
T

m     

0  , .       (4.4)  1 2, , ,
T

p     
Theorem 4.1. (Weak Duality) Let x  and  , ,y    

be feasible soltuions for (MP) and (DMP), respectively. 
Moreover, we assume that any one of the following con-
ditions holds: 

a)  ,i j f g  is CN-d-type-I with respect to ,y xH  at 
; y
b)  ,i j j f g

,

 is pseudoquasi-CN-d-type-I with re-
spect to y xH  at y. 

Then 

   f x f y .             (4.5) 

Proof Since  , ,y    is feasible solution for (DMP), 
we have 

     , ,0 0 0   T T
y x y xf H g H x X  

     0   

(4.6) 

and (4.2) holds. We proceed by contradiction. Suppose 
that 

   f x f y . 

Then, there exists an index  such that k

  k k f x f y , 

   i if x f y  for all i . k

Since 0i  , 1̀, 2, ,i m  , we get 

   k k k kf x f  y ,   i i i i f x f  y  for all i k . 

Thus, 

   
1 1

m m

i i i i
i i

f x f 
 

  y .            (4.7) 

by condition (a), we get 

     , 0i i i y xf y f x f H    

and 

   , 0j j y xg y g H  





0

. 

Therefore, we can get 

      ,
1 1 1

0
m m m

i i i i i i y x
i i i

f x f y f H   

  

      (4.8) 

and 

    ,
1 1

0
p p

j j j j y x
j j

g y g H  

 

   .     (4.9) 

Combing (4.2), (4.7), (4.8) and (4.9), we get 

  ,
1

0 0
m

i i y x
i

f H 



 , 

and 

  ,
1

0 0
p

j j y x
j

g H 



 . 

so 

     , ,
1 1

0 0
pm

i i y x i j y x
i j

f H g H  

 

    (4.10) 

which contradicts (4.6). 
By condition (b), noticing that (4.2) holds, with the 

similar argument as that of Theorem 3.2, we can get 

  ,
1

0 0
m

i i y x
i

f H 



 , 

and 

  ,
1

0 0
p

j j y x
j

g H 



 . 

The above two inequalities imply (4.10), again a con-
tradiction to (4.6). This completes the proof. 

Theorem 4.2. Suppose that there exist feasible solu-
tions x  and  , ,y    for (MP) and (DMP), respec-
tively, such that 
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   i if x f y , .      (4.11) 1,2, ,i   m

Moreover, we assume that the hypotheses of Theorem 
4.1 hold at y , then x  is a Pareto efficient solution for 
(MP). 

Proof For any feasible solution x  for (MP), we get 
from Theorem 4.1 that 

   f x f y . 

Suppose that x  is not a Pareto efficient solution for 
(MP). Then, there exist a feasible solution x̂  for (MP) 
and an index k such that 

   ˆk kf x f x ,    ˆk kf x f x  for all i k . 

Using condition (4.11), we get 

   ˆk kf x f y ,    ˆk kf x f y  for all i k . 

This contradicts to Theorem 4.1. 
Theorem 4.3. (Converse Duality) Let  , ,y  

y

 be a 
Pareto efficient solution for (DMP). Moreover, we as-
sume that the hypotheses of Theorem 4.1 hold at , then 

 is a Pareto efficient solution for (MP). y
Proof We proceed by contradiction. Suppose that  

is not a Pareto efficient solution for (MP), that is, there 
exist  and an index k such that 

y

xF
   k kf x f y ,    i if x f y  for all i k . 

If any one of the hypotheses of Theorem 4.1 holds, it 
yields in light of Theorem 4.1 that (4.5) is satisfied. This 
leads to the similar contradiction as in the proof of 
Theorem 4.1. 
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