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Abstract 
 
Using a predictor-corrector tactic, this paper derives new iteration schemes for unconstrained optimization. It 
yields a point (predictor) by some line search from the current point; then with the two points it constructs a 
quadratic interpolation curve to approximate some ODE trajectory; it finally determines a new point (correc-
tor) by searching along the quadratic curve. In particular, this paper gives a global convergence analysis for 
schemes associated with the quasi-Newton updates. In our computational experiments, the new schemes us-
ing DFP and BFGS updates outperformed their conventional counterparts on a set of standard test problems. 
 
Keywords: Unconstrained Optimization, Iteration Scheme, ODE Method, Quasi-Newton Update,  

Convergence Analysis 

1. Introduction 
 
Consider the unconstrained optimization problem  

 min ,nf x x R                (1) 

where : nf R  R  is twice continuously differentiable. 
Let kx  be the k-th iteration point. We will denote 

values of ( )f x  and its gradient at kx  by kf  and kf , 
respectively. 

Optimization problems are usually solved by iteration 
methods. The line search widely used in unconstrained 
optimization is a kind of iteration scheme for updating 
iterates. Such a scheme, by which one obtains the next 
iterate 1kx   from a current iterate kx , is of the follow-
ing form:   

1 =k k ,kx x p                 (2) 

where k  and p   are termed search direction and step- 
size, respectively. k  is usually determined as a descent 
direction with respect to the objective 

p
( )f x , and   by 

exact or inexact line searches, so that the objective value 
decreases after the iteration. 

For instance, the famous Newton method uses the 
scheme with search direction  

  12= ,k kp f


   kf  

where 2
kf  is the Hessian matrix of ( )f x  at kx , and 

stepsize = 1 . 
The quasi-Newton methods are reliable and efficient 

in solving the unconstrained optimization problems. 
Saving explicit calculations of the second order deriva-
tives and solution of a system of linear equations, 
quasi-Newton methods achieved a great degree of popu-
larity since the first paper of Davidon [1,2]. He used  

= ,k kp H fk   

where kH  is some approximation to the inverse Hes-
sian matrix   12

kf


 . 
The next approximate inverse Hessian matrix 1kH  , 

is obtained by updating kH  by rank-one or rank-two 
matrix. To this end, all quasi-Newton updates require 

1kH   for satisfying the so-called quasi-Newton equa-
tion: 

1 = ,k k kH y s                (3) 

where 1 k=k ky f f   and 1 k=k ks x x  . 
Various quasi-Newton updates were proposed in the 

past. The important modification of Davidon’s work by 
Fletcher and Powell [3] (the DFP algorithm) was the first 
and successful one. It was then surpassed by the BFGS 
update (as accepted as the best quasi-Newton method) 
[4-8] proposed independently by Broyden, Fletcher, 
Goldfarb and Shanno. These updates theoretically guar-
antee all kH  to be positive definite; therefore, the asso-
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ciated k  is a descent direction, and the objective de-
creases if 

p
  is determined by some line search. 

There are other iteration schemes that appear differ-
ently from the conventional ones. The so-called ODE 
methods use the following initial value problem:  

 

  0

d
=

d
d 0 =

x
p x

t
x






                (4) 

Assume that  satisfies certain conditions, and 
hence the preceding defines a trajectory. 

( )p x

Arrow, Huwicz and Uzawa [9] used ( ) = ( )p x f x  
and . The associated trajec-
tories might be called steepest descent curve and Newton 
curve respectively [10]. In this way, in fact, one could 
obtain many curves corresponding to existing uncon-
strained optimization methods. 

  12 ( ) ( )f x f x


  ( )p x =

Pan [11-13] generalized the steepest descent curve and 
Newton curve by setting ( ) = ( ) ( )p x x A x , where 

( )x  is called ratio factor and ( )A x  direction matrix. 
He suggested some concrete ratio factors and direction 
matrices, and showed that under certain conditions, the 
objective value decreases strictly along the associated 
trajectory, the limit point of which is just an optimum. 

ODE methods treat the optimization problem in the 
view of trajectory. They use numerical methods to ap-
proximately calculate associated trajectory, and finally 
approach the limit point of the trajectory. When Euler's 
approach is applied in the ODE method, standard itera-
tion schemes are obtained. In fact the standard iteration 
schemes are originally derived in the direction of de-
creasing the objective function value instead of trajectory. 
Euler's approach is only of the first order precision. So it 
is possible to apply higher order approach to mimic the 
trajectory to get higher order iteration scheme than the 
standard one.  

In this paper, we derive new iteration schemes along 
this line. In view of the importance of DFP and BFGS 
methods, we will focus on iteration schemes with respect 
to these methods.  

The paper is organized as follows. Section 2 derives 
new iteration schemes. Section 3 offers the convergence 
analysis. Section 4 reports encouraging computational 
results with a set of problems. 
 
2. Higher Order Iteration Scheme 
 
Assume that kx  is the current iterate. The next iterate 

1kx   will be determined by approximately following the 
trajectory, defined by (4). Let 1kx   be a predictor. In-
troduce notation  

   1 1, .k k k k kp p x p p x     

We construct a quadratic interpolation curve, locally 
approximating the trajectory as follows:  

  2= k k ,kx t a t b t c               (5) 

where  satisfy the following conditions:   , ,k k ka b c
2 =k k k k k ka t b t c x  ,

,

             (6a) 

2 =k k k ka t b p                (6b) 

2
1 1 =k k k k k ka t b t c x 1,     

1.

          (6c) 

12 =k k k ka t b p                (6d) 

Set 1 , so = 0kt 


1(0) = kx x 
1=k kb p

. From (6a)-(6d), it is eas-
ily to draw that  =kc,  and   1kx 

1
1=

2
k k

k k k

p p
t x x







 ,            (7a) 

1=
2

k k
k k

p p
a t  

.



              (7b) 

Pre-multiplying the both sides of (7a) by , 
we obtain an approximate 1k , furthermore, have an 
approximate solution of (6a)-(6d).  

 1

T

k kx x  
t 

   
 

1 1

2

1

= ,
4

T

k k k k k k
k

k k

p p x x p p
a

x x

 



  



  


1

1,

    (8) 

1= ,  =k k k kb p c x               (9) 

where  1k kx x    denotes 2-norm of the vector 
 1k kx x   . 

The unconstrained optimization problem (1) can get a 
approximate solution by solving the following one-di-
mension minimization problem:  

   2min = ,  0.k k kt f a t b t c t        (10) 

To solve such problem, we apply the inexact line 
search rule, furthermore, we modify the sufficient decent 
condition  

    ,T
k k k k kf x tp f x tp f         (11) 

in this way: 

     2 ,T
k k k k k kf a t b t c f c tb f c       (12) 

where (0,1)  . 
 
2.1. Modified Inexact Line Search Algorithm 
 
The conventional backtracking inexact line search [14] 
operates in this way. At the beginning we set . The 
algorithm will stop if t  satisfies the sufficient decent 
condition. Otherwise, the algorithm will continue with 

ˆ=t t

t t . 
A modified backtracking inexact line search algorithm 
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was obtained by applying the expression (12) as the suf-
ficient decent condition in backtracking line search algo-
rithm. 

Subalgorithm 2.1 modified backtracking inexact line 
search 

Step 0. Given , t̂  , (0,1)  ,  ; set . ˆ=t t
TStep 1. Set  if = 0ka >k k k ka f cb fT   , where con-

stant 
1
ˆ

c
t

 . 

Step 2. If  

     2 ,T
k k k k k kf a t b t c f c tb f c         (13) 

go to step 4; otherwise, go to step 3. 
Step 3. t t  and go to step 2. 
Step 4. Terminate with .  =kt t

 
2.2. Higher Order Iteration Schemes 
 
The higher order iteration schemes, firstly obtain the pre- 
dictor 1kx   from the current point kx  by inexact line 
search rule following the direction k . Then construct 
the quadratic interpolation curve by the relevant infor-
mation of k

p

x  and 1kx  , and calculate 1kx   satisfying 
modified inexact line search rule (12). The overall steps 
of the higher order iteration schemes are organized as 
follows. 

Algorithm 2.1 Higher order iteration schemes  
Step 0. Given initial point x0, , (0,1)  d  an  , set 
:=k 0 ; 
Step 1. If <kf  , stop. 
Step 2. compute the predictor 

 Call backtracking inexact line search algorithm to ob-
tain t . k

 Compute k1 =k k kx x t p 
 

. 
Step 3. If 1 <f xk 

Step 4. Compute a new iteration point. 
  , stop. 

 Compute , ,a b c  by (8) and (9). k k k

 Call subalgorithm 2.1 to get . 1kt 


 Compute 2
1 1 1=k k k k k kx a t b t  

 
:= 1k k 

c  . 
Step 5. Set  and go to step 1.  

 
2.3. An Extension of the Higher Order  

Iteration Scheme 
 
The higher order iteration schemes vary with different 

. In this paper we extend the higher order iteration 
schemes to BFGS method, and set k . We 
get the predictor 1k

( )p x
=k kp H f

x   from kx , satisfying the back-
tracking inexact line search rule, in the direction . 
From k

kp
x  and 1kx  , we compute 1 1 1k k   . 

Then by searching along the curve, we obtain the new 
point 

=kp H  f

1kx  . The overall steps of the variant of the itera-

tion schemes are organized as follows.  
Algorithm 2.2 higher order iteration schemes using 

BFGS update 
Step 0. Given initial point x0; set , := 0k  , (0,1)  , 

N, 0 =H I ,   and  ; 
Step 1. Compute the predictor. 

 Call backtracking inexact line search algorithm to ob-
tain t . k

 Compute k1 =k k k kx x t H f    and   . 1 1=k kf f x 
 

Step 2. If  1 <f xk   , stop. 

Step 3. Compute 1kH 
 . 

 If T
k ky s    then 1 =kH I

 ; otherwise  

1 = 1
T T T
k k k k k k k k k k k

k k T T T
k k k k k k

y H y s s s y H H y s
H H

s y s y s y

  
   
 

       
     

,
T

 

(14) 

where 1 k=k ky f f  , =k k k ks t H f  . 
Step 4. Compute the new iteration point. 

 Compute , ,a b c  by (8) and (9). k k k

 Call subalgorithm 2.1 to get . 1kt 


 Compute 2
1 1 1=k k k k k kx a t b t   c   . 

Step 5. If 1 <fk 

Step 6. Update 
 , stop. 

kH . 
 If 1( )k modN = 0  or T

k ky s   then 1 =kH I ; oth-
erwise  

1 = 1
T T T
k k k k k k k k k k k

k k T T T
k k k k k k

y H y s s s y H H y s
H H

s y s y s y

  
   
 

,
T

f

 

(15) 

where 1=k ky f  k  , 1=k k ks x x  . 

 If 1 1 1

1 1 1

<
T

k k k

k k k

f H f

f H f
  

  

  
    

 or 
1 1

1

<
T

k k

k

f H

f
 






, then 

set 1 =kH I . 

Step 7. Set := 1k k   and go to step 1.  
Note: 
1) In this paper, I  denotes identity matrix. 
2) In step 3, we adopt a strategy to make sure that the 

curvature condition >T
k ky s    is hold. So 1kH 

  is posi-
tive and 1kF 

  is a decent direction. 
3) In step 4, we call the subalgorithm (2.1), in which  

we set the parameter 
1

=c


. 

4) In step 6, we adopt a restart technique that if 1k   
is the integral multiple of the N or T

k ky s  , we restart 
with 1 =kH I . Clearly, the BFGS method is a kind of 
conjugate direction method, so the restart technique can 
reduce the accumulation of the roundoff errors. 

5) We only report the variant using BFGS update. we 
also derive a variant of the higher order iteration schemes 
by using the DFP updating formula instead of the BFGS 
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updating formula in step 3 and step 6.  
 
3. The Global Convergence of the Higher 

Order Iteration Schemes 
 
Definition 3.1 [11] Curve ( )x t  where (0, )t  , if for any 

> 0 , (0, )t  , ( )x t  is contained in the domain of  
and  is strictly monotone decreasing in 

( )f x
(0, )( ( ))f x t  , 

then ( )x t  is a decent trajectory of  at ( )f x 0(0) =x x .  
And if lim ( )

t
x t

 
 is exist and equal the minimization  

point of , then the curve ( )f x ( )x t  is normal decent 
trajectory of  at ( )f x 0x .  

Pan proved the global convergence of the ODE meth-
ods with ratio factor and direction matrix [11]. In this 
paper we only consider the situation that ratio factor is 1 
and direction matrix is identity matrix. So we draw the 
theorem as follows, 

Theorem 3.1 [11] Given 0
nx  , assume the level set  

    0= : ,n x x f x f x   

is bounded close set, and  is twice continuously 
differentiable in the set   and 0 , then the 
right segment trajectory of the the ordinary equations (4) 
is the decent curve of  at 0

( )f x

)

( ) 0f x 

(f x x  and the limit point 
of the trajectory is the stationery point of ( )f x . If 

 is convex, then the right segment trajectory is 
normal decent curve of  at 

( )f x
( )f x 0x . 

We use the quadratic interpolation curve (5) to ap-
proximate the trajectory. However, when , 
the iteration scheme may not be decent in the local re-
gion of the predictor 1k

> 0T
k ka f

x  . So we apply the strategy of 
step 1 in subalgorithm (2.1) to keep the iteration decent. 

Theorem 3.2 Given constant  and t̂
1
ˆ

c
t

 . In subal-

gorithm (2.1), if  is decent direction satisfying  kb

0,T
k kb f   

then for any 
1

0 < t
c

 , the condition  

 2 0,
T

k k ka t b t f    

is hold. 
Proof. If , clearly, the conclusion holds. 0T

k ka f 
> 0Ta fOtherwise , from algorithm (2.1) step 1, if  k k

> ,T T
k k k ka f cb f    

then set , so the conclusion holds. If  = 0ka

,T T
k k k ka f cb f     

then  

 2 1
0.

T
T

k k k k k ka t b t f t a b f
c

       
 

    □  

Theorem 3.3 Consider the algorithm (2.1), where k  
and k are decent direction, and k satisfying the con- 
dition  

p
p p

1

T
k k

k k

p f
c

p f

 



              (16) 

and 

2kp c f  k               (17) 

where 1  and 2  are constants. Suppose that > 0c > 0c
( )f x  is bounded below and continuously differentiable 

in the level set  

    0= : ,nx x f x f x  ,       (18) 

where 0x  is the starting point. And the gradient f  is 
Lipschitz continuous on ; namely, there exists L such 
that  



    .f x f y L x y           (19) 

Then for some , k = 0kf  is hold, otherwise,  

lim = 0.k
k

f


              (20) 

Proof. Consider the situation that for all k, 0kf  . 
Then from the algorithm (2.1), we have that  

1 ,T
k k k k kf f t p f               (21) 

and 

1 1 1 1 1 ,T
k k k k k k 1f f t p f f          

      (22) 

By (21) and (22), we have 

1 ,T
k k k k kf f t p f             (23) 

and 

1 1 0.k kf f                (24) 

With (23) and (24) , we obtain  

1 .T
k k k k kf f t p f             (25) 

By summing this expression over all indices less than 
or equal to k, we obtain  

0 1
=0

.
k

T
k k k

j
kf f t p f            (26) 

Since f is bounded below, we have that 0 1kf f   is 
less than some positive constant, for all k. Hence, by 
taking limits in (26), we obtain  
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.
=0

<T
k k k

j

t p f


            (27) 

In standard inexact line search algorithem, we know 
that if the initiate trial  does not satisfy the condition  t̂

(11), then kt


 violate the condition. So  

> .Tk k
k k k k

t t
kf x p f p f

 
   
 

       (28) 

By the Lipschitz condition (37), we have  

 
 

 

1

0

2

0

22

2

=

= d

d

1
=

2

2 1
,  for all 0 <

k k k k k k

t TkT
k k k k k k k

tkT
k k k k

T
k k k k k

T
k kT

k k k k

k

f f f x t p f

t p f f x sp f p s

t p f sL p s

t p f Lt p

p f
t p f t

L p




   

      

  

    
 

 
  







  (29) 

It follows from (28) and (29) that  

 
2

2 1
>

T
k kk

k

p ft

L p




 
.            (30) 

If initiate trial  satisfy the condition (11), then . 
Furthermore, from (16) and (17), we have  

t̂ ˆ=t t

 
2

2 1
ˆmin , > 0.

T
k k

k

k

p f
t

L p

      
  

t       (31) 

It follows from (27) that 

  2

2
=0

2 1 | |
ˆmin , <

T
k k T

k k
j k

p f
tp f

L p

        
  

   (32) 

It follows from (16) and (17)  

  2 22
1 1 2

=0

2 1
ˆmin , <k k

j

c p tc c f
L

    
  


    (33) 

By (33), we obtain that 

2

=0

<k
j

f


  .             (34) 

This implies that  

= 0.lim k
k

f


             (35) 

The theorem (3.3) analyzes the global convergence of 
the iteration scheme based on ODE, similarly, we obtain 
the global convergence of the variant iteration scheme 
using BFGS update formula.  

Theorem 3.4 Consider the algorithm (2.2), suppose 
that f is bounded below in  and continuously differ-
entiable in the level set  

n

    0= x f x f x ,            (36) 

where 0x  is the starting point. And the gradient f  is 
Lipschitz continuous on ; namely, there exists L such 
that  



    .f x f y L x y            (37) 

Then for some , k = 0kf  is hold, otherwise,  

= 0.lim k
k

f


               (38) 

Proof. Consider the situation that for all k, 0kf  . 
Then from the algorithm (2.2), we have that  

 1 1 1 1

T

k k k k k 1f f t H f f       



k

      (39) 

and  

 1 .
T

k k k kf f t H f f             (40) 

The step 3 implies that  

 1 1 1 > 0
T

k k kH f f                (41) 

By combining the condition (39), (40) and (41), we have  

 1 .
T

k k k k kf f t H f f            (42) 

From the step 8 in the algorithm (2.2), we have that  

1 1 1

1 1 1

,
T

k k k

k k k

f H f

f H f
  

  

 


 
          (43) 

and 

1 1

1

.
T

k k

k

f H

f
 







            (44) 

From the theorem (3.3), we conclude that  

= 0.lim k
k

f


             (45) 

is hold.  □
 
4. Computational Results 
 
In this section, we report computational results showing 
that the variant iteration schemes using BFGS and DFP 
update formula outperformed the BFGS method and DFP 
method on two sets of test functions. The first set of 20 
functions were from [15], and the second from [16], which 
can be obtained from http://www.ici.ro/camo/neculai/ 
ansoft.htm. 
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4.1. Test Codes 4.2. Result for 20 Small Scale Functions 
  

In this section, the following four codes are tested: The first set of test problems included the 20 problems. 
Numerical results obtained are listed in Table 1, where 
numbers of function value computation and gradient 
computation are listed in columns labeled “f ” and “ f ”, 
respectively. And CUP-time required for solving each 
problem are listed in columns labeled ‘Time’ and its unit 
is second. “-” denotes that the algorithm does not get a 
correct solution in upper bound iteration number. 

 DFP: the DFP method. 
 BFGS: the BFGS method. 
 HDFP: the higher order iteration schemes using DFP 

update. 
 HBFGS: the higher order iteration schemes using 

BFGS update. 
To have the competitions fair and easy, all the codes 

were implemented with the same parameters: 4= 10  , 
= 0.5 , , 0= 15N =H I , , 6= 10  12= 10   and 

; The detail results of the BFGS and HBFGS are 
showed below. And the performance of DFP and HDFP 
are only demonstrated in the overall results table. 

ˆ = 1t

Compiled using Matlab 7.0.4, the four codes operated 
under a Windows XP system Home Edition Version 
2002 on an Asus PC with Genuine Intel(R) Centrino- 
Duo T2300 processor 1.66 GHz and 1.00 GB memory. 

Table 1 serves as an comparison between the BFGS 
and HBFGS. It shows that the computation numbers of 
function value andgradient vectors of HBFGS are fewer 
than that of BFGS. However, the HBFGS costs 0.11 
seconds more than the BFGS, because the HBFGS has to 
compute k . Although the computation of k  is much 
less compare with that of function value, it affects the 
CPU-time, especially, for small scale problems. So the 
HBFGS is competitive with BFGS on the 20 small scale  

a a

 
Table 1. Statistics of first 20 functions. 

BFGS HBFGS 
Problem 

Time f f  Time f f  

Rosenbrock 0.02 62 36 0.06 133 44 

Freudenstein and Roth 0.00 29 14 0.03 48 16 

Powell badly scaled 0.17 796 303 0.02 257 33 

Brown badly scaled - - - - - - 

Beale 0.03 23 16 0.03 35 18 

Jennrich and Sampson 0.00 7 2 0.02 7 2 

Helical vally 0.05 77 35 0.06 166 44 

Bard 0.05 430 34 0.03 65 22 

Guassian 0.00 6 5 0.02 20 10 

Meyer - - - - - - 

Gulf research and develop 0.05 1 2 0.00 1 2 

Box three-dimensional 0.04 51 41 0.05 86 44 

Powell singular 0.05 65 36 0.06 157 58 

Wood 0.05 88 32 0.06 194 44 

Kowalik and Osborne 0.05 45 42 0.05 71 38 

Brown and Dennis 0.34 2546 263 0.20 1225 104 

Biggs EXP6 0.03 21 19 0.05 31 20 

Watson 0.39 79 42 0.47 163 54 

Extended Rosenbrock 0.13 244 74 0.25 832 130 

Broyden banded 0.09 160 45 0.19 647 112 

total 1.53 4730 1041 1.64 4138 795 
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problems. 
 
4.3. Result for 50 Middle Scale Functions 
 
The second test set of 50 problems consist of 43 functions 
with 100 variables, 3 functions with 200 variables and 4 
functions with 300 variables. The problems with “*” 
have 300 independent variables, and with “**” have 200 
independent variables. 

Table 2 shows that compared with BFGS, the compu-
tation of the function value and the gradient vectors and 
CPU-time of HBFGS decrease by 52.65%, 52.08% and 
36.01%, respectively. In summary the HBFGS method 
are faster and have less computation than the BFGS 
method.  
 
4.4. Result for 50 Large Scale Functions 
 
The second test set of 50 problems consist of 46 func-
tions with 500 variables, 4 functions with 300 variables. 
The problems with “*” have 300 independent variables. 

Table 3 shows that the HBFGS’s CPU-time, computa-
tion numbers of function value and gradient vectors are 
less than the BFGS by 949.10 seconds, 38808 and 3957, 
respectively. 

4.5. Statistics of the Ratio 
 
The Table 4 gives overall comparison of HDFP, HBFGS 
and DFP, BFGS. In Table 4, “Time” denotes the run 
time ratio, “f ” denotes function value computation num-
ber ratio and “ f ” denotes gradient computation num-
ber ratio. 

Table 4 shows that the HDFP outperforms the DFP 
with the average CPU-time ratio 1.58, function computa-
tion ratio 1.67 and gradient computation ratio 1.71. And 
the HBFGS defeats the BFGS with the average CPU- 
time ratio 1.23, function computation ratio 1.57 and gra-
dient computation ratio 1.56. 
 
4.6. Summary of the Tests 
 
As the tests show, although the higher order iteration 
schemes add the computation of k , it has less compu-
tation of function value and gradient vector. For large 
scale problems, the computation of  is much less 
than that of function value. 

a

ka

 
5. Concluding Remarks 
 
We gave a new iteration scheme based on ODE, proved  

 
Table 2. Statistics of middle scale 50 functions. 

BFGS HBFGS 
Problem 

Time f f  Time f f  

Strictly Convex1 0.05 7 8 0.06 21 12 

Strictly Convex2 0.30 202 97 0.19 147 60 

Extended Freudenstein and Roth 0.08 21 12 0.13 45 18 

Extended Trigonometric 0.17 237 57 0.39 388 124 

Extended White and Holst 0.19 75 36 0.22 118 38 

Extended Beale 0.08 20 15 0.09 45 20 

Extended Penalty 0.09 85 26 0.13 141 38 

Perturbed Quadratic 0.80 1729 279 0.53 1095 170 

Diagonal2 0.28 112 113 0.27 97 96 

Diagonal1 5.58 10756 1998 1.03 1701 342 

Diagonal3 5.77 10380 2001 1.03 1758 326 

Hager 0.16 138 63 0.13 107 40 

Generalized Tridiagonal-1 0.47 460 104 0.44 439 90 

Extended Tridiagonal-1 0.19 30 28 0.17 29 24 

Extended Three Exponential Terms 0.06 12 9 0.05 33 12 
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Generalized Tridiagonal-2 0.67 1261 189 0.77 1340 192 

Diagonal4 0.03 9 4 0.03 28 6 

Diagonal5 0.03 5 6 0.03 12 8 

Extended Himmelblau 0.06 19 10 0.06 56 18 

Generalized PSC1 0.73 369 313 0.28 137 104 

Extended PSC1 0.06 22 15 0.09 41 22 

Extended Powell** 1.45 148 78 0.98 111 50 

Extended Block Diagonal BD1 0.05 14 13 0.06 30 16 

Extended Maratos 0.19 146 67 0.25 264 90 

Extended Cliff 0.17 71 44 0.09 65 22 

Quadratic Diagonal Perturbed 0.11 57 40 0.13 65 42 

Extended Wood** 0.34 81 25 0.64 134 44 

Scaled Quadratic SQ1** 6.61 3163 460 5.70 3205 360 

Quadratic Function QF1 0.52 1015 193 0.42 784 140 

Extended Quadratic Penalty QP1 0.06 41 21 0.06 45 16 

Extended Quadratic Penalty QP2 0.08 49 26 0.11 82 34 

A Quadratic Function QF2 0.92 2352 324 0.58 1377 186 

Extended EP1 0.03 12 5 0.05 31 8 

Extended Tridiagonal-2 0.11 75 40 0.11 83 38 

BDQRTIC 1.70 5044 560 0.69 1619 206 

TRIDIA 1.75 5288 570 0.88 2336 258 

ARWHEAD 1.69 749 121 1.81 748 114 

NONDIA (Shanno-78) 0.06 88 19 0.19 378 58 

NONDQUAR 5.25 2170 1999 2.86 1207 1040 

DQDRTIC 0.05 49 13 0.14 234 42 

Extended Rosenbrock 0.13 74 38 0.16 153 52 

EG2 0.05 21 12 0.08 57 24 

DIXMAANA* 0.48 14 11 0.75 27 16 

DIXMAANB* 0.69 19 16 0.94 31 20 

Almost Perturbed Quadratic 0.80 1744 280 0.47 963 148 

Tridiagonal Perturbed Quadratic 1.25 1686 267 0.83 1088 168 

DIXMAANC* 0.67 21 16 0.98 40 20 

DIXMAANE* 8.31 176 174 4.93 109 102 

Partial Perturbed Quadratic 0.97 1618 260 0.64 1019 158 

Broyden Tridiagonal 0.64 1030 174 0.66 1015 160 

total 50.97 52964 11251 32.31 25078 5392 
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Table 3. Statistics of large scale 50 functions on BFGS and HBFGS. 

BFGS HBFGS 
Problem 

Time f f  Time f f  

Strictly Convex1 1.58 7 8 2.13 22 12 

Strictly Convex2 383.11 8094 2001 346.83 6694 1714 

Extended Freudenstein and Roth 3.14 21 12 5.83 48 20 

Extended Trigonometric 12.84 411 66 48.61 706 242 

Extended White and Holst 9.36 75 36 11.09 123 40 

Extended Beale 3.39 20 15 4.83 45 20 

Extended Penalty 116.31 6041 580 32.44 309 17 

Perturbed Quadratic 81.64 3428 398 86.69 3508 400 

Diagonal2 67.25 353 354 38.95 205 194 

Diagonal1 423.53 15033 2001 315.34 10818 1448 

Diagonal3 418.64 16311 2001 323.20 11385 1432 

Hager 33.78 626 176 58.16 1511 284 

Generalized Tridiagonal-1 19.14 414 95 19.84 441 94 

Extended Tridiagonal-1 7.98 35 32 6.41 30 24 

Extended Three Exponential Terms 2.02 13 10 2.48 32 12 

Generalized Tridiagonal-2 28.84 977 145 41.16 1365 196 

Diagonal4 0.42 9 4 1.28 29 8 

Diagonal5 0.91 5 6 1.27 12 8 

Extended Himmelblau 1.70 19 10 4.02 62 20 

Generalized PSC1 110.98 672 584 23.94 166 120 

Extended PSC1 3.14 25 16 4.75 41 22 

Extended Powel** 1.56 148 78 1.02 111 50 

Extended Block Diagonal BD1 2.66 15 14 2.91 30 16 

Extended Maratos 12.27 141 65 17.20 241 86 

Extended Cliff 9.16 71 44 4.72 65 22 

Quadratic Diagonal Perturbed 24.92 343 131 19.22 258 96 

Extended Wood 0.36 81 25 0.66 134 44 

Scaled Quadratic SQ1 6.59 3163 460 5.67 3205 360 

Quadratic Function QF1 67.39 2626 344 78.47 2949 378 

Extended Quadratic Penalty QP1 3.36 40 19 8.72 374 42 

Extended Quadratic Penalty QP2 6.42 76 35 9.84 133 50 

A Quadratic Function QF2 110.25 5324 556 103.45 4822 492 

Extended EP1 0.69 12 5 1.39 31 8 
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Extended Tridiagonal-2 7.16 72 39 8.30 83 42 

BDQRTIC 401.72 21393 2001 216.27 10251 1010 

TRIDIA 403.97 23427 2001 160.38 8716 750 

ARWHEAD 1.70 749 121 1.77 748 114 

NONDIA (Shanno-78) 16.36 310 86 44.33 913 218 

NONDQUAR 423.55 2203 2001 600.22 3070 2555 

DQDRTIC 2.53 51 14 7.42 199 38 

Extended Rosenbrock 7.20 74 38 10.33 153 52 

EG2 11.64 486 59 5.80 280 34 

DIXMAANA* 0.48 14 11 0.73 27 16 

DIXMAANB* 0.67 19 16 0.95 31 20 

Almost Perturbed Quadratic 71.27 3120 361 75.47 3187 360 

Tridiagonal Perturbed Quadratic 89.06 3623 420 87.52 3468 392 

DIXMAANC* 0.66 21 16 0.94 40 20 

DIXMAANE* 8.11 176 174 4.98 109 102 

Partial Perturbed Quadratic 82.22 3446 392 93.06 3728 420 

Broyden Tridiagonal 40.69 1206 203 44.28 1303 208 

total 3544.33 125019 18279 2995.23 86211 14322 

 
Table 4. Statistics of the ratio. 

DFP/HDFP BFGS/HBFGS 
Problem 

Time f f  Time f f  

small 20 functions 2.49 2.66 2.63 0.93 1.14 1.31 

middle 50 functions 1.03 1.29 1.23 1.58 2.11 2.09 

large scale 50 functions 1.23 1.07 1.27 1.18 1.45 1.28 

average 1.58 1.67 1.71 1.23 1.57 1.56 

 
the global convergence of this scheme and variant method 
using DFP and BFGS update formula. In particular, this 
iteration has a class of variant methods using different 
directions as the right-hand side vectors of (4). From our 
experiments, we can safely conclude that this iteration 
scheme improved the BFGS and DFP method on the test 
data sets. 
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